Cryptococcus neoformans
Cryptococcus neoformans

By

Arturo Casadevall
Albert Einstein College of Medicine
of Yeshiva University
Bronx, New York 10461-1602

and

John R. Perfect
Department of Microbiology
Duke University Medical Center
Durham, North Carolina 27710
CONTENTS

Preface vii
Acknowledgment viii

1. Introduction to the Pathogen 1
2. Taxonomy 29
3. Ecology of Cryptococcus neoformans 41
4. Biochemistry 71
5. Molecular Biology 115
6. Virulence Factors 145
7. Physical Defenses and Nonspecific Immunity 177
8. Specific Immunity and Cytokines 223
9. Tissue Responses and Special Topics in Immunity 271
10. Animal Models and Veterinary Aspects of Cryptococcosis 325
11. Epidemiology 351
12. Diagnosis and Laboratory Techniques 381
13. Human Cryptococcosis 407
14. Therapy of Cryptococcosis 457
15. Prevention of Human Infection 519

Color Plates facing page 456
Index 531
PREFACE

Cryptococcus neoformans has been a known human pathogen for over a century. The history of its epidemiology, ecology, taxonomy, molecular biology, pathobiology, diagnosis, and treatment strategies mirrors discoveries in the general field of medical mycology. This primary fungal pathogen, which can infect apparently normal hosts, has also become a major secondary fungal pathogen as it has been able to exploit immunosuppressive events of modern medicine such as human immunodeficiency virus and AIDS, cancer, and immunosuppressive therapies. As we approach the new millennium, the importance of this fungus and the infection it causes—cryptococcosis—has never been greater for clinical medicine. Infection with this encapsulated yeast occurs in all areas of the world, and clinicians at all levels of care-giving may be faced with its challenges.

We have been impressed with the knowledge base for cryptococcosis developed by many outstanding and dedicated investigators over the past 100 years. This book is a tribute to their scholarship and creative insights. In the 1950s, Littman and Zimmerman produced an excellent monograph on the understanding of cryptococcosis up to that time. In our present book, _Cryptococcus neoformans_, we attempt to chronicle the substantial progress in the understanding of this infection since their mid-20th-century treatise. With this comprehensive book, we have attempted to “draw a line in the sand” of knowledge regarding this fungus so that future generations can step over it. Our intention is that this book will be useful for both the student who is beginning to search the cryptococcal knowledge base, and the medical mycologist who wants in-depth coverage and references.

John E. Bennett coined the term “sugar-coated killer” for _C. neoformans_ at a lecture to the Infectious Disease Society in the 1990s. This complex, killer yeast has become a model fungal pathogen for the study of pathobiology at all scientific levels. This book describes its history, assesses its current status, and provides an outlook on the future. There is much more to learn about this yeast’s secrets. It is our hope that this book will stimulate scientists to pursue the understanding of this successfully evolving fungal pathogen.

Arturo Casadevall
John R. Perfect
ACKNOWLEDGMENT

We gratefully acknowledge Wiley Schell for his skillful help in photographing many of the color plates and for providing the photo for the cover for this book.
INDEX

AccuProbe, 388
Acquired immunodeficiency syndrome (AIDS); see Human immunodeficiency virus (HIV)
Adherence, virulence factors and, 164–165
Adrenal gland cryptococcosis, 437
Africa, epidemiology of cryptococcosis, 364
Age and epidemiology, 358, 411–412
Alkalization for decontamination, 55
Amebae, cryptococcosis in, 325
Amphotericin B
in biosynthetic pathway, 97–98
immunostimulation by, 308
introduction of, 7
liquid preparations of, 480–481
and macrophages, 204–205
regimens for, 479–481
resistance to, 101–102
susceptibility testing and, 466
Anamorph; see Cryptococcus neoformans entries
Animals
cell-mediated immunity in, 237–239
cryptococcosis in
birds, 327–328
cats, 328–330
central nervous system, 290–294
cows, 330–331
dogs, 328–330
granuloma formation, 277–278
historical description of, 3, 325–327
pulmonary, 286–288
humoral immunity in, 226–227
as models for cryptococcosis, 331–342
cats, 341
concepts regarding, 341–342
dogs, 341
drug therapy and, 473–478
general studies of, 331–334
goats, 341

Antibody(ies); see also Humoral immunity, specific
functional efficacy of, 230–237
for prophylaxis and therapy, 526
protective
characteristics of, 236
evasion of, 237
mechanisms of, 235
Antigens; see also Immunity; Serotypes
macrophage phagocytosis and, 199–200
screening with, 524–525
Antimicrobial drug resistance; see Drug resistance
Ara-A, immunostimulation by, 308
Arthritis, cryptococcal, 433–434
Asia, epidemiology of cryptococcosis, 364–365
Astrocytes, nonspecific immunity and, 205
Attenuation, virulence factors and, 165–166
Australia, epidemiology of cryptococcosis in, 365
Aviaries; see Pigeon excreta
Azoles; see also specific drugs
regimens for, 483–486

BACTEC system for cultures, 385
Benzimidazoles, 499–500
Biochemistry, 71–114
of antimicrobial drug resistance, 101–102
biosynthetic and protein modification pathways, 95–96
of capsule, 71–84; see also Capsule
of cell wall, 84–86

