Infections Associated with Indwelling Medical Devices

THIRD EDITION
Infections Associated with Indwelling Medical Devices

THIRD EDITION

Edited by

Francis A. Waldvogel
Department of Internal Medicine
University Hospital
Geneva, Switzerland

Alan L. Bisno
Department of Medicine
University of Miami School of Medicine
Miami Veterans Affairs Medical Center
Miami, Florida

ASM PRESS
Washington, DC
CONTENTS

1. Host Factors Predisposing to and Influencing Therapy of Foreign Body Infections • Pierre Vaudaux, Patrice François, Daniel P. Lew, and Francis A. Waldvogel ... 1
2. Molecular Basis of Adherence of Staphylococcus aureus to Biomaterials • T J. Foster and M. Höök ... 27
3. Microbial Pathogenic Factors: Small-Colony Variants • Richard A. Proctor .. 41
4. Colonization of Medical Devices by Coagulase-Negative Staphylococci • Friedrich Götze and Georg Peters ... 55
5. Biomaterials: Factors Favoring Colonization and Infection • James M. Anderson and Roger E. Marchant ... 89
6. Pathogenesis of Vascular Catheter Infection • Robert J. Sherertz .. 111
7. Arterial Prosthetic Infections • Olivier A. Goéau-Brissonnière and Marc Coggia ... 127
8. Infections of Prosthetic Heart Valves • Adolf W. Karchmer .. 145
9. Prosthetic Joint Infections • James M. Steckelberg and Douglas R. Osmon ... 173
10. Ambulatory Management of Infected Orthopedic Implants • Andreas Stein, Michel Drancourt, and Didier Raoult ... 211
11. Infections of Central Nervous System Shunts • Ram Yogev and Alan L. Bisno ... 231
12. Pacemaker and Defibrillator Infections • Philippe Eggimann and Francis Waldvogel ... 247
13. Infections of the Female Genital Tract • P. Joan Chesney .. 265
14. Ocular Infections • Irina S. Barequet, Ann Sullivan Baker, and Oliver D. Schein ... 287
15. Infections Associated with Endotracheal Intubation and Tracheostomy • Lisa L. Dever and Waldemar G. Johanson, Jr ... 307
16. Infections Associated with Foreign Bodies in the Urinary Tract • Margaret T. Hessen, Jerry M. Zuckerman, and Donald Kaye ... 325
17. Infections Related to Hemodialysis and Peritoneal Dialysis • Matthew J. Oliver and Steve J. Schwab ... 345
18. Dental Implants • Urs C. Belser and Jean-Marc Meyer ... 373
19. Antimicrobial Prophylaxis of Infections Associated with Foreign Bodies • David W. Haas and Allen B. Kaiser ... 395
20. Preventive Strategies for Intravascular Catheter-Related Infections • Leonard A. Mermel ... 407
CONTRIBUTORS

James M. Anderson • Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106
Ann Sullivan Baker • Infectious Disease Service, Massachusetts Eye and Ear Infirmary, and Massachusetts General Hospital, Boston, MA 02114, and Harvard Medical School, Boston, MA 02115
Irina S. Barequet • Cornea and Anterior Segment Service, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, and Goldschleger Eye Institute, Sheba Medical Center, Tel Hashomer 52621, Israel
Urs C. Belser • Division of Fixed Prosthodontics and Occlusion, School of Dental Medicine, Faculty of Medicine, University of Geneva, CH-1205 Geneva, Switzerland
Alan L. Bisno • Department of Medicine, University of Miami School of Medicine, and Medical Service, Veterans Administration Medical Center, Miami, FL 33125
P. Joan Chesney • St. Jude’s Children’s Research Hospital, Memphis, TN 38105-2794
Marc Coggia • Division of Vascular Surgery, Hôpital Ambroise Paré, 92104 Boulogne Cedex, and Faculté de Médecine, Paris-Ouest, René Descartes University, Paris, France
Lisa L. Dever • Department of Medicine, UMDNJ-New Jersey Medical School, Newark, NJ 09103, and Infectious Disease Clinic, VA New Jersey Health Care System, East Orange, NJ 07018
Michel Drancourt • Université de la Méditerranée, Faculté de Médecine, Unité des Rickettsies, CNRS UPRES-A 6020, 13385 Marseille Cédex 5, France
Philippe Eggimann • Department of Internal Medicine, University Hospitals of Geneva, Switzerland
T. J. Foster • Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
Patrice François • Infectious Disease Division, University Hospital, CH-1211 Geneva 14, Switzerland
Olivier A. Goëau-Brissonnière • Division of Vascular Surgery, Hôpital Ambroise Paré, 92104 Boulogne Cedex, and Faculté de Médecine, Paris-Ouest, René Descartes University, Paris, France
Friedrich Götz • Universität Tübingen, Mikrobielle Genetik, D-72076 Tübingen, Germany
David W. Haas • Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
Margaret T. Hessen • Department of Medicine, MCP Hahnemann, School of Medicine, Philadelphia, PA 19129
M. Höök • Center for Extracellular Matrix Biology, Institute of Biosciences and Technology, Texas A & M University, Texas Medical Center, Houston, TX 77030-3303
Waldemar G. Johanson, Jr. • Department of Medicine, UMDNJ-New Jersey Medical School, Newark, NJ 09103
Allen B. Kaiser • Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
Adolf W. Karchmer • Harvard Medical School and Infectious Disease Section, Beth Israel Deaconess Medical Center, Boston, MA 02215
Donald Kaye • Department of Medicine, MCP Hahnemann, School of Medicine, Philadelphia, PA 19129
Daniel P. Lew • Infectious Disease Division, University Hospital, CH-1211 Geneva 14, Switzerland
Roger E. Marchant • Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-7207
Leonard A. Mermel • Department of Medicine, Division of Infectious Diseases, Brown University School of Medicine, and Rhode Island Hospital, Providence, RI 02903
Jean-Marc Meyer • Division of Dental Materials and Technology, School of Dental Medicine, Faculty of Medicine, University of Geneva, CH-1205 Geneva, Switzerland
Matthew J. Oliver • Duke University Medical Center, Durham, NC 27710
Douglas R. Osmon • Division of Infectious Diseases, Orthopedic Infectious Diseases Focus Group, Mayo Clinic and Mayo Foundation, Rochester, MN 55905
Georg Peters • Universitäts Münster, Institut für Medizinische Mikrobiologie, Dommagkstrasse 10, D-48149 Münster, Germany
Richard A. Proctor • Department of Medical Microbiology and Immunology and Department of Medicine, University of Wisconsin Medical School, Madison, WI 53706
Didier Raoult • Université de la Méditerranée, Faculté de Médecine, Unité des Rickettsies, CNRS UPRES-A 6020, 13385 Marseille Cédex 5, France
Oliver D. Schein • Cornea and Anterior Segment Service, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287
Steve J. Schwab • Duke University Medical Center, Durham, NC 27710
Robert J. Sherertz • Section of Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157-0001
James M. Steckelberg • Division of Infectious Diseases, Orthopedic Infectious Diseases Focus Group, Mayo Clinic and Mayo Foundation, Rochester, MN 55905
Andreas Stein • Université de la Méditerranée, Faculté de Médecine, Unité des Rickettsies, CNRS UPRES-A 6020, 13385 Marseille Cédex 5, France
Pierre Vaudaux • Infectious Disease Division, University Hospital, CH-1211 Geneva 14, Switzerland
Francis A. Waldvogel • Department of Internal Medicine, University Hospital, CH-1211 Geneva 14, Switzerland
Ram Yogev • The Children’s Memorial Hospital, Division of Infectious Diseases, Chicago, IL 60614
Jerry M. Zuckerman • Department of Medicine, School of Medicine, Temple University, Philadelphia, PA 19140
PREFACE

