Biocatalysis and Biodegradation

MICROBIAL TRANSFORMATION OF ORGANIC COMPOUNDS
Biocatalysis and Biodegradation

MICROBIAL TRANSFORMATION OF ORGANIC COMPOUNDS

BY
Lawrence P. Wackett
Department of Biochemistry, Molecular Biology & Biophysics and Biological Process Technology Institute
University of Minnesota, St. Paul, Minnesota 55108-1030

AND
C. Douglas Hershberger
Biological Process Technology Institute
University of Minnesota, St. Paul, Minnesota 55108-1030
Contents

Foreword • David Gibson xi
Preface xxi

CHAPTER 1
General Concepts in Biodegradation and Biocatalysis 1
Definition of Terms 2
Further Resources in Biocatalysis and Biodegradation 5

CHAPTER 2
A History of Concepts in Biodegradation and Microbial Catalysis 7
The Beginnings of Biodegradation on Earth 7
Early Human Observations of Biodegradation and Biocatalysis 9
Early Scientific Studies on Biodegradation and the Spontaneous-Generation Debate 9
Microbial Pure Cultures from Nature 12
Early History of the Study of Diverse Metabolic Activities of Microbes 13
Unity of Metabolism in Living Things 14
Oxygen and Oxygenases 15
History of Anaerobic Biocatalysis 18
Molecular Genetics and Regulation 19
Microbes in Organic Synthesis 22
Summary 23

CHAPTER 3
Identifying Novel Microbial Catalysis by Enrichment Culture and Screening 27
Why Use Enrichment Culture? 28
The General Method 30
Selection of Conditions and Medium 33
Screening for Specific Biocatalytic Reactions 34
Summary 35

CHAPTER 4
Microbial Diversity: Catabolism of Organic Compounds Is Broadly Distributed 39
The Importance of Microbial (Bio)diversity 39
Fungi in Biocatalysis and Biodegradation 41
Distribution in the Prokaryotic World of Biodegradative and Novel Biocatalytic Capabilities 43
Specialized Biodegradation by Microorganisms with Specialized Metabolisms 52
Aerobic versus Anaerobic Microorganisms in Biodegradation 52
Representative Microorganisms with Broad Catabolic Abilities 54
Microbial Consortia in Biodegradation 61
Global Biodegradation and the Supraorganism Concept 62
Summary 65

CHAPTER 5
Organic Functional Group Diversity: the Unity of Biochemistry Is Dwarfed by Its Diversity 71
Microbial Global Cycling of the Elements 72
Facts and Fallacies: Natural Products versus Synthetic Chemicals and Their Biodegradation 74
An Organic Functional Group Classification 76
Organic Functional Groups Found in Nature 78
Ring Compounds Found in Nature 79
Summary 91
CHAPTER 6
Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis 95
General Physiological Responses to Environmental Chemicals 96
Enzymes 97
Enzyme Substrate Specificity 99
Uptake: Getting Substrates to the Enzymes 100
Emulsification: Overcoming Poor Availability of Substrate 104
Organic-Solvent Resistance 105
Chemotaxis: Getting to the Substrates 107
Summary 109

CHAPTER 7
Evolution of Catabolic Enzymes and Pathways 115
History 116
Major Protein Families in Microbial Biocatalysis 118
Principles of Evolution Applied to Microbial Catabolism 121
Gene Transfer in the Evolution of Catabolic Pathways 125
Case Study: Enzyme Evolution in the Aminohydrolase Protein Superfamily 127
Summary 131

CHAPTER 8
Metabolic Logic and Pathway Maps 135
Overview 135
C₁ Metamap 138
C₂ Metamap 140
Cycloalkane Metamap 141
BTEX Metamap: Aerobic Metabolism 143
BTEX Metamap: Anaerobic Metabolism 145
PAH Metamap 145
Heterocyclic-Ring Metamap 147
Triazine-Ring Metamap 148
Organohalogen Metamap 150
Organometallic Metamap 152
Summary 153
CHAPTER 9
Predicting Microbial Biocatalysis and Biodegradation 157

Why Is It Necessary To Predict Biodegradation Pathways? 158
Biodegradation Prediction Systems 159
Defining the Trunk Pathways 161
Defining the Organic Functional Groups Relevant to Microbial Catabolism 163
The Basis for Predicting Microbial Biocatalysis and Biodegradation 164
Beyond Two Functional Groups: the Need for Heuristics 166
Summary 168

CHAPTER 10
Microbial Biotechnology: Chemical Production and Bioremediation 171

Historical and Conceptual Progress 171
Recent Trends 173
End Products of Fermentation: Pharmaceuticals 174
Microbial Catalysis To Produce Chiral Products 175
Chiral Synthesis of Dichloroprop 178
Biocatalysis for Non-Medicinal, Non-Chiral Specialty Chemicals 180
Biotechnological Waste Recycling 183
Case Study of Bioremediation: Atrazine in Soil 184
Summary 189

CHAPTER 11
The Impact of Genomics on Microbial Catalysis 191

Genome Sizes and Organization 191
The Present Impact of Genomics 197
Functional Genomics in the Context of Microbial Biocatalysis 197
Inadvertent Deception in Modern Biochemistry Textbooks 202
The Case for Reverse Functional Genomics and New Discovery in Biocatalysis 202
Summary 203
CHAPTER 12
The Extent of Microbial Catalysis and Biodegradation: Are Microbes Infallible? 205
Microbial Enzyme Diversity 206
Experiments Suggest that Novel Biocatalytic Reactions Are Ubiquitous 209
Enzyme Plasticity and New Biocatalysts 210
Summary 211

CHAPTER 13
Big Questions and Future Prospects 213
The Questions and Some Thoughts on Their Ultimate Answers 213
Summary 216

APPENDIXES
A. Books and Journals Relevant to Biodegradation and Biocatalysis 217
B. Useful Internet Resources in Biodegradation and Biocatalysis 219

Index 223
Foreword

This book was written during one of the most exciting periods in the history of the biological sciences. It is the first of its genre and represents the collective thoughts of its authors on the birth and growth of biodegradation and biocatalysis as related areas in the disciplines of microbiology, biochemistry, and chemistry. Emphasis is placed on the transition period between traditional microbial chemistry and the emerging fields of genomics (structural and functional), proteomics, and bioinformatics. The elements of discovery and prediction pervade each chapter, with emphasis placed on the function and future developments of novel individual and groups of biocatalysts rather than, as in more conventional texts, on descriptions of the pathways used by microorganisms to degrade specific classes of organic compounds.