guinea pigs, 337–338
mice, 334–337
primates, 341
rabbits, 339–340
rats, 338–339

531
Biochemistry, continued
extracellular products, 91–95
glycogen, 96
iron metabolism, 100–101
lipids and sterols, 97–99
of pigments, 86–91
melanin, 87–91
phenoloxidase and, 86–87
vacuolar and lysosomal enzymes, 99–100
varietal differences in, 43–45
Biosynthetic and protein modification pathways, 95–96
Birds; see also Pigeon excreta
cryptococcosis in, 327–328
as source of var. neoformans, 50–53
Birdseed agar, 386
Bones, cryptococcosis of, 433–434
Brain abscess, therapy for, 493–494
Breast, cryptococcosis of, 436–437
Budding index, 274
Buschke, Abraham, 1–2
Busse, Otto, 1–2
C3; see Complement
Calcineurin as signal transduction pathway, 161–162
Calcofluor stain, 382
Canaries, cryptococcosis and, 51
Canavanine-glycine-bromothymol blue agar, 386
Capsular polysaccharides; see also Capsule
antibody, immunostimulation by, 309
antigen titers, and therapy, 496–497
components of, 74–78
antigenic similarities to other microbial products, 83–84
biological effects of, 82–83
serological assays for, 82
serotypic classification of, 80–82
extracellular survival and, 274
HIV and, 282
immunosuppression induced by, 303–305
inflammatory response and, 279–282
latex agglutination tests for, 390–391
macrophage phagocytosis and, 198–199, 280
specific humoral immunity and, 227–228
Capsule
architecture of, 72–74
biochemistry of, 71–84
electron microscopic description, 12–13
as environmental survival factor, 58
polysaccharide components of; see Capsular polysaccharides
size of, 10–11
colony appearance and, 383
granuloma formation and, 278–279
synthesis of, 78–79
regulation of, 79–80
as virulence factor, 147–151
Caribbean, epidemiology of cryptococcosis in, 365
Carminophilic index, 274
Caseation in cryptococcosis, 283
Cats, cryptococcosis in, 325–327, 328–330
as models for, 341
Cell wall biochemistry, 84–86
Cell-mediated immunity; see Immunity
Cellular defenses
nitrogen-derived, 209
nonoxidative mechanisms, 209–210
nonspecific; see Immunity, nonspecific
oxygen-derived, 208–209
Central America, epidemiology of cryptococcosis in, 365
Central nervous system cryptococcosis;
see also Meningoencephalitis, cryptococcal
in humans, 419–424
tissue response to
in animals, 290–294
in humans, 288–290
toruloma or abscess therapy, 493–494
Cerebrospinal fluid
for culture specimens, 385–386
serological tests of, 390
Chemophrophylaxis, 521–524
Children, cryptococcosis in, 360, 411–412
Chloroquine, murine intracerebral cryptococcosis and, 293
Clonal populations, 58
CneF preparation, suppressor responses and, 305–306
CNRE-1 probe, 119
Cockroaches, as source of var. neoformans, 50
Collectins, antifungal substances in, 184
Colony-stimulating factors, 253
Colorimetric agar tests, 43, 45
Commensalism and ecology, 41–42
Complement, 184–191
 activation by C. neoformans, 185–188
 binding to C. neoformans, 190–191
 defects in, and susceptibility to cryptococcosis, 301–302
 depletion in cryptococcosis, 190
 importance of, 184–185
 inflammatory response and, 281
 leukotaxis and, 188–190
 opsonization and, 188–190
Conjugate vaccine, 525–526
Corticosteroids and susceptibility to cryptococcosis, 301–303, 418
Coward strain, 15
Cows, cryptococcosis in, 330–331
Cryptococcal mastitis, 330–331
Cryptococcosemia, 435
 cultures for, 384–385
Cryptococcin, 303, 353
Cryptococcomas, 273–274
Cryptococcosis
 animal models for, 325–350
 cutaneous, 294–297, 353, 429–431
 facial involvement in, 326
 in humans, 407–456
 autoimmune disorders and, 9
 clinical manifestations of, 408–409
 clinical scenario, 407–408
 corticosteroid therapy and, 7, 300–303, 418
 epidemiology of, 409–419; see also Epidemiology
 historical descriptions of, 2–3
 historical nomenclature for, 3, 29–31
 karyotype changes and, 368–369
 mortality of, 42
 prevention of, 519–530; see also Prevention of infection
 sites of infection in, 419–438; see also specific anatomic sites
 pigeon excreta and, 53–55
 therapy for; see specific drugs; Therapy
 veterinary aspects of, 325–350
Cryptococcus
 species of, 31, 32; see also Cryptococcus neoformans and varieties
 identification of, 387–388
Cryptococcus neoformans
 colony appearance, 383–384
 molecular phylogeny of, 34–37, 123–126
 Cryptococcus neoformans var. gatti
 avian cryptococcosis and, 328
 clinical manifestations of, 416–418
 differences from var. neoformans, 43–45
 ecology of, 45–48
 environmental sources of, 47–48
 geographic distribution of, 45–47
 historical nomenclature and, 30, 31
 therapy for, 42
Corticosteroids and susceptibility to cryptococcosis, 301–303, 418
 clinical manifestations of, var. gatti, 43–45
 ecology of, 48–56
 environmental sources of, 49–53
 geographic distribution of, 46, 48
 historical nomenclature and, 30, 31
 HIV infection and, 42
 isolation methodology for, 56–57
 in pigeon excreta, 50–56
 reproduction in environment, 57–58
 in soils and dusts, 50
 in trees, 49–50
 virulence factors and survival, 58–59
Culture methods and media
 for blood specimens, 384–385
 colony appearance, 383–384
 growth characteristics and diagnosis, 382–387
 isolation methodology and, 56
 “Littman’s capsule media,” 79
 nutritional requirements of, 16–17
 pigment production and, 86–91
 quantitative, 385
 for sputum and urine specimens, 386
 ultrastructure studies and, 14
Cutaneous cryptococcosis, 353
 in humans, 429–431
 tissue response to, 294–297
Cycloheximide in culture media, 383
Cytokines, 246–255
 colony-stimulating factors, 253
 in cryptococcal therapy, 497–499
 deficiencies and, 248
 description of, 246
 IFN-γ, 248–249
 immunostimulation by, 309
 inflammatory response and, 281
 interleukins, 251–253
 macrophage phagocytosis and, 200
 MCP-1, 254
Cytokines, continued
responses to cryptococcosis, 247–248,
254–255
suppressor responses and, 306
TH1-TH2 paradigm, 246–247
TNF-α, 249–251

Decontamination of pigeon excreta, 53,
55–56

Defensins, 209–210

Delayed-type hypersensitivity (DTH)
in animal pulmonary cryptococcosis,
286
epidemiology and, 353–354
suppressor responses and, 303–306

Description, 10–18
atypical variants, 15–16
of capsule, 10–11; see also Capsule
electron microscopic, 12–15
environmental parameters, 17–18
forms of, 10
 hyphal, 15–16
 light microscopic, 11–12
nutritional requirements, 16–17
 perfect state, 11
sporulation, 15–16

Diagnosis and laboratory techniques,
381–405
culture methods and media, 382–387
direct examination, 381–382
identification characteristics, 387–388
molecular techniques, 128, 393–399
serology, 388–392

Diethylcarbamazine (DEC), immuno­
nostimulation by, 308–309

Differential gene expression techniques,
131–132

DNA analyses; see Molecular biology,
clinical technology and; Taxon­
omy, molecular phylogeny and

DNase production, 92

Dogs, cryptococcosis in, 325–327, 328–330
as models for, 341

Dominant selection transformation sys­
tems, 137

Drug resistance
 biochemistry of, 101–102
 mechanisms of, 469–477
 amphotericin B, 470
 azoles, 471–473
 cross-resistance and, 472

flucytosine, 470–471
susceptibility testing and, 464–469

virulence factors and, 165–166

DTH; see Delayed-type hypersensitivity
(DTH)

Dust as source of var. neoformans, 50

Echinocandin B congeners, 499
susceptibility testing and, 468

Ecology, 41–70
 commensalism, 41–42
environmental factors in gene regula­
tion, 134–135
historical description, 3
eucalyptus trees, 10
pigeon excreta, 7
isolation methodology, 56–57
reproduction in environment, 57–58
unsolved problems, 99
varieties and, 42–45
gatti, 45–48
neoformans, 48–56
virulence factors and survival, 58–59

Effector cells and phagocytosis, 209–210

EIAs; see Enzyme immunoassay (EIA)
tests

Electron microscopic description, 12–15
of capsule architecture, 72–74
of melanized cells, 89–90
Electrophoresis, pulsed-field gel, in mo­
lecular studies, 117

Endocarditis, cryptococcal, 435

Endothelial cells, and nonspecific cellular
defenses, 207–208

Environment, and epidemiology, 351–352

Enzyme immunoassay (EIA) tests, 391

Enzymes
as environmental survival factor, 58
extracellular production of, 92–94
vacuolar and lysosomal, 99–100