Modern medical practice, both hospital based and ambulatory, has developed a variety of artificial devices to assist in the performance of important physiological functions. These devices either are inserted into the human body for short periods of time, such as with catheters, or are meant to remain in place permanently, such as with artificial heart valves. The implants create an interface between human tissues and various prosthetic materials, such as ceramics, metals, and polymers. The prosthetic surfaces themselves undergo changes, such as oxidation and friction damage, and they interact with the surrounding tissue by activating various biological systems, such as coagulation, fibrinolysis, inflammation, hyperergic reaction, or tissue integration. It is not surprising that such changes at the interface will create new biological conditions, one of them being a high propensity for infection: any foreign or prosthetic material is associated with an increased risk of infection after implantation. These infections, wherever they are located, have some invariant characteristics: they have a well-defined microbiological profile, with gram-positive organisms—mostly staphylococci—as the major etiological agents; they require an exceedingly low inoculum in order to develop; once present, they respond poorly to antibiotics, are characterized by recurrences, and often require the removal of the prosthetic material for definitive cure; and they can be prevented in many cases by creating an antibiotic-rich climate surrounding the prosthetic material at the time of its insertion.

The development and implantation of prosthetic aids and materials are likely not only to continue but also to increase in the near future. More artificial implants will be used in orthopedic surgery, such as joint replacements and posttrauma reconstructive surgery. There will be more heart valve and vascular replacements, as well as pacemaker and defibrillator implantations. The use of stents, designed to keep the flow through various conduits unobstructed, can also be expected to increase. Finally, ambulatory care and prolonged therapeutic procedures often require permanent venous access devices.

There is also more to come. Subcutaneous physical and chemical microsensors, artificial extracellular matrix, drug delivery systems, tissue engineering, and other new developments at the interface between micro- and nanotechnology and biology will soon be available. These innovations may increase the risk of local, medical device-associated infections.

In addition to the clinical problems mentioned above, prosthetic material-associated infections raise a variety of important questions at a basic level. What are the physical properties of foreign material and its surroundings that are conducive to microbial nidation and multiplication? What are the mechanisms leading to a local decrease in host defense? How are gram-positive organisms selected for in a receptor-ligand reaction that allows them to adhere to foreign surfaces which are rapidly coated with extracellular matrix components? What factors allow adherent bacteria to survive in the presence of otherwise active antibiotics? Can new technology produce surfaces that are not considered foreign by the host—or by microorganisms?
Research at both the basic and the clinical levels has made considerable progress in recent years. In recognition of this rapidly expanding scientific field, a first edition of this book was published by the American Society for Microbiology in 1989. The intent of this book was to define the state of the art both at the laboratory level and in the clinical setting. The second edition, published in 1994, served the same purpose and expanded our knowledge in basic research as well as in clinical applications. The success of the second edition prompted the American Society for Microbiology to commission this third edition. Chapters of this version have been rewritten, and others have been totally revised. This edition covers such topics as the physical factors responsible for bacterial adherence; the molecular and genetic basis of adherence of staphylococci; new clinical problems; novel therapeutic or preventive approaches, such as treatment of ambulatory-care prosthetic material-associated osteomyelitis; identification and therapy of infected dental implants; and prevention and treatment of catheter-related infections.

We are deeply grateful to all contributors for their exhaustive and comprehensive treatment of the complex problems related to medical-device infections. We hope that this new edition will be helpful to both clinicians and researchers as a reference to their questions. Finally, we hope that the present state of knowledge will generate the questions and controversies that engender new concepts and ideas and ultimately lead to the control of these "diseases secondary to medical progress."