In this Foreword, I have chosen Sir Frederick Gowland Hopkins as the catalyst and Cambridge University as the reaction vessel to develop the themes of biodegradation and biocatalysis. Hopkins was the most distinguished biochemist at Cambridge University from the early 1900s through the end of World War II. It was Hopkins who encouraged Marjory Stephenson to write her classic book *Bacterial Metabolism*, which was first published in 1930 and followed by second and third editions in 1940 and 1949. Stephenson traced her interest in things microbial to Pasteur's 1857 paper, "Mémoire de la Fermentation dite lactique." This initial work was criticized by Berzelius and Liebig, both leading chemists at the time. Nevertheless, Pasteur held firm to his interpretation of lactic acid fermentation as a process resulting from, and necessary for, the growth and multiplication of living cells. These observations marked the birth of bacterial metabolism, which was defined in 1949 by Stephenson as "the interpretation of the physiological life of the bacterial cell in terms of biochemistry and biophysics both in respect of its own growth and reproduction and also of its action on its chemical and biological environment."

Hopkins also encouraged Ernest Baldwin, a faculty member in the School of Biochemistry, to write *Dynamic Aspects of Biochemistry*, first published in 1947. There is surprisingly little overlap between the two books in spite of Stephenson and Baldwin being in the School of Biochemistry at
the same time. Baldwin's textbook was used to introduce the palpably cold
equations of equilibrium thermodynamics to beginning biochemistry stu­
dents. Dynamic Aspects of Biochemistry achieved this objective admirably
and, together with Stephenson's Bacterial Metabolism, provided substantial
evidence to support Hopkins' celebrated aphorism, "Life is a dynamic equi­
librium in a polyphasic system."

Baldwin was a dedicated teacher and found that students compre­
hended and remembered reactions if they were presented pictorially. His
"whirligigs" were the forerunners of the elegant multicolored cartoons that
pervade the pages of microbiology and biochemistry textbooks today. In
this regard it is of interest to note that in England soon after the second
world war, there were three weekly comic papers, The Beano, The Wizard,
and The Dandy. Each contained three or four episodes of ongoing stories
designed to attract the attention of children in the 7- to 10-year age group
and each episode was presented in full text without a single picture or
cartoon. This was at a time when British children yearned for the so-called
"American comics" that in the postwar era were finding their way to the
shelves of British newsagents. It was the widespread fear of parents that
the glorious cartoons in Superman would somehow bring down the whole
British educational system by stifling the imagination of students in their
formative years. Retrospective analysis shows that these apprehensions had
no basis in fact. Although Baldwin's whirligigs could not compare with the
pictorial presentation of Superman in flight, they have survived in the rep­
resentation of the structure of ATP as A-P~P~P. Baldwin's squiggle (−)
was used to identify a "high-energy" phosphate bond and, as the late Stan­
ley Dagley noted, "in one fell swoop raised ATP to the level of a high
explosive." Of course Baldwin did state that the importance of ATP "lies
in the ease with which its terminal phosphate radical can be transferred
with a part or all of the 11,000 calories of free energy with which it is
associated, to other molecules," and he went on to use the A-P~P~P struc­
ture to show how ATP plays a central role in energy transactions in living
cells. It is remarkable that the squiggle representing a high-energy phos­
phate bond can be found in almost every biochemistry textbook from 1947
to the present day and that, almost without exception, it is accompanied by
an explanation that denies the existence of high-energy phosphate bonds.

The two decades following the second world war saw unprecedented
growth in biochemistry and all areas of the biological sciences. The deter­
mination of the structure and function of DNA, RNA, and messenger RNA
provided the basis for the development of the field of molecular biology.
Albert Lehninger at Johns Hopkins University recognized, like Baldwin
before him, the need for a textbook that correlated thermodynamic prin­
ciples with metabolic activities. His book, Bioenergetics: the Molecular Basis
of Biological Energy Transformations, was written for undergraduates begin­
ing the study of molecular biology. This text, in elegant and simple pre­
sentations, showed that thermodynamic principles "comprise a central and
unifying theme in biology." In this context, metabolism can be thought of
as the total chemical activities of the cell, with the terms "catabolism" and
"anabolism" representing the degradation and synthesis of cellular con­
stituents, respectively.

The relationship between catabolism and anabolism can be seen in the
carbon cycle, which, at the global level, represents an equilibrium between
the processes of photosynthesis and respiration. Light energy from the sun
is used by plants, algae, and certain bacteria to drive the synthesis of cel-
lular constituents from carbon dioxide and an appropriate electron donor. The carbon sequestered in these molecules is ultimately released to the atmosphere as carbon dioxide, mainly by the catabolic activities of heterotrophic microorganisms. For example, glucose is catabolized via the Embden-Meyerhoff pathway in a stepwise sequence of reactions to pyruvate. In the process, ATP for biosynthesis is produced by substrate-level phosphorylation, and oxidation reactions are mediated by the removal of hydride ions as NADH. Continuation of glucose degradation is dependent on the regeneration of oxidized NAD$^+$. In fermentative microorganisms, this is achieved by the transfer of electrons to organic compounds. For example, yeast regenerates NAD$^+$ by transferring reducing equivalents to acetaldehyde. The end product of this reaction is ethanol. The same strategy is used by mammals when oxygen concentrations are low. In this case, however, hydrogen and electrons are used to reduce pyruvate to lactate. In contrast, aerobic organisms utilize the tricarboxylic acid cycle to oxidize pyruvate to carbon dioxide and water. Hydrogen and electrons are transferred to oxygen by a sequence of redox proteins, and ATP is generated by oxidative phosphorylation. In anaerobic environments, the acids and alcohols generated by fermentation can serve as growth substrates for other groups of bacteria, which convert them to acetate, hydrogen, and carbon dioxide. These products are converted to methane by methanogenic bacteria. Methane is oxidized to CO$_2$ by methylo trophic bacteria and thus completes the carbon cycle. Although oxygen is the terminal electron acceptor in aerobic organisms from bacteria to humans, an alternate lifestyle is embraced by iron-, sulfate-, and nitrate-reducing bacteria, and the search for a phosphate-reducing organism continues (R. S. Wolfe, personal communication, 2000).