Eosinophils, and nonspecific cellular de­
fenses, 205–207

Epidemiology, 351–380

Africa, 364
Asia, 364–365
Australia, 365
Caribbean, 365
Central America, 365
children, 360
environment and, 351–352
Gram stain, 382
Granuloma formation; see also Inflamma-
tory response
in brain, 288–290
inflammatory response and, 276–283
macrophage phagocytosis and, 199
Guano
avian; see Pigeon excreta
bat, 49
Guinea pigs as models for cryptococ-
osis, 337–338
GXM; see Glucuronoxylomannan
Haploid fruiting media, 386–387
Haptenic pathways, suppressor re-
sponses and, 306
Head and neck cryptococcal infection, 438
Heart, cryptococcosis of, 435
Heart-lung transplants and cryptococ-
osis, 415
Histiocytic ring formation, 199
History of cryptococcosis, 1–10
1951–1981, 7–9
1900 to 1950, 2–7
consolidation of status as pathogen, 2–7
discovery, 1–2
as major pathogen, 9–10
Human immunodeficiency virus (HIV)
cryptococcosis and, 9, 363
bone and joint involvement, 433–434
cutaneous, 295–296, 430
epidemiology of, 354–357, 363
genitourinary, 432–433
pulmonary, 285, 428–429
screening tests for, 392
serotype in, 127
susceptibility to, 300–303
Cryptococcus neoformans var. neoformans
and, 42
inflammatory response and, 272–273
macrophage function in, 200–201
meningoencephalitis and; see Meningo-
cephalitis, cryptococcal
Humoral immunity
nonspecific, 183–191; see also Immunity,
nonspecific
specific, 223–237; see also Antibody(ies)
in animals, 226–227
capsular polysaccharides and,
227–228
functional efficacy of, 230–237
to GXM, 229–230
in humans, 223–226
mechanisms of, 235
to polysaccharide-protein conjugates,
228–229
Hyper-IgM syndrome, and susceptibility
to cryptococcosis, 301
Hyphal forms
asexual, 58
description of, 15–16
Hypogammaglobulinemia, and suscepti-
bility to cryptococcosis, 301
IFN-γ, 248–249
in animal pulmonary cryptococcosis,
287
Immunity
cell-mediated, 237–246
in animals, 237–239
antibody immunity and, 240–241
CD4+ and CD8+ T cells, 239
correlate measures of, 241–246
direct antifungal effects of, 239–240
DTH and, 241–243; see also Delayed-
type hypersensitivity (DTH)
granuloma formation and, 240
lymphocyte proliferation and,
243–246
as primary defense, 298
complement and, 184–191; see also
Complement
efficacy of host defenses, 297–299
fungus-induced immunosuppression,
303–308
integrated concepts of, 299–300
nonspecific, 191–208
astrocytes, 205
dermal cells and, 207–208
esosinophils, 205–207
macrophages, 194–205; see also
Macrophages
mast cells, 205–207
microglia, 205
NK cells, 192–194
platelets, 207
PMNs, 191–192
nonspecific humoral, 183–191
special topics in, 271–324, 297–309
specific, 223–269
humoral, 223–237; see also Ant-
body(ies); Humoral immunity
susceptibility to infection
defects and, 298
host defenses and, 300–303
Immunological studies, 8–9; see also Immunity; Serotypes
Immunoprophylaxis, 525–526
Immunosuppression, fungus-induced, 303–308
India ink stain, 381–382
historical uses of, 5
Inflammatory response, 272–283
capsular polysaccharides and, 279–282
granuloma formation, 272–273, 276–283
in animals, 277–278
strain factors and, 278–279
neutrophilic, 275–276
paucireactive, 273–274
reactive, 273–274
Schwartz classification of, 273–274
Inositol
in biosynthetic pathway, 98–99
as virulence factor, 157
Insects, cryptococcosis in, 325
Interleukins, 251–253
Intracranial hypertension, therapy for, 494–496
Intronic sequence structures, 133
Iron
cryptococcal metabolism of, 100–101
in culture media, 383
as virulence factor, 158
"Isolated cryptococcal polysaccharidemia," 392–393
Isolation methodology, 56–57
Itraconazole, regimens for, 483–484
Joints, cryptococcosis of, 433–434
Laboratory techniques of diagnosis; see Diagnosis
Laryngeal cryptococcosis, 438
Latex agglutination tests, 389–392
Leukotaxis and complement, 188–190
Light microscopic description, 11–12
Lime solution for decontamination, 55
Lipids and sterols, 97–99
Literature about C. neoformans, 18
Liver transplants and cryptococcosis, 415
Lung; see also Pulmonary cryptococcosis
in physical defenses, 180–181
as route for cryptococcosis in humans, 352
transplants and cryptococcosis, 415
Lymph nodes, cryptococcosis of, 437
Lymphoproliferative disorders, and susceptibility to cryptococcosis, 300–303
Lysosomal enzymes, 99–100
Macrophages
antifungal drugs and, 204–205
as cellular defense, 194–205
mechanisms of, 201–204
defects in
suppressor factor and, 304–305
susceptibility to cryptococcosis and, 302
HIV and, 200–201
phagocytosis by
antibody-mediated, 195
antigen presentation and, 199–200
capsular polysaccharides and, 198–199
cytokines and, 200
fungistasis and, 195, 198
granuloma formation and, 199
histiocytic ring formation and, 199
killing and, 194–199
polysaccharide antigen sequestration and, 200
Mannitol
as environmental survival factor, 58
production of, 91–92
as virulence factor, 156–157
Mannoprotein (MP), 76, 78
immune response to, 80
Mast cells in host defense, 205–207
Mastitis, cryptococcal, 436–437
Mating locus and virulence factors, 158–160
MCP-1, 254
in animal pulmonary cryptococcosis, 287
Media; see Culture methods and media
Meiosis, molecular biology of, 127
Melanin
as environmental survival factor, 58
production of, 87–91
suppressor responses and, 307–308
as virulence factor, 151–155
Meningitis; see Meningoencephalitis, cryptococcal
Meningoencephalitis, cryptococcal, 288, 419–424
clinical manifestations of, 420–421
historical descriptions of, 2
HIV and, 9, 423–424
intracranial hypertension, therapy for, 494–496
ocular infection and, 432
pulmonary resection and, 284
radiographic appearance of, 421–423
ultrastructure studies of, 14
Metabolic targets and virulence factors, 155–158
Mice, as models for cryptococcosis, 334–337
drug therapy in, 473
Microglia and nonspecific immunity, 205
Microsequencing, 131
Mitochondrial DNA isolation, 120–121
Moisture effect, 18
Molecular biology, 115–144
of capsule phenotype, 148–151
clinical technology and, 128
chromosomal DNA and karyotypes, 394–395
DNA probe, 388
genetic structures and regulation in, 133–135
glass bead isolation of DNA, 394
isolation of genes, 128–133
RNA isolation, 395–397
spheroplasting, 393–394
transformation systems; see Transformation systems
early studies, 115–116
epidemiology and, 116–122, 366–369
genetics of C. neoformans, 126–128
historical description of, 9–10
phylogeny and, 123–126
transformation systems, 135–137
biolistic delivery and, 397–398
electroporation and, 398–399
Molecular phylogeny; see Taxonomy
Morphologic characteristics, 10–18; see also Description
MP; see Mannoprotein
Mucicarmine stains, 382
Muscle, cryptococcosis of, 434–435
Myositis, cryptococcal, 434–435
Myristoylation as virulence factor, 157–158
Nasal passages in physical defenses, 179–180
Natural killer (NK) cells as cellular defense, 192–194
Neoplastic diseases and epidemiology of cryptococcosis, 360–361, 418–419
Neutrophils as cellular defense, 191–192
and inflammatory response, 275–276
New York City, epidemiology of cryptococcosis in, 366
Niger seed agar, 56, 386
NK cells; see Natural killer (NK) cells
Nomenclature; see also Taxonomy
historical changes in, 3–6, 8, 29–31
Nonoxidative mechanisms in cellular defenses, 209–210
NP pathway and suppressor responses, 306
Nutritional requirements, 16–17
Ocular cryptococcosis; see Eye
Opsonization and complement, 188–190
Organ transplants and cryptococcosis, 361–363, 413–418
Oxidants nitrogen-derived, 209
oxygen-derived, 208–209
Parrots and cryptococcosis, 51
PCR fingerprinting techniques, 121–122
Pentoxifylline and murine intracerebral cryptococcosis, 293
Perfect state; see Teleomorph
pH
culture methods and, 383
in physical defenses, 178
range of, 17
Phagocytes; see specific kinds
Phagocytosis; see also Macrophages
antibody and complement systems
and, 299–300
effector cells and, 209–210
Phenoloxidase and biochemistry, 86–87
Phospholipase production, 94
as virulence factor, 168
Phylogeny; see Taxonomy
Physical defenses, 177–182
barriers, 178–182
INDEX