Francis A. Waldvogel
Alan L. Bisno
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiotrophia spp., 154</td>
</tr>
<tr>
<td>Acanthamoeba spp., 292, 293–294</td>
</tr>
<tr>
<td>Accumulation-associated protein (AAP), 68</td>
</tr>
<tr>
<td>Acinetobacter spp., 301, 311, 314, 316, 358</td>
</tr>
<tr>
<td>Actinobacillus actinomycescomitans, 381</td>
</tr>
<tr>
<td>Actinomyces israelii, 269</td>
</tr>
<tr>
<td>Actinomycosis, pelvic, 268–269</td>
</tr>
<tr>
<td>Adhesion factors involved in, 92–97</td>
</tr>
<tr>
<td>Helmholtz free energy of, 94</td>
</tr>
<tr>
<td>hydrophilic/hydrophobic surfaces and, 60, 63, 66–67, 93–94, 97</td>
</tr>
<tr>
<td>leukocyte interactions in bacterial adhesion, 100–102</td>
</tr>
<tr>
<td>platelet-dependent, 97–100</td>
</tr>
<tr>
<td>staphylococcal</td>
</tr>
<tr>
<td>coagulase-negative staphylococci to synthetic polymers, 58–62</td>
</tr>
<tr>
<td>fibrinogen, role in, 12–15</td>
</tr>
<tr>
<td>fibronectin, role in, 10–15</td>
</tr>
<tr>
<td>host factors involved, 8–15</td>
</tr>
<tr>
<td>molecular basis of, 27–36</td>
</tr>
<tr>
<td>temporal events in, 92</td>
</tr>
<tr>
<td>agr gene, 118</td>
</tr>
<tr>
<td>Aminoglycosides</td>
</tr>
<tr>
<td>central nervous system shunt infections, 240</td>
</tr>
<tr>
<td>graft infection, 139</td>
</tr>
<tr>
<td>pacemaker and defibrillator infections, 256, 257</td>
</tr>
<tr>
<td>prosthetic valve endocarditis, 157, 160</td>
</tr>
<tr>
<td>respiratory infections, 316–317</td>
</tr>
<tr>
<td>staphylococcal biofilms, 76, 78</td>
</tr>
<tr>
<td>vascular graft surgery prophylaxis, 137</td>
</tr>
<tr>
<td>Amoxicillin, 224, 225, 226, 382</td>
</tr>
<tr>
<td>Amphoterin B, 161, 292, 301, 331</td>
</tr>
<tr>
<td>Amputation in prosthetic joint infections, 192</td>
</tr>
<tr>
<td>Anaerobic infections</td>
</tr>
<tr>
<td>ambulatory treatment of orthopedic implant infections, 225–226</td>
</tr>
<tr>
<td>bacterial vaginosis, 268</td>
</tr>
<tr>
<td>dental implants, 382</td>
</tr>
<tr>
<td>pelvic inflammatory disease and, 270</td>
</tr>
<tr>
<td>prosthetic joint infections, 178</td>
</tr>
<tr>
<td>Angiography</td>
</tr>
<tr>
<td>graft infection diagnosis, 135</td>
</tr>
<tr>
<td>infections, risk of, 136</td>
</tr>
<tr>
<td>prosthetic valve endocarditis diagnosis, 155</td>
</tr>
<tr>
<td>Antibiotic/antimicrobial prophylaxis, 395–403</td>
</tr>
<tr>
<td>central nervous system shunt infections, 242–243</td>
</tr>
<tr>
<td>choice of agents, 398–399</td>
</tr>
<tr>
<td>delay of infection onset, 129</td>
</tr>
<tr>
<td>duration, 399–400</td>
</tr>
<tr>
<td>graft infections and, 136–138</td>
</tr>
<tr>
<td>guidelines, procedure specific, 401–403</td>
</tr>
<tr>
<td>ointment use to cover catheter insertion site, 412–413</td>
</tr>
<tr>
<td>pacemaker and defibrillator infections, 259</td>
</tr>
<tr>
<td>prosthetic joint infections, 192–194</td>
</tr>
<tr>
<td>selective digestive decontamination (SDD), 318–319</td>
</tr>
<tr>
<td>study methodology problems and endpoints, 395–398</td>
</tr>
<tr>
<td>subsequent procedures, 400–401</td>
</tr>
<tr>
<td>vascular catheter infection prevention, 408</td>
</tr>
<tr>
<td>Antibiotic/antimicrobial therapy</td>
</tr>
<tr>
<td>central nervous system shunt infections, 239–243</td>
</tr>
<tr>
<td>dental implant-associated infections, 382, 383–384</td>
</tr>
<tr>
<td>dialysis-associated infections, 349–350, 351, 353</td>
</tr>
<tr>
<td>graft infection, 136–140</td>
</tr>
<tr>
<td>long-term suppressive, 214</td>
</tr>
<tr>
<td>ocular infections, 291, 300–302</td>
</tr>
<tr>
<td>orthopedic implant infections</td>
</tr>
<tr>
<td>anaerobic, 225–226</td>
</tr>
<tr>
<td>enterobacterium, 225</td>
</tr>
<tr>
<td>Enterococcus, 223–224</td>
</tr>
<tr>
<td>protocol criteria, 214–215</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa, 223</td>
</tr>
<tr>
<td>Staphylococcus, 216–222</td>
</tr>
<tr>
<td>streptococcal, 225</td>
</tr>
<tr>
<td>pacemaker and defibrillator infections, 256–259</td>
</tr>
<tr>
<td>prosthetic joint infections, 185, 192–194</td>
</tr>
<tr>
<td>prosthetic valve endocarditis, 156–161, 166</td>
</tr>
<tr>
<td>respiratory infections, 316–317</td>
</tr>
<tr>
<td>staphylococcal infections, 74–79</td>
</tr>
<tr>
<td>combination therapy, 77–78</td>
</tr>
<tr>
<td>mechanism of resistance, 78–79</td>
</tr>
<tr>
<td>overview, 74–77</td>
</tr>
<tr>
<td>preventive regimens, 77</td>
</tr>
<tr>
<td>urinary tract infections, 328, 336</td>
</tr>
</tbody>
</table>
Antibiotic-impregnated/bonded materials, 103
catheters and cuffs, 416–418
central venous catheters, 351
vascular prostheses, 138–139

Antibiotics/antimicrobials

copper as, 267, 272
hospitalization and antimicrobial resistance, 133
methylmethacrylate cement, 188–192, 214
phenotypic tolerance of \textit{S. aureus} in foreign
body infection, 17–19
residual antibiotic activity of clinical samples, 213
small-colony variant isolation and resistance to
antibiotics, 44
susceptibility tests, 184
triple antibiotic ointment, 412–413