The catabolic and anabolic processes used by microorganisms for the degradation and synthesis of carbohydrates, lipids, proteins, and other cellular constituents are reasonably well known. Together, they represent the field of central or intermediary metabolism. Thus it seems appropriate to ask how the pathways of central metabolism relate to biodegradation and biocatalysis. In this context, it is important to recognize that catabolism and anabolism are powerful terms that directly relate to the fundamental activities of living cells, whereas biodegradation and biocatalysis are used to identify individual specific objectives within the area encompassed by metabolism. In its broadest sense, biodegradation refers to the microbial catabolism of a compound into molecules that can enter the central metabolic pathways used by aerobic and anaerobic microorganisms. For example, lignocellulose is the main structural component of woody plants, and lignocellulose biodegradation is the most important process in the recycling of terrestrial biosynthetic compounds. This is accomplished by a cascade of thermodynamically favorable reactions mediated by microorganisms. Certain fungi use extracellular hydrogen peroxide-dependent enzymes to depolymerize lignocellulose. The aromatic alcohols and ethers liberated by ligninases, together with free cellulose, serve as carbon and energy sources for a variety of microorganisms, and ultimately the carbon sequestered in lignocellulose is returned to the atmosphere as carbon dioxide. Biocatalysis, in contrast to biodegradation, is a term that is usually used to identify catabolic or anabolic reactions that lead to the accumulation of specific metabolic products. The reduction of acetaldehyde to ethanol by alcohol dehydrogenase and the generation of high-fructose corn syrup by glucose-6-phosphate isomerase are classic examples of biocatalysis.
Although examples of biodegradation and biocatalysis abound in nature, it is only in the 38 years since the publication of Rachel Carson's *The Silent Spring* that biodegradation has achieved serious recognition as a research area that focuses on the pathways and reactions used by microorganisms to degrade environmental pollutants. In this context, it is desirable to have an understanding of the nature of environmental pollutants. There are, however, no unifying concepts to satisfy all situations. In simple terms, a compound can be considered a pollutant if its concentration reaches a level that has deleterious effects on life forms at any stage from the bottom to the top of the food chain. At the turn of the century, London hatters used mercury to provide a sheen for top hats, and the frequency of dementia in this group of individuals was very high. The Mad Hatter in Lewis Carroll's *Alice in Wonderland* provides anecdotal evidence for this condition, which is due to the formation of neurogenic dimethyl mercury by intestinal bacteria. A more recent example is seen in the high incidence of dimethyl mercury poisoning of the inhabitants of Minamata, a small fishing village in Japan. Mercury from a chlorine plant was released into the estuary near the village. Methanogens in anaerobic sediments produced dimethyl mercury, which moved through the food chain to fish and finally to the fishermen and their families.

The cycle of carbon in nature operates on the assumption that all biosynthetic organic compounds are biodegradable. There is, however, a second major source of organic compounds that has to be considered in terms of carbon recycling and biodegradation. Every year since the Precambrian era, a small amount of the plankton in ancient oceans has been buried before it can be completely converted to carbon dioxide by microorganisms. This material undergoes thermodynamic stabilization by diagenesis, and the end product is graphite. The early stages of diagenesis occur in shallow sediments where organic material is subjected to extremes in pH and redox conditions. During this time, carbon-carbon bonds are broken and oxygen and other elements are displaced, leading to the temporary formation of new and often more complex compounds (humic acids) even though overall stabilization of the system takes place. Eventually, most of this material is converted to kerogen, a complex polymer of unknown structure. As sediments sink to lower levels, kerogen is subjected to increases in temperature and pressure. These conditions, in conjunction with catalytic changes due to the composition of the rock, can eventually lead to the formation of crude oil. It is important to realize that crude oil represents an intermediate stage on the geological time scale between kerogen and graphite. Thus no two oils have the same chemical composition.

Today, petroleum derived from crude oil drives the economies of industrial nations, and not surprisingly, crude oil and products formed from it find their way into environments where their presence is not anticipated or appreciated. At the beginning of the new millennium, the public is still enamored of stories relating to the use of bacteria to clean up oil spills. However, work supported by the American Petroleum Institute reveals the chemical complexity of oil and the realization that the timeframes required for complete biodegradation make it unlikely that significant bioremediation technology for catastrophic events such as the *Exxon Valdez* spill will ever be developed. Most crude oils contain significant quantities of linear alkanes. Bacteria that degrade these hydrocarbons are ubiquitous in the environment. The introduction of nitrogen and phosphorus sources to environments polluted by oil to accelerate biodegradation by indigenous mi-
croorganisms (biostimulation) has met with some success. This is probably
due to stimulation of bacterial growth on linear alkanes and some of the
smaller alicyclic and aromatic components.

The use of microorganisms to remedy other anthropogenic insults to
the environment has met with more success. In each case the solution was
found in the results of basic research. For example, in the 1960s, Liverpud­
lions in Lancashire, England, were treated to the sight of large plumes of
foam drifting on the surface of the River Mersey. The culprit was found to
be detergents that contained hydrophobic branched alkyl side chains. An
environmental solution was found in the substitution of linear alkyl side
chains for their branched-chain counterparts. Detergent activity was main­
tained and the visible pollution problem was eliminated. It is of interest to
note that quaternary methyl-substituted alkanes are products of the petro­
leum industry and are not found in nature, whereas, as noted previously,
linear alkanes are ubiquitous. Thus one possible explanation for the ob­
served results is the fact that microorganisms have had millions of years to
evolve enzyme systems for the degradation of linear alkanes whereas they
have only been in contact with quaternary-substituted alkanes for less than
a century. More recent interpretations of the evolution of biodegradation
pathways are discussed in later chapters of this book.