eye, 180
gastrointestinal tract, 181–182
lung, 180–181
nasal passages, 179–180
pH, 178
skin, 178
temperature, 177–178
Picryl pathway and suppressor responses, 306
Pigeon excreta
decontamination of, 53, 55–56
as source of var. neoformans, 7, 50–53
Pigment production; see also Melanin
biochemistry of, 86–91
Plasmids in transformation systems, 135–136
Platelets and cellular defenses, 207
PMNs; see Polymorphonuclear cells (PMNs)
Pneumocandins, 499
susceptibility testing and, 468
Polymorphonuclear cells (PMNs), as cellular defense, 191–192
Polymyxin B resistance, 101–102
Polysaccharides
antigen sequestration and, in macrophage phagocytosis, 200
in capsular composition, 74–84; see also Capsule
in cell wall, 84–86
as extracellular products, 91
Pregnancy as risk group, 412–413
Prevention of infection, 519–530
antigen screening and early intervention, 524–525
avoidance strategies, 519, 521
chemoprophylaxis and, 521–524
immunoprophylaxis, 525–526
Primates as models for cryptococcosis, 341
Progeny identification, 118
Prognosis and susceptibility testing, 465
Prostate, cryptococcal infection of, 432–433
therapy for, 494
Protease production, 94
Protease suppresor responses and, 307
as virulence factor, 160
Pulmonary cryptococcosis
commensalism and, 42
human, 424–429
immunocompetent host, 424–427
immunocompromised host with HIV, 428–429
immunocompromised host without HIV, 427–428
incidence of, 285–286
tissue response to
in animals, 286–288
in humans, 283–286
Purine metabolism as virulence factor, 155–156
Pyrimidine as virulence factor, 155–156
Pyrophosphatidic acid production, 97
Rabbits as models for cryptococcosis, 339–340
drug therapy in, 476
Race and epidemiology, 358
RAPD analysis versus PCR fingerprinting techniques, 121–122
Rats as models for cryptococcosis, 338–339
Recurrence, molecular biology of, 368
Red gum trees, and C. neoformans var. gatti, 47
Relapse isolates for susceptibility testing, 468–469
Renal transplants and cryptococcosis, 414–415
Repetitive fragment studies, 118–119
Reproduction
between varieties, 43
budding, 13–14
in environment, 57–58
sexual, 11
Risk factors, epidemiology of; see Epidemiology
Saccharomyces hominis, 1–2
Saliva, antifungal substances in, 183–184
Sarcoidosis and cryptococcosis, 418
Schwartz classification, 273–274
Screening tests, 392
Seasonal incidence, 357
Sectoring in colonies, 384
Serological tests, 388–392
Serotypes
capsular polysaccharide antigenicity and, 80–82
assays for, 82
similarities to other microbial products, 83–84
INDEX

Serotypes, continued
in diagnosis, 388
historical description of, 8
varietal differences in, 43–45
Signal transduction pathways and virulence factors, 160–163
Site tropism and virulence factors, 164–165
Skin; see also Cutaneous cryptococcosis
in physical defenses, 178
16S-like rRNA, molecular phylogeny of, 34–37, 123–126
26S-like rRNA, molecular phylogeny of, 34–37, 123–126
“Soapsuds” appearance, 273
Soil as source of var. neoformans, 50
South America and epidemiology of cryptococcosis, 365
Spheroplast techniques, 116
Spheroplasting in diagnosis, 393–394
Sporulation, description of, 15–16; see also Teleomorph
Stains
in direct examination, 381–382
India ink, 5, 381–382
light microscopic, 11
Strains, genetic analysis of, 368; see also specific varieties
Subpleural nodules in pulmonary cryptococcosis, 283
Summer-type hypersensitivity pneumonitis and cryptococcosis, 354
Sunlight effect, 18
isolation methods and, 56
on pigeon excreta, 52
Superoxide dismutase (SOD) production, 92
Surfactant and antifungal substances, 184
Switching mechanisms in colonies, 384
Synthetic oligonucleotide probes, 120
T cells
in animal pulmonary cryptococcosis, 287
CD4 and CD8, 239
defects in
susceptibility to cryptococcosis and, 301
Taxonomy, 29–40
historical nomenclature and, 29–31
molecular phylogeny and, 34–37, 123–126; see also Molecular biology
pigeon excreta relationship to, 54–55
relationships of varieties, 45
Teleomorph, 11; see also Filobasidiella entries
description of, 11
historical nomenclature and, 30
molecular biology of, 126–128
of varieties, 43
Telomerase activity in transformation systems, 135
Temperature, 17
avian cryptococcosis and, 327–328
culture methods and, 382–383
in physical defenses, 177–178
Terminology; see Nomenclature; Taxonomy
Therapy, 457–518
amphotericin B, 7, 97–98; see also Amphotericin B
in animal models, 473–478
concepts of, 489–500
corticosteroid, and cryptococcosis, 7, 300–303, 418
criteria for success, 489–490
drug resistance and, 469–477; see also Drug resistance
everly, 3
fluconazole, 9
flucytosine, 7
history of, 457–464
amphotericin B, 460–464
cycloheximide, 459–460
early antibiotics and heavy metals, 457
fever inducers, 459
garlic, 458–459
hormonal agents, 457–458
protoanemonin, 458
radiotherapy, 459
immune status and, 491–492
infection site and, 492–493
investigational agents, 499–500
length of, 490–491
during pregnancy, 413
prognosis and, 500–503
regimens for, 478–489
amphotericin B, 479–481
azoles, 483–486
combination drugs, 486–489
flucytosine, 481–483
susceptibility testing and, 464–469
for torulomas or brain abscesses, 493–494
vaccine, 6
var. gatti and, 42
TH1–TH2 paradigm, 246–247
Thyroid gland, cryptococcal infection of, 437
Tissue
C. neoformans attachment to, 182–183
lysis of, 5
responses to infection, 271–283; see also
Inflammatory response
TNF-α, 249–251
Torulomas, therapy for, 493–494
Transformation systems and molecular biology, 135–137
Trees; see also Eucalyptus trees
as source of var. gatti, 47–48
as source of var. neoformans, 49–50
Tremella, 34–37
Tremellaceae, 36–37
T-suppressor factor (TsF), 304
Tumor necrosis factor (TNF) and inflammatory response, 282
Ultrastructure, 12–15
Urease production as virulence factor, 166–167
Urokinase in animal pulmonary cryptococcosis, 287
UT-4p probe, 119–120
V-8 juice agar, 387
Vaccine, 6, 525–526
Vacuolar and lysosomal enzymes, 99–100
Varieties of C. neoformans; see specific varieties
Virulence factors, 145–176
adherence, 164–165
attenuation, 165–166
C. neoformans as model pathogen, 146–147
capsule as, 82–83, 147–151
definition of, 145–146
drug resistance, 165–166
ecology of, 58–59
extracellular enzyme production, 155–168
genetic studies and, 126
in vivo growth rate and responses, 163–164
intracellular responses, 166
mating locus, 158–160
melanin as, 151–155
metabolic targets and, 155–158
proteinase, 160
signal transduction, 160–163
site tropism, 164–165
INDEX

AccuProbe, 388

Acquired immunodeficiency syndrome (AIDS); see Human immunodeficiency virus (HIV)

Adherence, virulence factors and, 164–165

Adrenal gland cryptococcosis, 437

Africa, epidemiology of cryptococcosis, 364

Age and epidemiology, 358, 411–412

Alkalinization for decontamination, 55

Amebae, cryptococcosis in, 325

Amphotericin B

- in biosynthetic pathway, 97–98
- immunostimulation by, 308
- introduction of, 7
- liquid preparations of, 480–481
- and macrophages, 204–205
- regimens for, 479–481
- resistance to, 101–102
- susceptibility testing and, 466