Anticoagulant therapy in prosthetic valve
endocarditis, 165

Arterial prosthetic infections, 127–140
cholecystectomy and, 133
classification, 127–128
diagnosis, 134–136
clinical manifestations, 134
imaging techniques, 135
laboratory tests, 135
microbiological tests, 135–136
hematogenous infection, 133–134
host factors involved in, 134
incidence, 128
microorganisms involved in, 129–131
onset, delay of, 128–129
pathogenesis, 131–134
predisposing factors, 132, 133
prevention techniques, 136–138
antibiotic-bonded prostheses, 138
antibiotic prophylaxis, 136–138
treatment, 139–140
Arteriovenous fistulas, 345, 350
Arteriovenous shunts, staphylococcal adhesion, 13
Arthrodesis for prosthetic joint infections, 187
Arthrogram, 181
Aspergillus spp., 301
cardiovascular device infection, 91
prosthetic valve endocarditis, 161
AtlE protein, 66–67
\(\alpha\)-toxin and small-colony variants, 45–46, 48

Bacillus spp. in posttraumatic endophthalmitis, 301–302

Bacteremia. See Hematogenous infection

Bacterial translocation from the gut, 116–117

Bacterial vaginosis, 268

Bacteroides spp., 178, 226

Barrier contraceptives, 275

Biofilms and coagulase-negative staphylococci, 55–81
antibiotic use, 74–79
polymer type and, 58–62
slime production, 64–74

Biomaterials
design and development, future, 102–105
factors favoring colonization and infection, 89–105
surface characteristics and adhesion, 92–97

Bladder catheters, 326–334
alternatives, 333–334
closed system, 328–330
complications, 332–333
diagnosis and therapy, 330–331
epidemiology, 327–330
microbiology, 327
open system, 328
pathophysiology, 326–327
postcatheterization follow-up, 331–332
preventative measures, 334

Bladder sphincter, prosthetic, 336

Blood proteins
interaction with biomaterials, 2
staphylococcal binding to, 62–64

Breast implants and biofilm formation, 61

\textit{Bricella} spp. in prosthetic valve endocarditis, 164

\textit{Candida} spp.
cardiovascular device infection, 91
ocular infections, 295, 301
prosthetic valve endocarditis, 150, 161
urinary tract infections, 327, 331, 335
uterine infections, 269
vascular catheter infection, 113, 118, 409

Cardiovascular device infection
clinical significance, 89
factors involved
forces in cell-surface interactions, 92–97
leukocyte interactions in adhesion, 100–102
platelet-dependent bacterial adhesion, 97–100
future challenges in biomaterial design and
development, 102–105
pathology of, 91–92
temporal events in, 92

Cataract surgery, endophthalmitis associated with, 294–301

Catheter-associated staphylococcal infections, 55–58

Catheter hubs and sampling ports, 414–416

Cefamandole, 138, 166, 398–399

Cefazolin, 166, 193, 194, 300, 336, 398–401

Cefazidime, 223, 300

Ceftriaxone for orthopedic implant infections, 225

Cefuroxime, 166, 398–399
Cell wall-associated proteins of *Staphylococcus aureus*, 27–29

Cement
- antibiotic impregnated, 188–192, 214
- inflammatory response to, 177–178

Central nervous system shunt infections, 231–243
- antimicrobial prophylaxis, 242–243
- clinical manifestations, 234–237
- etiology and pathogenesis, 233–234
- incidence, 232–233
- management, 237–242
- overview, 231–233

Central venous catheter infections, 57–58, 345, 350–353, 407

Cephalosporins, 398–399, 400. See also specific agents
- central nervous system shunt infections, 240
- graft infection, 139
- prosthetic joint infections, 193
- prosthetic valve endocarditis, 160, 166
- vascular graft surgery prophylaxis, 137

Cerebrospinal fluid. See Central nervous system shunt infections

Chlamydia trachomatis, 273

Chlorhexidine, 384, 410–411, 416–418

Cholecystectomy, 133

Ciprofloxacin
- ocular infections, 291
- orthopedic implant infections, 223, 225
- prosthetic joint infections, 185
- staphylococcal-infected orthopedic implants, 216, 217

CIST (cumulative interceptive supportive therapy), 384–385

Clarithromycin, 76, 78

Classification of wound and graft infections, 127–128

Clindamycin, 61, 226, 400

Clostridium spp. in orthopedic implant infections, 226

Clumping factors (Clfs), 118
- overview, 28–29
- role in foreign body infection, 34–35
- structure and function, 32–34

Coagulase-negative staphylococci, 213, 397. See also *Staphylococcus epidermidis*
- adherence to synthetic polymers, 58–62
- antibiotics tested against, 74–79
- mechanism of resistance, 78–79
- overview, 74–77
- preventive regimens, 77
- synergistic effects, 77–78
- binding to blood and matrix proteins, 62–64
- cardiovascular device infection, 90–91
- catheter-associated infections, isolation from, 55–58

central nervous system shunt infections, 233, 234, 235
dialysis-associated infections, 356
genetic basis for adherence, 66–69
graft infection, 128
hospitalization and increased antimicrobial resistance, 133
intrauterine device colonization, 273, 275
maternal transmission, 61
methicillin resistant, 150, 157, 158, 398, 401
ocular infections, 293, 298
pacemaker infections, 255, 256
prosthetic joint infections, 178–180, 194, 400
prosthetic valve endocarditis, 148, 149, 150, 157, 158
slime
- chemical composition, 64–66
- function in animal models, 70–71
- regulation of production/phase variation, 67–69, 71–74
urinary tract infections, 336
vascular catheter infection, 117

Coagulase test and staphylococcal small-colony variants, 45, 48

Collagen
- collagen-binding protein (Cna), 28
- staphylococcal adhesion, 12–13

Complement
- activation by implant, 100
- depletion, foreign body effect, 114–115
- down regulation of, 100

Computed tomography (CT), 135, 182

Condom catheters, 333

Contact-lens-associated infections, 61, 288–294

Continuous ambulatory peritoneal dialysis, 58, 346, 360

Corneal and scleral infections, 288

Corynebacterium spp.
- central nervous system shunt infections, 233, 235
- prosthetic valve endocarditis, 150