Unfortunately, not all cases of environmental pollution are as visible as
the foam from non-biodegradable detergents. DDT was used as an insec­
ticide for many years before it was identified as the agent responsible for
the almost total demise of the bald eagle and other birds of prey. In addition,
analyses of environmental samples for the presence of DDT led to the iden­
tification of polychlorinated biphenyls (PCBs) as a major group of ubiqui­
tous environmental pollutants. The identification of DDT and PCBs in soil
and sediment samples was made possible by the combined techniques of
gas chromatography and high-resolution mass spectrometry. Today these
techniques are used routinely to monitor the concentration and fate of spe­
cific pollutants in different environments. It is worth noting, however, that
a little more than 50 years ago Kern isolated chrysene from soil. This was
the first polycyclic hydrocarbon to be detected in the environment. Two
decades later it was possible to say that Kern’s 1947 soil sample almost
certainly contained individual polycyclic compounds numbering in the 10^5
range. This was due to advances in analytical resolution by several orders
of magnitude. It is also an example of what the late Max Blumer called
“pure ignorance,” namely, “the ignorance of which we are not even aware.”
For instance, with each advance in analytical technique, the boundary of
the unknown is not brought closer as expected, but in fact recedes rapidly,
and there is no reason for us to feel complacent that the boundary will be
reached in the near future. The fact that our present knowledge of the or­
ganic compounds in nature is incomplete makes it extremely difficult to
predict the biological impact of chemicals in the environment. This situation
is compounded by our “pure ignorance” of the composition of bacterial
communities in different ecological niches. Until recently, most of our cur­
rent knowledge in the fields of biodegradation and biocatalysis resulted
from studies with pure cultures and single substrates. It is now widely
acknowledged that more than 99% of the bacteria in a single soil or sedi­
ment sample have yet to be isolated and characterized. The presence of
4,000 different bacteria and 100,000 organic compounds of unknown struc­
ture and physiological activity in a single soil or sediment sample is a
daunting example of bacterial and chemical diversity which exposes our “pure ignorance” and challenges our imagination and perseverance.

There is no doubt that advances in analytical techniques for the isolation, separation, and identification of organic compounds have played a major role in the developing study of bacterial metabolism in general and biodegradation and biocatalysis in particular. By 1970, significant advances had been made in identifying the pathways used by bacteria to degrade compounds regarded as environmental pollutants. This was achieved by isolating and identifying intermediate compounds, followed by demonstrating the presence of enzymes responsible for their formation and further metabolism. Most of this work was done with pure cultures and single substrates. For example, aromatic hydrocarbons and related compounds were recognized as environmental pollutants emanating from the refinement and use of crude oil and the procedures used to manufacture paper products from lignocellulose. Initial studies showed that certain bacteria channel many simple aromatic compounds through arene cis-diols to catechol or protocatechu ate. The initial reaction involves the addition of dioxygen to the aromatic nucleus by multicomponent enzyme systems belonging to a family of enzymes known as Rieske non-heme iron oxygenases. The resulting arene cis-diols are rearomatized by pyridine nucleotide-dependent dehydrogenases, which replace the NAD(P)H used in the initial dihydroxylation reaction. The products formed, catechols or protocatechu ate, are substrates for ring-fission dioxygenases which cleave the aromatic nucleus between the hydroxyl groups (ortho-cleavage) or at a site adjacent to one of the hydroxyl groups (meta-cleavage). Ring-fission products formed by ortho-cleavage are channeled to a common intermediate, δ-ketoisocitrate enol lactone, whereas in most cases meta-ring-fission products are converted to 2-oxo-4-hydroxyvalerate. The end products from both pathways are then metabolized to intermediates that can enter the tricarboxylic acid cycle.

These and other catabolic pathways were elucidated, as mentioned above, by studying individual reactions and their attendant enzymes. The results obtained then served as building blocks for the assembly of each pathway. Stanley Dagley was an avid proponent of this reductionist approach. This can be seen in his statement that “the most sensible questions to ask of nature are the simplest; but oversimplified answers must then be expected and these will provoke further questions.” A classic example of this prediction can be seen in the convergent pathways used by bacteria to degrade aromatic compounds. These observations stimulated Gunsalus and his colleagues to explore the organization and expression of the genes encoding the enzymes responsible for aromatic metabolism, since they regarded metabolic convergence as a mechanism for reducing the total genetic load of the cell. Their studies in this area led to the discovery of the NAH, SAL, and TOL transmissible catabolic plasmids and paved the way for new molecular approaches in the fields of biodegradation and biocatalysis.

For many years pseudomonads were regarded as the most omnivorous microorganisms in the environment. Support for this conclusion can be traced back to the 1926 thesis of der Dooren de Jong in Delft, The Netherlands, which lists 80 compounds that will support the growth of Pseudomonas putida. Further support was provided by the detailed classification of the pseudomonads by Stanier, Palleroni, and Doudoroff at the University of California at Berkeley. Today, however, we can trace the dominance of
the pseudomonads in biodegradation studies to their preferential isolation by classical enrichment culture techniques and also to pseudomicrobiologists who identified all gram-negative motile rods as pseudomonads. Comparative sequencing of 16S ribosomal RNA has led to a recognition of the catabolic versatility exhibited by species of *Rhodococcus, Sphingomonas, Comamonas, Burkholderia, Ralstonia*, and other genera. New organisms lead to the identification of new metabolic capabilities. For example, the unwritten but general assumption that aromatic hydrocarbons cannot be degraded under anaerobic conditions has fallen under the onslaught of nitrate-, sulfate-, and iron-reducing bacteria. Another example resulted from the discovery that recalcitrant highly chlorinated biphenyls undergo reductive dehalogenation in the anaerobic sediments of the upper Hudson River and other PCB-contaminated environments. One common feature of "natural" biodegradation is the slow rate of contaminant removal. This serves to remind us that Nature marches to the beat of her own drum and is often ill prepared to withstand surges of excessive amounts of chemicals resulting from human activities.