Anamorph; see Cryptococcus neoformans entries

Animals

- cell-mediated immunity in, 237–239
- cryptococcosis in
 - birds, 327–328
 - cats, 328–330
 - central nervous system, 290–294
 - cows, 330–331
 - dogs, 328–330
 - granuloma formation, 277–278
 - historical description of, 3, 325–327
 - pulmonary, 286–288
- humoral immunity in, 226–227
- as models for cryptococcosis, 331–342
- cats, 341
- concepts regarding, 341–342
- dogs, 341
- drug therapy and, 473–478
- general studies of, 331–334
- goats, 341
- guinea pigs, 337–338
- mice, 334–337
- primates, 341
- rabbits, 339–340
- rats, 338–339

Antibody(ies); see also Humoral immunity, specific

- functional efficacy of, 230–237
- for prophylaxis and therapy, 526

- protective
 - characteristics of, 236
 - evasion of, 237
 - mechanisms of, 235

Antigens; see also Immunity; Serotypes

- macrophage phagocytosis and, 199–200
- screening with, 524–525

Antimicrobial drug resistance; see Drug resistance

Ara-A, immunostimulation by, 308

Arthritis, cryptococcal, 433–434

Asia, epidemiology of cryptococcosis, 364–365

Astrocytes, nonspecific immunity and, 205

Attenuation, virulence factors and, 165–166

Australia, epidemiology of cryptococcosis in, 365

Aviaries; see Pigeon excreta

Azoles; see also specific drugs

regimens for, 483–486

BACTEC system for cultures, 385

Benzimidazoles, 499–500

Biochemistry, 71–114

- of antimicrobial drug resistance, 101–102
- biosynthetic and protein modification pathways, 95–96
- of capsule, 71–84; see also Capsule
- of cell wall, 84–86

531
INDEX

Biochemistry, continued
extracellular products, 91–95
glycogen, 96
iron metabolism, 100–101
lipids and sterols, 97–99
of pigments, 86–91
melanin, 87–91
phenoloxidase and, 86–87
vacuolar and lysosomal enzymes, 99–100
varietal differences in, 43–45
Biosynthetic and protein modification pathways, 95–96
Birds; see also Pigeon excreta
cryptococcosis in, 327–328
as source of var. neoformans, 50–53
Birdseed agar, 386
Bones, cryptococcosis of, 433–434
Brain abscess, therapy for, 493–494
Breast, cryptococcosis of, 436–437
Budding index, 274
Buschke, Abraham, 1–2
Busse, Otto, 1–2
C3; see Complement
Calcineurin as signal transduction pathway, 161–162
Calcofluor stain, 382
Canaries, cryptococcosis and, 51
Canavanine-glycine-bromothymol blue agar, 386
Capsular polysaccharides; see also Capsule
antibody, immunostimulation by, 309
antigen titers, and therapy, 496–497
components of, 74–78
antigenic similarities to other microbial products, 83–84
biological effects of, 82–83
serological assays for, 82
serotypic classification of, 80–82
extracellular survival and, 274
HIV and, 282
immunosuppression induced by, 303–305
inflammatory response and, 279–282
latex agglutination tests for, 390–391
macrophage phagocytosis and, 198–199, 280
specific humoral immunity and, 227–228
Capsule
architecture of, 72–74
biochemistry of, 71–84
electron microscopic description, 12–13
as environmental survival factor, 58
polysaccharide components of; see Capsular polysaccharides
size of, 10–11
colony appearance and, 383
granuloma formation and, 278–279
synthesis of, 78–79
regulation of, 79–80
as virulence factor, 147–151
Caribbean, epidemiology of cryptococcosis in, 365
Carminophilic index, 274
Caseation in cryptococcosis, 283
Cats, cryptococcosis in, 325–327, 328–330
as models for, 341
Cell wall biochemistry, 84–86
Cell-mediated immunity; see Immunity
Cellular defenses
nitrogen-derived, 209
nonoxidative mechanisms, 209–210
nonspecific; see Immunity, nonspecific
oxygen-derived, 208–209
Central America, epidemiology of cryptococcosis in, 365
Central nervous system cryptococcosis;
see also Meningoencephalitis, cryptococcal
in humans, 419–424
tissue response to
in animals, 290–294
in humans, 288–290
toruloma or abscess therapy, 493–494
Cerebrospinal fluid
for culture specimens, 385–386
serological tests of, 390
Chloroquine, murine intracerebral cryptococcosis and, 293
Clonal populations, 58
CneF preparation, suppressor responses and, 305–306
CNRE-1 probe, 119
Cockroaches, as source of var. neoformans, 50
Collectins, antifungal substances in, 184
Colony-stimulating factors, 253
Colorimetric agar tests, 43, 45
Commensalism and ecology, 41–42
Complement, 184–191
 activation by *C. neoformans*, 185–188
 binding to *C. neoformans*, 190–191
 defects in, and susceptibility to cryptococcosis, 301–302
 depletion in cryptococcosis, 190
 importance of, 184–185
 inflammatory response and, 281
 leukotaxis and, 188–190
 opsonization and, 188–190
Conjugate vaccine, 525–526
Corticosteroids and susceptibility to cryptococcosis, 300–303, 418
Coward strain, 15
Cows, cryptococcosis in, 330–331
Cryptococcal mastitis, 330–331
Cryptococcosis, 435
 cultures for, 384–385
Cryptococcin, 303, 353
Cryptococcomas, 273–274
Cryptococcosis
 animal models for, 325–350
 cutaneous, 294–297, 353, 429–431
 facial involvement in, 326
 in humans, 407–456
 autoimmune disorders and, 9
 clinical manifestations of, 408–409
 clinical scenario, 407–408
 corticosteroid therapy and, 7, 300–303, 418
 epidemiology of, 409–419; see also Epidemiology
 historical descriptions of, 2–3
 historical nomenclature for, 3, 29–31
 karyotype changes and, 368–369
 mortality of, 42
 prevention of, 519–530; see also Prevention of infection
 sites of infection in, 419–438; see also specific anatomic sites
 pigeon excreta and, 53–55
 therapy for; see specific drugs; Therapy
 veterinary aspects of, 325–350
Cryptococcus
 species of, 31, 32; see also Cryptococcus *neoformans* and varieties
 identification of, 387–388
Cryptococcus *neoformans*
 colony appearance, 383–384
 molecular phylogeny of, 34–37, 123–126
 Cryptococcus neoformans var. *gatti* avian cryptococcosis and, 328
 clinical manifestations of, 416–418
 differences from var. *neoformans*, 43–45
 ecology of, 45–48
 environmental sources of, 47–48
 geographic distribution of, 45–47
 historical nomenclature and, 30, 31
 therapy for, 42
Cryptococcus neoformans var. *neoformans*
 clinical manifestations of, 416–418
 differences from var. *gatti*, 43–45
 ecology of, 48–56
 environmental sources of, 49–53
 geographic distribution of, 46, 48
 historical nomenclature and, 30, 31
 HIV infection and, 42
 isolation methodology for, 56–57
 in pigeon excreta, 50–56
 reproduction in environment, 57–58
 in soils and dusts, 50
 in trees, 49–50
 virulence factors and survival, 58–59
Culture methods and media
 for blood specimens, 384–385
 colony appearance, 383–384
 growth characteristics and diagnosis, 382–387
 isolation methodology and, 56
 “Littman’s capsule media,” 79
 nutritional requirements of, 16–17
 pigment production and, 86–91
 quantitative, 385
 for sputum and urine specimens, 386
 ultrastructure studies and, 14
Cutaneous cryptococcosis, 353
 in humans, 429–431
 tissue response to, 294–297
Cycloheximide in culture media, 383
Cytokines, 246–255
 colony-stimulating factors, 253
 in cryptococcal therapy, 497–499
 deficiencies and, 248
 description of, 246
 IFN-γ, 248–249
 immunostimulation by, 309
 inflammatory response and, 281
 interleukins, 251–253
 macrophage phagocytosis and, 200
 MCP-1, 254
Cytokines, continued
- responses to cryptococcosis, 247–248, 254–255
- suppressor responses and, 306
- TH1-TH2 paradigm, 246–247
- TNF-α, 249–251