Co-trimoxazole therapy
- orthopedic implant infections, 219–221, 225
- side effects of, 221

Coxiella burnetii in prosthetic valve endocarditis, 151, 154

C-reactive protein
- orthopedic implant infection diagnosis, 213
- prosthetic joint infection diagnosis, 180–181

Cyanoacrylate, bactericidal properties of, 59–60

Dacryocystitis, 287–288

Defibrillator infections. See Pacemaker and defibrillator infections
Dental implants, 373–386
- clinical studies and biological properties, 375–378
- infections, 379–386
- CIST (cumulative interceptive supportive therapy), 384–385
- etiology, 380–382
- frequency, 382–383
- therapeutic modalities, 383–384
- overview, 373–375

Dental procedures as source of hematogenous seeding, 194–195, 400

Dialysis-associated infections, 345–365
- hemodialysis, 349–353
- overview, 346–349
- peritoneal dialysis, 353–364
- predisposing factors, table of, 347
- risk factors, table of, 348

Diphtheroids in prosthetic valve endocarditis, 149, 150, 159

Eap protein, 35

Echocardiography
- pacemaker infection diagnosis, 253
- prosthetic valve endocarditis diagnosis, 154–155

Elastin-binding protein (EbpS), 28

Electron transport in small-colony variants, 41–42, 46, 48–49

Endocarditis, 118. See also Prosthetic valve endocarditis
- fibronectin binding and, 31
- pacemaker related, 253, 255

Endophthalmitis
- cataract surgery associated, 294–301
- posttraumatic, 301–302

Endoscopy
- antibiotic prophylaxis and, 195, 401
- graft infection diagnosis, 135

Endothelialization of heart valve prostheses, 147

Endotracheal intubation and tracheostomy infections, 307–320
- colonization and infection, 309–315
- host defenses, 307–309
- pneumonia, nosocomial, 311–314
- prevention, 317–320
- sinusitis, 314–315
- tracheobronchitis, 311
- tracheostomy site colonization, 310–311
- treatment, 316–317
- tube colonization, 310

Enterobacter, 118–119, 132, 225, 358

Enterobacteriaceae. See also specific species
- ambulatory treatment of orthopedic implant infections, 225
- graft infection, 131, 132
- prosthetic joint infections, 178

Enterococci
- antibiotic resistance, 408
- dialysis-associated infections, 357
- prosthetic joint infections, 178, 179, 184
- prosthetic valve endocarditis, 149, 159, 160, 164
- urinary tract infections, 327, 335

Enterococcus spp., 223–224, 233

Erythrocute sedimentation rate
- orthopedic implant infection diagnosis, 213
- prosthetic joint infection diagnosis, 180–181

Erythromycin, 76–77, 400

Escherichia coli
- central nervous system shunt infections, 233
- dialysis-associated infections, 358
- graft infection, 131, 132
- orthopedic implant infections, 225
- urinary tract infections, 326, 327

Eubacterium nodatum, 268

Everninomicin, 77

Fibrinogen
- leukocyte binding to, 33
- staphylococcal adhesion, 12–15
- arteriovenous shunts, 13
 - Staphylococcus aureus, 118
 - Staphylococcus epidermidis, 63–64

Fibrinogen-binding proteins
- overview, 27–29
- role in foreign-body infection, 34–35
 - Staphylococcus epidermidis, 63, 99
- structure and function, 32–34

Fibronectin and staphylococcal adhesion, 10–15
- metallic implants, 10–11, 31
 - Staphylococcus aureus, 118
 - Staphylococcus epidermidis, 63
- subcutaneous implants, 10

Fibronectin-binding proteins
- antibodies against, 420
- overview, 27–29
- role in foreign body infection, 31–32
- structure and function, 29–31

Fibrous capsule development, 91–92

Fimbriae, 93

Fistula in orthopedic implant infections, 213

Fistulography, 213

Fleroxacin, 160, 216

Fluclucoxacillin, 186

Fluconazole, 161, 301, 331

Fluoroquinolones
- graft infection, 137–138
- ocular infections, 291
- orthopedic implant infections, 216–218
- respiratory infections, 316–317

Folinic acid, 221
Foreign bodies
 antimicrobial prophylaxis, 395–403
 negative effect on innate immunity, 113–114
Foreign-body reaction
 characteristics of, 1
 host factors, 1–20
 intrauterine devices, 267
Fungal infection
 ocular, 290, 292, 300, 301
 peritonitis, 358
 prosthetic valve endocarditis, 150–151, 154, 161
 urinary tract infections, 336
Fusidic acid-rifampin combination therapy for orthopedic implant infections, 218–219
Gardnerella vaginalis, 268
Genital tract infections
 intrauterine devices, 265–275
 toxic shock syndrome, 275, 276–280
 ulcerations, tampon-associated, 276
Gentamicin, 157, 399. See also Aminoglycosides
Giant cells, 2. See also Macrophages
Gilsonite, 118–119
Glomerulonephritis and central nervous system shunt infection, 235
Glycocalyx. See Slime (glycocalyx)
Glycopeptides for orthopedic implant infections, 218–219
Haemophilus spp., 309, 311, 314
Heart valve infections, 145–167. See also Endocarditis; Prosthetic valve endocarditis
Hemagglutination, Staphylococcus epidermidis, 71
Hemagglutination, Haemophilus spp., 309, 311, 314
Hemodialysis
 access methods, 345, 349
 central venous catheter infections, 350–353
 permanent-access infections, 349–350
 Heparin-bonded catheters, 416, 418
 Heparin prophylaxis, 409
Human immunodeficiency virus infection and intrauterine device use, 269–270
Host factors in foreign-body infections, 1–20
 prosthetic joint infections, 175–177
 staphylococcal infections, 3–20
 adhesion modulation, 8–15
 antibiotic therapy, 7, 17–19
 experimental study, 5–19
 phagocytic activity, 7–8, 15–17
 tissue-cage model, 5–7
 vascular graft infection, 134
Hydrophilic/hydrophobic interactions and adhesion, 93–94, 97
Ica genes, 67–69, 70, 71, 73–74, 80
Imaging techniques for graft infection diagnosis, 135
Inflammatory response
 cardiovascular device infections, 91
 intrauterine devices, 267
 overview, 1–2
 prosthetic joint infections, 177–178–184
 staphylococcal infections, 4
 vascular graft infections, 131–132
Innate immunity, foreign-body negative effect on, 113–114
Intrauterine devices, 265–275
 advantages of, 266
 disadvantages of, 267–268
 history and importance, 265–266
 infectious complications of, 268
 abortions, septic spontaneous midtrimester, 268
 actinomycosis, pelvic, 268–269
 bacterial vaginosis, 268
 Candida intrauterine infection, 269
 colonization in vivo, 273–275
 human immunodeficiency virus infection, 269–270
 infertility, 272
 pathogenesis of, 272–273
 pelvic inflammatory disease, 270–272
 mechanism of action, 2060–2067
 types, 266
 Intravascular catheter. See Vascular catheter infection
Joint infections. See Prosthetic joint infections
Keratitis. See Ocular infections
Klebsiella spp.
 central nervous system shunt infections, 233
 dialysis-associated infections, 358
 graft infections, 131, 132
 orthopedic implant infections, 225
 respiratory infections, 309