Fortunately, the molecular techniques generated and driven by recombinant DNA technology have had a significant impact on all aspects of biodegradation and biocatalysis. Today it is possible to optimize the conditions necessary for the microbial degradation of many environmental pollutants. Examples listed by Timmis and Pieper include the isolation of new strains with desired phenotypes and the construction of novel pathways that eliminate nonproductive side reactions, reduce the formation of toxic intermediates, and, where necessary, improve enzyme performance. In addition, the advent of the World Wide Web has facilitated the development of databases that can be used to predict pathways for the biodegradation of new chemicals. Discussion of these and other aspects of biodegradation permeates the later chapters of this book and does not need to be repeated here.

Recent developments in biocatalysis stem from industry’s realization of the need for environmentally benign procedures for the synthesis of commercial chemical products. The ideal synthetic system would incorporate Trost’s suggestion of “atom economy,” in which all atoms in the reactants are present in the product. This would favor addition reactions over elimination reactions, a situation that is not always feasible from a synthetic chemist’s point of view. In contrast, there are many biocatalytic routes to commercial products that are addition reactions. These include asymmetric dihydroxylation reactions catalyzed by Rieske non-heme iron dioxygenases. It is here, and also in many chapters throughout this book, that biodegradation and biocatalysis meet. Bacteria that degrade toluene are readily detected in contaminated groundwater, and at least five distinct pathways of toluene degradation have been elucidated. The “dihydrodiol” pathway used by *Pseudomonas putida* F1 is initiated by toluene dioxygenase. This enzyme adds both atoms of dioxygen to the aromatic nucleus to form homochiral (+)-cis-(1S,2R)-dihydroxy-3-methylcyclohexa-3,5-diene (toluene cis-dihydrodiol). The dihydrodiol has found use as a chiral synthon in the synthesis of biologically active compounds such as prostaglandin E2a. The most remarkable feature of toluene dioxygenase and the related enzyme naphthalene dioxygenase is their ability to oxidize more than 200 substrates to single enantiomer arene cis-diols. The synthetic potential of these and other chiral products from biocatalysis is virtually untapped and should serve synthetic chemists well in the future search for environmentally benign syntheses.
In 1949 Marjory Stephenson predicted that in 25 to 50 years a biochemical description of cell growth would be almost complete, leading her to suggest that “biochemistry and microbiology as we know them will become cold stars (black holes),” to be replaced with “fresh fields whose character we can only dimly guess at.” One can only wonder at the words of this prescient scientist in light of the fact that June 26, 2000, saw the announcement of the DNA sequence of the human genome. This came just 5 years after the publication of the first complete genome, that of *Haemophilus influenzae*. The entire genomes of more than 30 organisms have been determined to date. These include the genome of *Enterococcus faecium* (2.98 million base pairs), which was sequenced in a single day. Robotic nucleotide sequencing has clearly revolutionized biology and given birth to genomics, structural genomics, proteomics, toxicogenomics, and no doubt many more "-omics" still to come. These qualify as the fresh fields Stephenson envisaged. They are also powerful tools that will enable scientists to determine a clear picture of bacterial growth in terms of the activity of regulatory proteins that control the timing and levels of gene expression throughout the cell growth cycle. The ability to conduct these and related experiments is extolled weekly in the scientific press—accompanied by articles warning of the difficulties to be encountered in the emerging fields of postgenomic biology.

One of the many attractive features of this book is the integration of the birth and growth of biodegradation and biocatalysis into the pre- and potential postgenomic eras. It thus seems appropriate to conclude this introduction with a few words on Arthur Kornberg’s “Ten Commandments: Lessons from the Enzymology of DNA Replication,” a Guest Commentary published in the July 2000 issue of the *Journal of Bacteriology*. Kornberg presents a powerful statement for the value of studies on pure enzymes in biology and cites Frederick Gowland Hopkins (1931) as an early spokesman for this approach (see above). I have always been hesitant to invoke the thoughts and commandments of a higher being in my experiments. Nevertheless, Kornberg’s statement that poly P is “an inorganic polymer of hundreds of phosphate residues linked by ‘high-energy’ anhydride bonds” suggests an 11th commandment: *Thou shalt not ignore thermodynamics when considering the birth and future development of any field of biology.*

David T. Gibson
Department of Microbiology
The University of Iowa
Iowa City, Iowa

Suggested Reading

Preface

This book takes the view that it is more important to define the emerging questions in biodegradation and biocatalysis than to contribute to the pretense that there are answers to many of the most important questions in the field. James Thurber expressed it more simply, "It is better to know some of the questions than all of the answers." This book frames questions such as, "What is the extent of microbial metabolism on Earth?"; "What microorganisms participate in certain types of metabolic transformations?"; "How does one define microbial metabolism in light of widespread genome sequencing?"; "How will microbial biocatalysis and biodegradation be applied commercially in the future?" Some of the answers will be found in the short term; some may remain elusive for a long time. In fact, it is important to question whether microbial metabolism can ever be fully appreciated; might not microbes evolve new catabolic activities faster than they can be studied by scientists?

To begin to answer the global questions posed in this book, a reductionist approach is taken. This goes against the perception of some people who feel that global questions require non-reductionist, or global, methods of experimentation. Throughout this book, the underlying molecular basis of microbial biocatalysis is detailed. One must reduce the complexity of a system, understand its parts, and then see how the parts act together to make a functional whole. To understand microbial biocatalysis globally, it is important both to delve deeply and to step back periodically for the broad view.