Decontamination of pigeon excreta, 53, 55–56

Defensins, 209–210

Delayed-type hypersensitivity (DTH)
- in animal pulmonary cryptococcosis, 286
- epidemiology and, 353–354
- suppressor responses and, 303–306

Description, 10–18
- atypical variants, 15–16
- of capsule, 10–11; see also Capsule
- electron microscopic, 12–15
- environmental parameters, 17–18
- forms of, 10
 - hyphal, 15–16
 - light microscopic, 11–12
 - nutritional requirements, 16–17
 - perfect state, 11
 - sporulation, 15–16

Diagnosis and laboratory techniques, 381–405
- culture methods and media, 382–387
- direct examination, 381–382
- identification characteristics, 387–388
- molecular techniques, 128, 393–399
- serology, 388–392

Diethylcarbamazine (DEC), immunostimulation by, 308–309

Differential gene expression techniques, 131–132

DNA analyses; see Molecular biology, clinical technology and; Taxonomy, molecular phylogeny and

DNase production, 92

Dogs, cryptococcosis in, 325–327, 328–330
- as models for, 341

Dominant selection transformation systems, 137

Drug resistance
- biochemistry of, 101–102
- mechanisms of, 469–477
- amphotericin B, 470
- azoles, 471–473
- cross-resistance and, 472

flucytosine, 470–471
- susceptibility testing and, 464–469
- virulence factors and, 165–166

DTH; see Delayed-type hypersensitivity (DTH)

Dust as source of var. neoformans, 50

Echinocandin B congeners, 499
- susceptibility testing and, 468

Ecology, 41–70
- commensalism, 41–42
- environmental factors in gene regulation, 134–135
- historical description, 3
- eucalyptus trees, 10
- pigeon excreta, 7
- isolation methodology, 56–57
- reproduction in environment, 57–58
- unsolved problems, 99
- varieties and, 42–45
 - gatti, 45–48
 - neoformans, 48–56
- virulence factors and survival, 58–59

Effector cells and phagocytosis, 209–210

EIAs; see Enzyme immunoassay (EIA) tests

Electron microscopic description, 12–15
- of capsule architecture, 72–74
- of melanized cells, 89–90

Electrophoresis, pulsed-field gel, in molecular studies, 117

Endocarditis, cryptococcal, 435

Endothelial cells, and nonspecific cellular defenses, 207–208

Environment, and epidemiology, 351–352

Epidemiology, 351–380
- Africa, 364
- Asia, 364–365
- Australia, 365
- Caribbean, 365
- Central America, 365
- children, 360
- environment and, 351–352
INDEX

France, 366
HIV and, 363
molecular biology and, 116–122, 366–369
neoplastic diseases and, 360–361
New York City, 366
normal hosts, 359–360
organ transplants and, 361–363, 413–418
prevalence of human infection, 354–357
risk group factors and, 358–359, 409–419
age, 411–412
corticosteroid therapy and, 418
gender, 409–411
malignancy, 418–419
pregnancy, 412–413
strain variations in, 416–418
route of human infection, 352–353
selected populations, 358–363
selected regions, 363–366
in South America, 365
susceptibility differences, 357–358
symptomatic vs. asymptomatic infection, 353–354

Ergosterol production, 97
Ethanol production, 94–95
Eucalyptus trees
basiodosporae and, 33
cryptococcosis and, 10, 48
C. neoformans var. gatti and, 47–48

Excreta, avian; see Pigeon excreta
“Exopolysaccharide,” 74

Extracellular infection, 274–275
Extracellular products
biochemistry of, 91–95
enzymes and protein antigens, 92–94
virulence factors and, 155–168
ethanol, 94–95
mannitol, 91–92
polysaccharides, 91

Eye
cryptococcal infection of, 431–432
therapy for, 494
meningoencephalitis and, 432
in physical defenses, 180

Facial cryptococcosis, 326
Filament agar, 387
Filobasidiaceae, molecular phylogeny of, 36–37, 123–126

Filobasidiella depauperata, taxonomy of, 33–34
Filobasidiella neoformans
culture media for, 386–387
historical nomenclature and, 30
molecular phylogeny and, 34–37, 123–126
taxonomy of, 31, 33
Flucytosine, 7
regimens for, 481–483
resistance to, 101–102
susceptibility testing and, 465–466

Flucytosine
regimens for, 481–483
resistance to, 101–102
susceptibility testing and, 465–466

Fontana-Masson stain, 382
France, epidemiology of cryptococcosis in, 366

Fruiting
haploid, 57–58
molecular biology of, 127
taxonomy and, 33

G proteins as signal transduction pathway, 162–163
Galactoxylomannan (GalXM), 75–77
immune response to, 80
GalXM; see Galactoxylomannan
Gastrointestinal tract
cryptococcosis of, 326, 435–436
in physical defenses, 181–182
as route for cryptococcosis in humans, 352–353
Gender and epidemiology, 357–358, 409–411

Genetic studies; see also Molecular biology
AIDS-specific genotypes, 119
genome size, 117–118
isolation of genes, 128–133
map size, 118
probes in, 118–121, 130
sequencing in, 122

Genitourinary tract cryptococcal infection, 432–433

Glass bead isolation of DNA, 394
Glucuronoxylomannan (GXM), 75–77
immune response to, 80–81, 229–230
inflammatory response and, 281

Glycogen biochemistry, 96
Goats as models for cryptococcosis, 341

Gomori methenamine silver stain, 382
Gram stain, 382
Granuloma formation; see also Inflammatory response in brain, 288–290
inflammatory response and, 276–283
macrophage phagocytosis and, 199
Guano
avian; see Pigeon excreta
bat, 49
Guinea pigs as models for cryptococcosis, 337–338
GXM; see Glucuronoxylomannan
Haploid fruiting media, 386–387
Haptenic pathways, suppressor responses and, 306
Head and neck cryptococcal infection, 438
Heart, cryptococcosis of, 435
Heart-lung transplants and cryptococcosis, 415
Heterologous recorder gene constructs, 133–134
Histiocytic ring formation, 199
History of cryptococcosis, 1–10
1951–1981, 7–9
1900 to 1950, 2–7
consolidation of status as pathogen, 2–7
discovery, 1–2
as major pathogen, 9–10
Human immunodeficiency virus (HIV)
cryptococcosis and, 9, 363
bone and joint involvement, 433–434
cutaneous, 295–296, 430
epidemiology of, 354–357, 363
genitourinary, 432–433
pulmonary, 285, 428–429
screening tests for, 392
serotype in, 127
susceptibility to, 300–303
Cryptococcus neoformans var. neoformans
and, 42
inflammatory response and, 272–273
macrophage function in, 200–201
meningoencephalitis and; see Meningoencephalitis, cryptococcal
Humoral immunity
nonspecific, 183–191; see also Immunity, nonspecific
specific, 223–237; see also Antibody(ies)
in animals, 226–227
capsular polysaccharides and, 227–228
functional efficacy of, 230–237
to GXM, 229–230
in humans, 223–226
mechanisms of, 235
to polysaccharide-protein conjugates, 228–229
Hyper-IgM syndrome, and susceptibility to cryptococcosis, 301
Hyphal forms
asexual, 58
description of, 15–16
Hypogammaglobulinemia, and susceptibility to cryptococcosis, 301
IFN-γ, 248–249
in animal pulmonary cryptococcosis, 287
Immunity
cell-mediated, 237–246
in animals, 237–239
antibody immunity and, 240–241
CD4+ and CD8+ T cells, 239
correlate measures of, 241–246
direct antifungal effects of, 239–240
DTH and, 241–243; see also Delayed-type hypersensitivity (DTH)
granuloma formation and, 240
lymphocyte proliferation and, 243–246
as primary defense, 298
complement and, 184–191; see also Complement
efficacy of host defenses, 297–299
fungus-induced immunosuppression, 303–308
integrated concepts of, 299–300
nonspecific, 191–208
astrocytes, 205
endothelial cells and, 207–208
esosinophils, 205–207
macrophages, 194–205; see also
Macrophages
mast cells, 205–207
microglia, 205
NK cells, 192–194
platelets, 207
PMNs, 191–192
nonspecific humoral, 183–191
special topics in, 271–324, 297–309
specific, 223–269
humoral, 223–237; see also Antibody(ies); Humoral immunity
INDEX