Index 431
Laminar airflow devices and infection prevention, 194
Legionella in prosthetic valve endocarditis, 148, 151, 154
Leukocytes
 - adhesion and shear stress, 94, 101
 - binding to fibrinogen, 33
 - complement cascade and, 100
 - interactions in bacterial adhesion, 100–102
Macrophages
 - foreign body reaction, 1–2
 - intracellular staphylococci, 216
 - respiratory infections, 308–309
Magnetic resonance imaging. See MRI (magnetic resonance imaging)
Map protein, 35
Mediport infection, 91–92
Menadione auxotrophy in small-colony variants, 41–43, 45–47, 49
Metallic implants
 - adherence of coagulase-negative staphylococci, 59
 - fibronectin role in staphylococcal adhesion, 10–11
 - prosthetic joint infections, 177–178
 - stress shielding and bone resorption, 3
Methicillin resistance in staphylococci, 150, 157, 158, 193, 240, 398, 401
Methyl methacrylate. See also Polymethylmethacrylate (PMMA)
 - antibiotic-impregnated cement, 214
 - colonization by Staphylococcus epidermidis, 60
Metronidazole. 382
Minocycline, 418
Molecular techniques for microbial identification, 213, 218
MRI (magnetic resonance imaging), 135, 182
MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), 3, 28
Mucor spp. in prosthetic valve endocarditis, 161
Mucositis, peri-implant, 379–385
Mupirocin, 117, 193–194, 413
Mycobacteria, 148, 213
Mycobacterium chelonae, 148
Mycoplasma spp., 213
Nafillin, 240
Neisseria gonorrhoeae, 273, 293
Neutrophils
 - adherence to matrix proteins, 63
 - foreign body effect, 114
 - phagocytic defects, 7–8
Nosocomial infections
 - enterococcal, 223, 224
 - pneumonia, 307, 311–314, 316
 - prosthetic valve endocarditis, 147–148
 - urinary tract, 325, 329
Ocular infections, 287–302
 - contact-lens-associated, 288–294
 - background, 288–290
 - clinical features, 290–293
 - predisposing factors, 293–294
 - prevention, 294
 - corneal and scleral, 288
 - endophthalmitis and cataract surgery, 294–301
 - bacteriology, 298–299
 - diagnosis, 299–300
 - overview, 294–297
 - presentation, 297–298
 - prevention, 301
 - therapy, 300–301
 - endophthalmitis, posttraumatic, 301–302
 - lid and orbit, 287–288
Ofloxacin, 216–218, 291
Oligosaccharide surfactant polymers, 103–104
Opsonization and staphylococcal infections, 7–8, 35
Oral implants. See Dental implants
Orthopedic implant infections, 211–226
 - clinical manifestations, 212–213
 - diagnosis, 212–213
 - pathophysiology, 211–212
 - treatment, 213–226
 - anaerobic infections, 225–226
 - antibiotics, long-term ambulatory, 214–216
 - antibiotics, long-term suppressive, 214
 - co-trimoxazole, oral high-dose, 219–221
 - enterobacterium infections, 225
 - Enterococcus infections, 223–224
 - fusidic acid-rifampin combination, 218–219
 - ofloxacin-rifampin combination, 216–218
 - Pseudomonas aeruginosa infections, 223
 - reimplantation, 213–214
 - Staphylococcus infections, 216–222
 - streptococcal infections, 225
 - teicoplanin, intramuscular, 221–222
Pacemaker and defibrillator infections, 247–259
 - clinical presentation, 251–254
 - epidemiology, 247–249
 - management, 256–258
 - microbiology, 255–256
 - pathophysiology, 249–250
 - prevention, 259
 - risk factors, 250–252
Paecilomyces lilacinus, 295
Pap smears, 268–269
PCR, 183, 213
Pefloxicin, 138, 216
Pelvic inflammatory disease, 165–166, 268–269, 270–274
Penicillins, 400
Penicillin G, 400
central nervous system shunt infections, 240
pacemaker and defibrillator infections, 256, 257
prosthetic joint infections, 193
prosthetic valve endocarditis, 157
staphylococcal biofilms, 75
Penile prostheses, 336–337
Peptostreptococci in prosthetic joint infections, 178
Periodontitis. See Dental implants, infections
Peritoneal catheters, 346, 347–348
Peritoneal dialysis-related infections, 353–364
definitions and incidence, 353–355
etiologies, 356–359
outcomes and complications, 364
pathogenesis, 356, 357
risk factors and preventive strategies, 359–361
treatment, 361–363
Peritoneal pseudocyst, 235, 236
Peritonitis
diagnosis, 354
peritoneal dialysis and, 353–364
ventriculoperitoneal shunt infections, 235
Phagocytes
mechanisms in foreign body reactions, 1–2
staphylococcal infections, 4, 7–8, 15–17
Phagocytosis
defects in presence of foreign material, 7–8
killing of S. aureus attached to foreign surfaces, 15–17