A reductionist approach also flows naturally from the duality of biocatalysis and biodegradation: the chemistry of the substances being transformed and the microbiology of how those transformations occur in the world. This necessitates going back and forth between microbiology and chemistry. The first part of the book, chapters 2 through 4, focuses on microorganisms and laboratory methods for their isolation and study. Then, chapter 5 focuses on chemical compounds, their origins, and their
distribution on Earth. In chapters 6 through 8, microbiology and chemistry blend with coverage of enzymes, evolution, and metabolic logic. Last, in chapters 9 to 13, issues currently attracting strong interest are covered: predicting biodegradative metabolism, genomics, and industrial applications of biocatalysis and biodegradation.

The book also seeks to deal with the complexity of biocatalysis and biodegradation, viewing the global microbial ecosystem and its collective metabolic activities as part of the beautiful tapestry of nature. Edward O. Wilson described complexity in human terms as follows, "The love of complexity without reductionism makes art; the love of complexity with reductionism makes science." This book stresses the complexity of organic molecules, over ten million of which are currently known, and the complementary complexity of microbial metabolism that has evolved to transform those organic compounds.

The book's focus on events occurring at the molecular level differentiates it from a number of other recent books on biodegradation which stress bioremediation engineering or other aggregate processes such as microbiological aspects of soils and waters that influence biodegradation. Other treatments of biodegradation stress different chemical compounds and how each is metabolized by microorganisms. The present book differs in that it seeks to describe the logic of microbial biocatalysis. By logic, we mean the conceptual framework at the molecular level: how enzymes work, how pathways interact, and how physiological systems support biodegrading organisms. Overall, we envision this book to be useful for graduate students, for whom it might be suitable as a textbook, and for specialists in academia and industry interested in microbial biocatalysis and biodegradation. With microbial genome sequencing projects providing a new approach for studying individual prokaryotes, we anticipate that microbial catalysis will enter a new golden age. It is more important than ever, for better annotation of gene sequences and for applying biocatalysis to practical problems, that the underlying logic of microbial metabolism be better appreciated.

This book would not have reached its current form without the help of many people, and we wish to acknowledge them here. Much of the manuscript was written at the Yoss Ranch in Zumbro Falls, Minn. (and we thank Kathe and Robert Yoss for their hospitality), and at the Dow Chemical Company in San Diego, Calif. At the latter site, Mani Subramanian kindly provided one of the authors a quiet place to write and Davetta Adams provided assistance in getting materials.

We also thank the following people for review of and helpful commentary on the manuscript: Alasdair Cook, Mervyn deSouza, David Gibson, Jack Richman, Jennifer Seffernick, Alfred Spormann, Lisa Strong, Mani Subramanian, and Gregg Whited. An important source of inspiration for this book was the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD). The UM-BBD has been broadly used; it has received over 2,000,000 accesses from users in 75 countries. The UM-BBD has achieved this success because of the work of many people, most notably Lynda Ellis, the co-Director, but many volunteers and coworkers have contributed and we wish to thank them all for their efforts. Finally, we wish to express our appreciation to our families for their patient understanding of the time required of us to bring this project to com-
pletion. Special thanks are due to Deborah Allan, Adrian Wackett, Katherine Wackett, Yifat Bar-Dagan, Charlie Hershberger, and Joy Hershberger.

LAWRENCE P. WACKETT
Department of Biochemistry, Molecular Biology & Biophysics
and Biological Process Technology Institute

AND

C. DOUGLAS HERSBERGER
Biological Process Technology Institute
240 Gortner Laboratory
1479 Gortner Avenue
University of Minnesota
St. Paul, MN 55108-1030
Index

Page references in *italics* refer to tables.

A
- Acenaphthene, 146–147
- *Acetobacterium woodii*, 54
- *Acetobacter suboxydans*, 22
- Acetone, 21, 173
- *Acinetobacter*, 143
- Acrylamide, industrial production of, 57
- Active sites
 - chiral surface, 175
 - and enzymes, 122, 211
- Aerobes, catabolic, 54
- Aerobic-biotransformation studies, 53–54
- Agar-agar, 13
- *Agaricus bisporus*, 41
- Agent orange, 179
- *Agrobacterium*, 129
- *Alcaligenes*, 129
- Alcohol fermentation, 9, 13–14
 - fungal, 41
- Ametryn, 149
- Amgen, 182
- Amino acids, in biocatalysis, 208
- α-Amylases, 97, 175
- Anabolism, 2–3, *see also* Biosynthesis
 - Anaerobic-biotransformation studies, 52–53
- Anaerobic cultures, 18–19
- Anaerobic enrichment, 33
- Antibiotics
 - biosynthetic production of, 174
 - plasmid-mediated resistance, 20
- Archaea, evolution of, 8
- Aromatic hydrocarbons, 16, 17
 - bioavailability of, 104
 - biotransformation of, 3–4, 53–54
 - *C. elegans* oxidation of, 60
 - cleavage reactions, 16, 17
 - dioxygenases, 100, 121
 - formation of, 74
 - metabolism studies, 17
 - *Arthrobacter*, substrates for, 46, 48
 - Ascorbic acid, synthesis of, 22
 - Aspartame, 172
 - *Aspergillus niger*, 21, 41
 - Astatine, 150
 - Atrazine
 - biodegradation of, 127–131
 - bioremediation, 184–189
 - catabolism of, 57
 - consortial metabolism of, 62
 - enrichment culture of, 31–33
 - ring substituents, 149
 - Atrazine chlorohydrolase, 129, 187
 - *atzABC* genes, 129–130