susceptibility to infection
defects and, 298
host defenses and, 300–303
Immunological studies, 8–9; see also Immunity; Serotypes
Immunoprophylaxis, 525–526
Immunosuppression, fungus-induced, 303–308
India ink stain, 381–382
historical uses of, 5
Inflammatory response, 272–283
capsular polysaccharides and, 279–282
granuloma formation, 272–273, 276–283
in animals, 277–278
strain factors and, 278–279
neutrophilic, 275–276
paucireactive, 273–274
reactive, 273–274
Schwartz classification of, 273–274
Inositol
in biosynthetic pathway, 98–99
as virulence factor, 157
Insects, cryptococcosis in, 325
Interleukins, 251–253
Intracranial hypertension, therapy for, 494–496
Intronic sequence structures, 133
Iron
cryptococcal metabolism of, 100–101
in culture media, 383
as virulence factor, 158
"Isolated cryptococcal polysaccharidemia," 392–393
Isolation methodology, 56–57
Itraconazole, regimens for, 483–484
Joints, cryptococcosis of, 433–434
Laboratory techniques of diagnosis; see Diagnosis
Laryngeal cryptococcosis, 438
Latex agglutination tests, 389–392
Leukotaxis and complement, 188–190
Light microscopic description, 11–12
Lime solution for decontamination, 55
Lipids and sterols, 97–99
Literature about C. neoformans, 18
Liver transplants and cryptococcosis, 415
Lung; see also Pulmonary cryptococcosis
in physical defenses, 180–181
as route for cryptococcosis in humans, 352
transplants and cryptococcosis, 415
Lymph nodes, cryptococcosis of, 437
Lymphoproliferative disorders, and susceptibility to cryptococcosis, 300–303
Lysosomal enzymes, 99–100
Macrophages
antifungal drugs and, 204–205
as cellular defense, 194–205
mechanisms of, 201–204
defects in
suppressor factor and, 304–305
susceptibility to cryptococcosis and, 302
HIV and, 200–201
phagocytosis by
antibody-mediated, 195
antigen presentation and, 199–200
capsular polysaccharides and, 198–199
cytokines and, 200
fungistasis and, 195, 198
granuloma formation and, 199
histiocytic ring formation and, 199
killing and, 194–199
polysaccharide antigen sequestration and, 200
Mannitol
as environmental survival factor, 58
production of, 91–92
as virulence factor, 156–157
Mannoprotein (MP), 76, 78
immune response to, 80
Mast cells in host defense, 205–207
Mastitis, cryptococcal, 436–437
Mating locus and virulence factors, 138–139
MCP-1, 254
in animal pulmonary cryptococcosis, 287
Media; see Culture methods and media
Meiosis, molecular biology of, 127
Melanin
as environmental survival factor, 58
genetic studies and, 134
production of, 87–91
suppressor responses and, 307–308
as virulence factor, 151–155
Meningitis; see Meningoencephalitis, cryptococcal
Meningoencephalitis, cryptococcal, 288, 419–424
clinical manifestations of, 420–421
historical descriptions of, 2
HIV and, 9, 423–424
intracranial hypertension, therapy for, 494–496
ocular infection and, 432
pulmonary resection and, 284
radiographic appearance of, 421–423
ultrastructure studies of, 14
Metabolic targets and virulence factors, 155–158
Mice, as models for cryptococcosis, 334–337
drug therapy in, 473
Microglia and nonspecific immunity, 205
Microsequencing, 131
Mitochondrial DNA isolation, 120–121
Moisture effect, 18
Molecular biology, 115–144
of capsule phenotype, 148–151
clinical technology and, 128
chromosomal DNA and karyotypes, 394–395
DNA probe, 388
DNA isolation, 386
DNA probe, 388
genetic structures and regulation in,
133–135
glass bead isolation of DNA, 394
isolation of genes, 128–133
RNA isolation, 395–397
spheroplasting, 393–394
transformation systems; see Transformation systems
early studies, 115–116
epidemiology and, 116–122, 366–369
genetics of C. neoformans, 126–128
historical description of, 9–10
phylogeny and, 123–126
transformation systems, 135–137
biolistic delivery and, 397–398
electroporation and, 398–399
Molecular phylogeny; see Taxonomy
Morphologic characteristics, 10–18; see also Description
MP; see Mannoprotein
Mucicarmine stains, 382
Muscle, cryptococcosis of, 434–435
Myositis, cryptococcal, 434–435
Myristoylation as virulence factor, 157–158
Nasal passages in physical defenses, 179–180
Natural killer (NK) cells as cellular defense, 192–194
Neoplastic diseases and epidemiology of cryptococcosis, 360–361, 418–419
Neutrophils as cellular defense, 191–192
and inflammatory response, 275–276
New York City, epidemiology of cryptococcosis in, 366
Niger seed agar, 56, 386
NK cells; see Natural killer (NK) cells
Nomenclature; see also Taxonomy
historical changes in, 3–6, 8, 29–31
Nonoxidative mechanisms in cellular defenses, 209–210
NP pathway and suppressor responses, 306
Nutritional requirements, 16–17
Ocular cryptococcosis; see Eye
Opsonization and complement, 188–190
Organ transplants and cryptococcosis, 361–363, 413–418
Oxidants
nitrogen-derived, 209
oxygen-derived, 208–209
Parrots and cryptococcosis, 51
PCR fingerprinting techniques, 121–122
Pentoxifylline and murine intracerebral cryptococcosis, 293
Perfect state; see Teleomorph
pH
culture methods and, 383
in physical defenses, 178
range of, 17
Phagocytes; see specific kinds
Phagocytosis; see also Macrophages
antibody and complement systems
and, 299–300
effector cells and, 209–210
Phenoloxidase and biochemistry, 86–87
Phospholipase production, 94
as virulence factor, 168
Phylogeny; see Taxonomy
Physical defenses, 177–182
barriers, 178–182
<table>
<thead>
<tr>
<th>Page</th>
<th>Index Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>eye, 180</td>
</tr>
<tr>
<td>178</td>
<td>pH, 178</td>
</tr>
<tr>
<td>177</td>
<td>temperature, 177-178</td>
</tr>
<tr>
<td>179</td>
<td>nasal passages, 179-180</td>
</tr>
<tr>
<td>180</td>
<td>lung, 180-181</td>
</tr>
<tr>
<td>181</td>
<td>gastrointestinal tract, 181-182</td>
</tr>
<tr>
<td>178</td>
<td>skin, 178</td>
</tr>
<tr>
<td>177</td>
<td>Immunocompetent host, 424-427</td>
</tr>
<tr>
<td>428</td>
<td>Immunocompromised host with HIV, 428-429</td>
</tr>
<tr>
<td>427</td>
<td>Immunocompromised host without HIV, 427-428</td>
</tr>
<tr>
<td>285</td>
<td>incidence of, 285-286</td>
</tr>
<tr>
<td>283</td>
<td>tissue response to in animals, 286-288</td>
</tr>
<tr>
<td>283</td>
<td>in humans, 283-286</td>