vaccine for S. aureus infection, promotion by, 35–36
Phagolysosomes, Staphylococcus aureus within, 212
Phenotypic antibiotic tolerance of S. aureus in foreign-body infections, 17–19
Phenotypic variation of slime production in staphylococci, 73
PIA. See also Polysaccharide intercellular adhesin chemical composition of, 66
hemagglutination, 71
ica genes, 67–69
SAA and PS/A relationship to, 69–70
Pneumonia, nosocomial, 307, 311–314, 316
PNSG. See Poly-N-succinyl β-1–6-glucosamine (PNSG)
Polyethylene
adhesive interactions, 104
staphylococcal adherence, 60
Polyhexamethylene biguanide (PHMB), 292–293
Polymethylmethacrylate (PMMA)
antibiotic impregnated cement, 180, 190, 192
inhibition of local immune mechanisms, 178
Staphylococcus epidermidis adherence to, 61
Poly-N-succinyl β-1–6-glucosamine (PNSG), 36, 70
Polysaccharide adhesin (PS/A) of S. epidermidis, 36, 65–66. See also Polysaccharide intercellular adhesin
Polysaccharide intercellular adhesin, 61, 79–80
Polytetrafluoroethylene (PTFE), 104, 345, 349
Polyurethane and staphylococcal adherence, 60
Polyvinylamine (PVAm), 103–104
Polyvinyl chloride (PVC) and staphylococcal adherence, 60
Propionibacterium spp.
central nervous system shunt infections, 233, 235, 237, 238
ocular infections, 287, 295–296, 299, 300
orthopedic implant infections, 226
Prosthetic joint infections, 173–196
cost, 173
diagnosis, 180–184
laboratory studies, 180–181
microbiological studies, 182–184
radiological studies, 181–182
epidemiology, 173–174
incidence, 175
mechanisms of infection, 173–174
risk factors, host, 175–177
risk factors, implant, 177
microbiology, 178–180
pathogenesis, 177–178
pathology, 184
prevention, 192–195
antimicrobial prophylaxis, 192–194, 400
hematogenous seeding, 194–195
operating room cleanliness, 194
treatment, 184–192
amputation, 192
arthrodesis, 187
overview, 184–185
reimplantation, 187–188
resection arthroplasty, 186–187
suppressive antimicrobial therapy, 185
surgical debridement with prosthesis retention, 185–186
total hip arthroplasty infection, 186, 188–189, 190
total knee arthroplasty infection, 187, 189–192
Prosthetic valve endocarditis, 145–167
clinical features of, 153–154
diagnosis, 154–156
incidence, 145–147
laboratory features of, 154–156
microbiology, 148–151
outcome, 165
pathogenesis, 147–148
pathology, 151–153
prevention, 165–167, 397
risk factors, 146–147
treatment, 156–165
anticoagulant therapy, 165
antimicrobial therapy, 156–161
overview, 156
surgical therapy, 161–165
Respiratory infections. See Endotracheal intubation and tracheostomy infections
Rheumatoid arthritis and prosthetic joint infections, 175–176
Rifampin
bonding to vascular prostheses, 138, 140
central nervous system shunt infections, 240
impregnated catheters, 418
orthopedic implant infections
enterococcal, 224
fusidic acid combination, 218–219
ofloxacin combination, 216–218
prosthetic joint infections, 185–186
prosthetic valve endocarditis, 157, 160
staphylococcal biofilms, 75, 77–78
Scintigraphy
graft infection diagnosis, 135
prosthetic joint infection diagnosis, 181–182
SCVs. See Small-colony variants
Sdr proteins, 28, 34
Selective digestive decontamination, 318–319
Serratia, 225, 336, 358
Shear stress and bacterial adhesion, 94–95, 101
Shunt infections. See Central nervous system shunt infections
Silicone, 63
Silver sulfadiazine, 416–418
Sinusitis, 314–315, 317
Skin preparation and infection prevention, 136, 410–411
Slime (glycocalyx)
chemical composition, 64–66
Polysaccharide intercellular adhesin (PIA), 66, 67–73
PS/A (polysaccharide adhesin), 65–66
slime-associated antigen, 65
telchoic acid, 65
central nervous system shunt infections, 23464–66
coagulase-negative staphylococcal, 64–74
function in animal models, 70–71
graft infections and, 132
intrauterine devices and, 274
regulation of production/phase variation, 71–74
Slime-associated antigen, 65. See also Polysaccharide intercellular adhesin
Small-colony variants, 41–49
adherent bacteria compared, 41–43
hemin/menadione auxotrophy, 41–43, 45–47, 49
laboratory culture of, 44–45
metabolism of, 46–49
recovery from patients, 43–45
staphylococcal, 41–49
Sphincters, prosthetic bladder, 336
Staphylococci. See also Coagulase-negative staphylococci; Staphylococcus aureus; Staphylococcus epidermidis