B
- *Bacillus subtilis*, 97, 197
- Bacteria
 - biosurfactant-producing, 106
 - evolution of, 8
 - substrates for, 46–47
 - taxonomic tree, 48, 50
- Baeyer, Adolph von, 181
- Baeyer-Villiger monooxygenation reaction, 142–143
- Ballou, David, 18
- Bancroft, Joseph, 15
- Beijerinck, Martinus, 13, 30, 36
- Benzene rings, aerobic metabolism of, 143–145
- Benzo[a]pyrene, 60
- Benzyol-CoA, 145, 162
- BESS, 161
- Bifunctional compounds, 164–166
- Bioaugmentation, 186–188
- Bioavailability, of substrates, 104–105
Biocatalysis
anaerobic, 18–19
definition of, 2
early applications, 172
and evolution, 9
functional genomics and, 197–203
and fungi, 41–43
historical studies, 11
internet resources, 221–222
novel reactions, 209–210
Biocatalysis/Biodegradation Database,
see University of Minnesota Biocatalysts/Biodegradation Database
Biodegradability
features of, 158
and polymer design, 214
prediction systems, 159–168
Biodegradability Evaluation and
Simulation System (BESS), 161
Biodegradation
aerobic vs. anaerobic, 52–54
bias in literature, 76
definition of, 2
early studies, 9–12
and evolution, 7–9
and fungi, 41–43
global, 62–65
internet resources, 219–222
novel microorganisms in, 48–51
prokaryote distribution, 43–52
prokaryotes vs. eukaryotes, 42
specialized, 52
Biodegradation prediction systems,
159–161
basis for, 164–166
defining functional groups, 163–164
defining pathways, 161–163
heuristics, 166–169
Biodiversity, 39–41
Biomass, 175
Bioremediation
definition of, 2
internet resources, 220–221
soil, 184–189
Biostimulation, 186–188
Biosurfactants, 104–105, 106
Biosynthesis, 2–3
Biotransformation, 2
Biphenyl, as substrate, 56
Borrelia burgdorferi, 194, 197
Botrytis cinerea, 79
Brefeld, Oskar, 10
BRENDA, enzyme database, 221
Bromoxynil, biodegradation of, 4, 5
BTEX metamap
aerobic, 143–145
anaerobic, 145
Büchner, Eduard, 14, 98
Burkholderia, substrates for, 46, 48
Burkholderia cepacia AC1100, 54, 194
Burkholderia cepacia G4, 31
Butyltin, 152
C
C, 73
C₆-metabolizing bacteria, 52
C₆ metamap, 138–140
C₇ metamap, 140–141
Carbon
bacterial sources of, 14
as building block, 1–2
Carbon cycle, microbes in, 72–74
Carcinogens, microbial metabolism
model, 60
Catabolic pathways, see Metamaps
Catabolism, 3
Cellulases, fungal, 34, 41
Cellulose, biodegradation of, 40
Central dogma, 193
Chakrabarty, Ananda, 20
Chemicals, natural vs. synthetic, 74–75
Chemicals, specialty, biocatalytic
production of, 180–183
Chemothaxis, 107–109
Chiral products, biocatalysis of, 175–178
4-Chlorobenzoyl-CoA dehalogenase,
124–125
Chloroform, for soil sterilization, 105
Chloromethane
biodegradation of, 52
microbial production of, 77
recycling of, 150
Chloropropionic acid, 179–180
Citric acid
A. niger fermentation of, 41
commercial production of, 21
Clavibacter, 129
Clavibacterium sp., 62
Cleavage, meta/ortho, 17
Clostridium acetobutylicum,
21, 172
Coal, 74
Coenzymes, discovery of, 15
Coevolution, microbial, 19
Cofactors, organic, in biocatalysis, 208
Cohn, Ferdinand, 12
Combustion, natural, 87
Commodity chemical industry, 171–174
Consortia
anaerobic microbial, 18–19, 53
in biodegradation, 61–62
novel microorganisms in, 50
Core metabolism, defining, 161–162
Corn syrup, high-fructose, 172
Cortisone, commercial production of,
22–23, 41
Corynebacteria sp., 174
Crick, Francis, 116, 192
Crowley, David, 62
Crude oil, as substrate, 60
Cultures
anaerobic, 18–19
enrichment, see Enrichment culture
mixed, 13, 18–19, 28
pure, 12–13, 28–30
selective, 13, see also Enrichment cul-
ture
Cunninghamella elegans, 42, 43, 60
Currie, J. N., 21
Cyanuric acid, 149
Cytochrome P450
early enzyme studies, 17
monooxygenases, 60, 121
D
Dagley, Stanley, 158
Dalapon, consortial metabolism of, 62
Darwin, Charles, 116
Databases
biocatalysis, 221–222
biodegradation, 219
DDT, 150
Dehalobacterium formicoaceticum, 19
Dehalobacter restrictus, 48
Dehalococcoides ethenogenes, 195, 54
Dehalogenases, enantiospecific, 180
Deinococcus radiodurans, 214
Desulfitobacterium dehalogenans,
54
Desulfomonile tiediei DCB-1, 54
Diagnosis, 74, 142, 145
Dibenzothiophene, desulfurization of,
58–60
1,2-Dichloroethane, catabolism of, 140
Dichloromethane
anaerobic biodegradation of, 18–19
biodegradation of, 52
metabolism of, 139
Dichloromethane dehalogenase, 139
Dichloroprop, chiral synthesis of, 178–180
Diosgenin, 22
Dioxygen, 15–18
activation of, 144
heavy, 16, 17
Dioxygenases, 17
aromatic hydrocarbon, 100, 121
of Pseudomonas spp., 56
specificity of, 56, 124
DNA
sequencing, 117
structure of, 116, 192
Dow Chemical Company, 183
Drug synthesis, enantiospecific, 175–177
E
Electron acceptors, alternative, 19
Elements, microbial cycling of, 72–74
Emulsification, 104–105
Polychlorinated biphenyls, bioavailability of, 104
Polycyclic aromatic hydrocarbons (PAH) metamap, 145–147
Polycyclic compounds, bacterial oxidation of, 56
Prebiotic soup, 7
Priestly, Joseph, 15
Primordial soup, see Prebiotic soup