</tr>
<tr>
<td>285</td>
<td>Purine metabolism as virulence factor, 155-156</td>
</tr>
<tr>
<td>155</td>
<td>Pyrimidine as virulence factor, 155-156</td>
</tr>
<tr>
<td>97</td>
<td>Pyrophosphatidic acid production, 97</td>
</tr>
<tr>
<td>392</td>
<td>Screening tests, 392</td>
</tr>
<tr>
<td>357</td>
<td>Seasonal incidence, 357</td>
</tr>
<tr>
<td>341</td>
<td>Reproductive biology, 341</td>
</tr>
<tr>
<td>412</td>
<td>Pregnancy as risk group, 412-413</td>
</tr>
<tr>
<td>413</td>
<td>Avoidance strategies, 413-414</td>
</tr>
<tr>
<td>538</td>
<td>Race and epidemiology, 538</td>
</tr>
<tr>
<td>121</td>
<td>RAPD analysis versus PCR fingerprinting techniques, 121-122</td>
</tr>
<tr>
<td>336</td>
<td>Rats as models for cryptococcosis, 336-339</td>
</tr>
<tr>
<td>368</td>
<td>Recurrence, molecular biology of, 368</td>
</tr>
<tr>
<td>347</td>
<td>Red gum trees, and C. neoformans var. gatti, 47</td>
</tr>
<tr>
<td>468</td>
<td>Relapse isolates for susceptibility testing, 468-469</td>
</tr>
<tr>
<td>414</td>
<td>Renal transplants and cryptococcosis, 414-415</td>
</tr>
<tr>
<td>419</td>
<td>Repetitive fragment studies, 419-420</td>
</tr>
<tr>
<td>43</td>
<td>Reproduction between varieties, 43</td>
</tr>
<tr>
<td>13</td>
<td>Budding, 13-14</td>
</tr>
<tr>
<td>57</td>
<td>in environment, 57-58</td>
</tr>
<tr>
<td>11</td>
<td>sexual, 11</td>
</tr>
<tr>
<td>358</td>
<td>Risk factors, epidemiology of; see Epidemiology</td>
</tr>
<tr>
<td>1</td>
<td>Saccharomyces hominis, 1-2</td>
</tr>
<tr>
<td>183</td>
<td>Saliva, antifungal substances in, 183-184</td>
</tr>
<tr>
<td>273</td>
<td>Schwartz classification, 273-274</td>
</tr>
<tr>
<td>392</td>
<td>Screening tests, 392</td>
</tr>
<tr>
<td>357</td>
<td>Seasonal incidence, 357</td>
</tr>
<tr>
<td>384</td>
<td>Sectoring in colonies, 384</td>
</tr>
<tr>
<td>388</td>
<td>Serological tests, 388-392</td>
</tr>
<tr>
<td>83</td>
<td>Serotypes to other microbial products, 83-84</td>
</tr>
<tr>
<td>80</td>
<td>Serotypes capsaicin polysaccharide antigenicity and, 80-82</td>
</tr>
<tr>
<td>82</td>
<td>assays for, 82</td>
</tr>
<tr>
<td>83</td>
<td>similarities to other microbial products, 83-84</td>
</tr>
</tbody>
</table>
Serotypes, continued
 in diagnosis, 388
 historical description of, 8
 varietal differences in, 43–45
Signal transduction pathways and virulence factors, 160–163
Site tropism and virulence factors, 164–165
Skin; see also Cutaneous cryptococcosis
 in physical defenses, 178
16S-like rRNA, molecular phylogeny of, 34–37, 123–126
26S-like rRNA, molecular phylogeny of, 34–37, 123–126
“Soapsuds” appearance, 273
Soil as source of var. neoformans, 50
South America and epidemiology of cryptococcosis, 365
Spheroplast techniques, 116
Spheroplasting in diagnosis, 393–394
Sporulation, description of, 15–16; see also Teleomorph
Stains
 in direct examination, 381–382
 India ink, 5, 381–382
 light microscopic, 11
Strains, genetic analysis of, 368; see also specific varieties
Subpleural nodules in pulmonary cryptococcosis, 283
Summer-type hypersensitivity pneumonitis and cryptococcosis, 354
Sunlight effect, 18
 isolation methods and, 56
 on pigeon excreta, 52
Superoxide dismutase (SOD) production, 92
Surfactant and antifungal substances, 184
Switching mechanisms in colonies, 384
Synthetic oligonucleotide probes, 120
T cells
 in animal pulmonary cryptococcosis, 287
 CD4 and CD8, 239
 defects in
 susceptibility to cryptococcosis and, 301
Taxonomy, 29–40
 historical nomenclature and, 29–31
 molecular phylogeny and, 34–37,
 123–126; see also Molecular biology
 pigeon excreta relationship to, 54–55
 relationships of varieties, 45
Teleomorph, 11; see also Filobasidiella entries
 description of, 11
 historical nomenclature and, 30
 molecular biology of, 126–128
 of varieties, 43
Telomerase activity in transformation systems, 135
Temperature, 17
 avian cryptococcosis and, 327–328
 culture methods and, 382–383
 in physical defenses, 177–178
Terminology; see Nomenclature; Taxonomy
Therapy, 457–518
 amphotericin B, 7, 97–98; see also Amphotericin B
 in animal models, 473–478
 concepts of, 489–500
 corticosteroid, and cryptococcosis, 7,
 300–303, 418
 criteria for success, 489–490
 drug resistance and, 469–477; see also Drug resistance
 early, 3
 fluconazole, 9
 flucytosine, 7
 history of, 457–464
 amphotericin B, 460–464
 cycloheximide, 459–460
 early antibiotics and heavy metals, 457
 fever inducers, 459
 garlic, 458–459
 hormonal agents, 457–458
 protoanemonin, 458
 radiotherapy, 459
 immune status and, 491–492
 infection site and, 492–493
 investigational agents, 499–500
 length of, 490–491
 during pregnancy, 413
 prognosis and, 500–503
 regimens for, 478–489
 amphotericin B, 479–481
 azoles, 483–486
 combination drugs, 486–489
 flucytosine, 481–483
 susceptibility testing and, 464–469
for torulomas or brain abscesses, 493–494
vaccine, 6
var. gatti and, 42
TH1-TH2 paradigm, 246–247
Thyroid gland, cryptococcal infection of, 437
Tissue
C. neoformans attachment to, 182–183
lysis of, 5
responses to infection, 271–283; see also
Inflammatory response
TNF-α, 249–251
Torulomas, therapy for, 493–494
Transformation systems and molecular
biology, 135–137
Trees; see also Eucalyptus trees
as source of var. gatti, 47–48
as source of var. neoformans, 49–50
Tremella, 34–37
Tremellaceae, 36–37
T-suppressor factor (TsF), 304
Tumor necrosis factor (TNF) and inflammatory response, 282
Ultrastructure, 12–15
Urease production as virulence factor, 166–167
Urokinase in animal pulmonary crypto-
coccosis, 287
UT-4p probe, 119–120
V-8 juice agar, 387
Vaccine, 6, 525–526
Vacuolar and lysosomal enzymes, 99–100
Varieties of C. neoformans; see specific varieties
Virulence factors, 145–176
adherence, 164–165
attenuation, 165–166
C. neoformans as model pathogen, 146–147
capsule as, 82–83, 147–151
definition of, 145–146
drug resistance, 165–166
ecology of, 58–59
extracellular enzyme production, 155–168
in vivo growth rate and responses, 163–164
intracellular responses, 166
mating locus, 158–160
melanin as, 151–155
metabolic targets and, 155–158
proteinase, 160
signal transduction, 160–163
site tropism, 164–165