adhesion and hydrophilic/hydrophobic surfaces, 60, 63, 66–67
α-toxin and small-colony variants, 45–46, 48
host factors and infection, 3–20
adhesion, 8–15
overview of, 3–5
phagocytosis, 7–8, 15–17
phenotypic tolerance to antibiotics, 17–19
tissue-cage model of, 5–7
ocular infections, 287
orthopedic implant infections
cotrimoxazole, 219–221
fusidic acid-rifampin combination, 218–219
ofloxacin-rifampin combination, 216–218
teloceplalin, 221–222
prosthetic joint infections, 193
quorum sensing, 116
small-colony variants of, 41–49

Staphylococcus aureus

adhesion
adhesins, 3
blood and matrix proteins, 63
molecular basis of, 27–36
cell wall-associated proteins, 27–29
central nervous system shunt infections, 233
colonization of tracheostomy sites, 310–311
dialysis-associated infections, 356, 357, 359, 361–365
fusidic acid susceptibility, 218
graft infection, 129, 130, 134, 138
ica genes, 70
as intracellular parasite, 212, 213
methicillin resistant (MRSA), 35, 398, 401
mupirocin therapy, 117, 193–194, 413
nose as source of, 117
ocular infections, 296, 298, 300
orthopedic implant infections, 216
pacemaker infections, 255, 256
phase variation of slime production, 71–72
prosthetic joint infections, 178–180, 192, 194, 400
prosthetic valve endocarditis, 149, 158, 160, 163, 166
slime production, 64
small-colony variants, 41, 43–49, 211
laboratory culture of, 44–45
metabolism of, 46–49
recovery from patients, 43–45
toxic shock syndrome, 277–280
ocular infections, 287
urinary tract infections, 327, 335, 336
vaccine, prospects for, 35–36
MSCRAMM subunit, 35–36
PNSG, 36
vancomycin resistance, 408
vascular catheter infection, 117–118, 409
virulence of, 117–118
Staphylococcus capitis, 233
Staphylococcus carnosus, 68
Staphylococcus epidermidis. See also Coagulase-negative staphylococci

adherence
AtlE protein, 66–67
geneic basis for, 66–69
hydrophobic/hydrophilic interaction and, 97
platelet-dependent, 97–100
shear stress and, 94, 101
to synthetic polymers, 58–62
antibiotics tested against, 74–79
autoaggregation, genetics of, 418–420
binding to blood and matrix proteins, 62–64
cardiovascular device infection, 90
catheter-associated infections, isolation from, 55–58
central nervous system shunt infections, 233, 234, 235
fusidic acid susceptibility, 218
graft infection, 131, 133, 134, 138, 140
hemagglutination, 71
nose as source of, 117
ocular infections, 296–297
prosthetic valve endocarditis, 149, 150, 160
PS/A (polysaccharide adhesin), 36
slime, 93
gemical composition, 64–66
function in animal models, 70–71
regulation of production/phase variation, 67–69, 71–74
small-colony variants, 43, 44–46
urinary tract infections, 327, 336–337
vancomycin resistance, 408
vascular catheter infection, 117, 409
Staphylococcus hominis, 233
Staphylococcus saprophyticus
fusidic acid susceptibility, 218
slime production, 72, 73
urinary tract infections, 327
Stents, ureteral and urethral, 334–336
Streptococci
ambulatory treatment of orthopedic implant infections, 225
central nervous system shunt infections, 233
dialysis-associated infections, 357
ocular infections, 287
prosthetic joint infections, 178, 179, 193, 194
prosthetic valve endocarditis, 149, 157, 158
respiratory flora, 309
Streptococcus pneumoniae, 308, 309, 311, 314
Subcutaneous implants

 fibronectin role in staphylococcal adhesion, 10
 tunneled catheters, 409–410
Surface characteristics of biomaterial adhesion, 92–97
Sutures, staphylococcal infection of, 54
Tampon-associated infections, 276–279
Teflon, bacterial adherence to, 61
Teichoic acid in slime, 65
Teicoplanin, 408
 orthopedic implant infections, 221–222
 pacemaker and defibrillator infections, 256, 257
 vascular graft surgery prophylaxis, 137
Tenckhoff catheters, bacterial colonization of, 58
Thrombosis/thromboembolism
 infected cardiovascular devices, 91
 intravascular catheter infections and, 120, 409
 valve grafts and, 152
Tobramycin, 300
Total hip arthroplasty, 186, 188–189, 190, 214
Total knee arthroplasty, 187, 189–192, 214
Toxic shock syndrome (TSS)
 barrier contraceptive associated, 275
 suture related, 280
 tampon associated, 276–279
 clinical manifestations, 279
 epidemiology, 277–278
 histopathology, 279
 TSS toxin, 279
Tracheostomy infections. See Endotracheal intubation and tracheostomy infections
Trimethoprim-sulfamethoxazole therapy for orthopedic implant infections, 219–221
Tropheryma whippelii in prosthetic valve endocarditis, 150, 151
Ureteral stents, 57, 334–335
Urinary catheters, 57. See also Bladder catheters
Urinary tract infections, 325–338
 bladder catheters, 326–334
 bladder sphincter, prosthetic, 336
 penile prostheses, 336–337
 stents, ureteral, 334–335
 stents, urethral, 335–336
Vaginosis, bacterial, 268
Vancomycin
 central nervous system shunt infections, 240, 241
 dialysis-associated infections, 361–363
 graft infection, 139
ocular infections, 300–302
orthopedic implant infections, 216, 221–222
pacemaker and defibrillator infections, 256, 257
prophylactic use of, 137, 397–399, 401–403, 408
prosthetic joint infections, 186, 193
prosthetic valve endocarditis, 157, 160, 166
staphylococcal biofilms, 75–76, 77–78
urinary tract infections, 336
vascular graft surgery, 137
Vascular catheter infection, 111–120
 biomaterial and design considerations, 118–119
 Candida albicans, 118
 construction material and staphylococcal adherence, 60
 factors affecting catheter colonization and infection, 113–116
 future research, 120
 initial site of colonization, 116–117
 quantitation, 111
 quorum sensing, 116
 source of microorganisms, 111–113
 staphylococcal adhesion, 14–15
 Staphylococcus aureus, 117–118
 Staphylococcus epidermidis, 117
 thrombosis and, 119–120
Vascular catheter infection prevention, 407–420
 antimicrobial-coated and impregnated materials, 416–418
 antimicrobial prophylaxis, 408
 future prospects, 418–420
 insertion site
 catheter dressing, 411–412
 contamination shields, 410
 cutaneous antisepsis, 410–411
 ointment use to cover, 412–413
 sterile-barrier precautions, 410
 subcutaneously tunneled catheters, 409–410
 maintenance of catheter, 413–416
 hubs and sampling ports, 414–416
 overview, 407–408
 recommendations, table of, 419
 warfarin/heparin prophylaxis, 409
Ventricular shunt placement and antimicrobial prophylaxis, 395–397
Ventriculoperitoneal shunt, 231, 234, 237. See also Central nervous system shunt infections
Virchow’s triad, 89, 91
Von Willebrand factor, 28
Warfarin prophylaxis, 409
Washing solutions, 61–62