Prokaryotes
16S rRNA divergence, 118
as a superorganism, 62–65
cell composition, 1
distribution by biodegradation reaction, 43–52
diversity of, 215
evolution of, 8, 9
evolution of enzymes, 95
genome size, 191–197
number of, 40
repliscons, 194, 197
uncultivable, 44
Prometryn, 149
Proteins
evolution of, 117–118
families, 118–120
sequencing, 117–118
Proteobacteria
biodegrading, 45
C2-metabolizing bacteria, 139
Pseudomonas aeruginosa, 62
Pseudomonas chlororaphis B23, 54, 57
Pseudomonas putida, enantiomeric delocalogenases, 180
Pseudomonas putida F1, 54–56
Pseudomonas putida G7, chemotaxis
specificity, 109
Pseudomonas putida mt-2, 54
Pseudomonas spp.
diversity of, 56
reclassification of, 45
solvent-tolerant, 107
strains/substrates of, 47, 48
Pseudomonas sp. strain ADP, 62
atrazone catabolism, 128–131
Pseudomonas sp. strain B3, 54
Pseudomonas sp. strain CBS3, 54
Pseudomonas sp. strain CN, 62
Pseudomonas sp. strain DSM 8246, 180
Pseudomonas sp. strain NCIB 9816, 54, 100
Pseudomonas stutzeri, 61
Pseudomonas syringae, 105
Pure culture
development of methods, 12–13
use of, 28–30
Pyrogallol, 18
Q
QSAR methods, 159
R
R plasmids, 20
Ralstonia, 129
Recombinant organisms, in field tests, 187–189
Recombinant proteins, E. coli, 174
Recycling, waste, 183–184
Reichstein, T., 22
Rennilase, 34
Repliscons, 130–131
prokaryotes, 194, 197
Reproduction, microbial, 40
Rhizobium sp., atrazine catabolism, 128
Rhizopus, 41, 43
Rhizopus arizius, 22
Rhizopus stolonifer, 22
Rhodococcus spp., 57–60
substrates for, 47, 48
Rhodococcus sp. strain 124, 60
Rhodopseudomonas palustris, 54
Ring compounds
cycloaliphatic, 87–88, 89
mixed heterocyclic, 86–87
natural, 79, 86–88
nitrogen, 79–80, 86
oxygen, 86, 87
sulfur, 86–87
rRNA, 165, divergence in prokaryotes, 118
S
Saccharomyces, and alcohol fermentation, 41
Salicylate, 146
Sanger, Friedrich, 193
Schizosaccharomyces, 41
Schleiden, Mathias, 10
Schlosing, Jean Jacques, 15
Schwann, Theodor, 10
Selective cultures, 13, see also Enrichment culture
Serratia liquefaciens, motility of, 105
Side products, recycling, 183–184
Simazine, 149
Simultaneous adaption, 20, 28
Soehnlen, N. L., 13
Soil
bioremediation, 184–189
sterilization, 105
Solubility, and diffusion across membranes, 103
Solvents, organic, microbial resistance to, 105, 107
Soil stress, 105
Spallanzani, Lazzaro, 10, 15
Sphingolipid, 56–57
Sphingomonas aromaticivorans, 56
Sphingomonas aromaticivorans F199, 193
Sphingomonas paucimobilis SS86, 151
Sphingomonas sp. strain RW1, 54
Sphingomonas yanoikuyae B1, 56–57, 193
Spontaneous generation, 10–12
Stanier, Roger, 20
Starch, 175
Steroids
metabolism of, 142
ring structure of, 87–88
Stouthamer, A. H., 20
Streptomyces sp., 174
rare functional groups, 78–79
Substituents, chemical, effect on biodegradability, 159
Substrates
bioavailability of, 104–105
and corresponding bacteria, 46–47
for enrichment cultures, 29
incorporating into media, 31–33
P. putida F1, 54–56
specificity of, 99–100, 124–125
uptake of, 100, 102–103
Subtilisin, 97
Sulfur ring structures, 86–87
Supraorganism concept, 62–65
Surfactants, 104
Swan-neck flasks, 12, 15
Swanson, Paul, 183
Symbiosis, microbial, 19
T
Taylor, Stephen C., 180
Temperature, and enrichment culture, 33
Termites, and cellulose biodegradation, 40
Terpenes, 57, 142
Thalidomide, enantiomers of, 175–176
Thauer, Rolf, 19
Thauera aromatica, 54
Thermophiles, selecting for, 33
Time, effect on enrichment culture, 34
Toluene
membrane permeability and, 105
metabolism of, 145
Toluene dioxygenases, P. putida F1, 56
Toxins, plant, enzyme protection against, 96–97
Transferases, 98
superfamily, 118–120
Transformation, microbial, screening for, 209–210
Transition metals, 144
Transposase, 125
Transposons, 22, 125–127, 129–130
Trabe, Isidore, 14
Tree of life, 8
bacteria, 48, 50
Triazine-ring metamap, 148–150
Trichloroethane, 158
Trichloroethylene, catabolism of, 140
Trichoderma viride, 41
Trudgill, Peter, 18
Tyndall, John, 12
U
U.S. Environmental Protection Agency (EPA), chemical regulation by, 158
University of Minnesota Biocatalysis/Biodegradation Database (UM-BDD)
create a pathway function, 65
enzyme classes, 98
functional groups, 89–91, 201–202
mercuric reductase, 153
metapathway map, 162
microorganism index, 45–48
novel enzymes, 206–208
organization of data, 64–65
website, 221
Uptake, of substrates, 100, 102–103

V
Vapor bulb technique, 31
Vicinal oxygen chelate fold, 122
Vinyl chloride, 158, 159
Vitamin C, 22

W
Walsh, Chris, 18
Warburg, Otto, 15
Waste recycling, 183–184
Watson, James, 116, 192, 193
Weiland, Heinrich, 16
Weizmann, Chaim, 21, 172, 173
Westheimer, Frank, 99
Whitman, William, 40
Williams, P. A., 20
Wine industry, 9
Winogradsky, Sergei, 13, 14, 15, 30, 36
Woese, Carl, 118

X
Xanthan gum, 104
Xanthobacter autotrophicus GJ10, 183
Xenobiotics, foreign vs. natural, 72, 77, 78
Xenophore, 78
Young, Lily, 19

Z
Zuckerkandl, Emile, 117