PASTEUR
AND MODERN SCIENCE
PASTEUR
AND MODERN SCIENCE

RENÉ DUBOS

Edited by Thomas D. Brock

ASM PRESS
Washington, D.C.
Table of Contents

Figure List viii
Foreword xi
About the Author xxi

1 **From Schoolboy to Scientist** 1
 Birth and Background 2
 A Schoolboy Shows Promise 6
 Pasteur as Painter 7
 The Urge for Perfection 11

2 **A Student of Crystals** 13
 A Crystallographic Problem 14
 A Great Discovery 17
 The Confirmation: A New Field of Science 19

3 **Pasteur's First Steps Toward Biology** 21
 Madame Pasteur: Companion and Collaborator 24
 Separating Crystals with Fungi 25
 The Asymmetry of the Universe 26
 Asymmetry and the Development of Biochemistry 28

4 **From Crystals to Fermentation** 30
vi Contents

Living "Ferments" 31
The Nature of Fermentation 32
Sour Milk: The Beginning of Scientific Microbiology 34
Over One Hundred Years Later 36

5 A Crowded Life 38
Working Conditions in Paris 39
A Single Gigantic Problem 40

6 Spontaneous Generation 41
Grapes With and Without Yeasts 43
The Swan-neck Flask 44
The Germ Theory 48
The New Science of Bacteriology 50

7 Pasteurization 52
Wine, Vinegar, and Beer 54
Partial Sterilization or "Pasteurization" 56
New Understanding of Ancient Practices 60

8 Utilizing Microbes 67
The Indispensable Links 68
The Benefits of Precise Knowledge 69

9 Biochemistry and Life 73
Pasteur Persists 74
The Discovery of "Anaerobic" Life 76
Point of Synthesis: The Utilization of Oxygen 79
A Definition of Fermentation 80
The Chemical Mystery of Life 81

10 Victory Over Disease 84
Contagion and the Potato Blight 85
Lister Acknowledges a Debt 88
Diseased Silkworms: Another Triumph 91
Personal Tragedy: The Indomitable Will 94

11 The Germ Theory is Established 98
 Anthrax: A Final Proof 99
 Rabies: The Discovery of Filterable Viruses 102
 Extension of the Experimental Method 105

12 The Birth of Immunology 109
 The Origins of Vaccination 111
 From Vision to Practice 113
 The Dramatic Prophylaxis of Rabies 117
 The Dream of “Chemical Vaccines” 123
 From Folklore to Knowledge 125

13 Further Applications of the Germ Theory 127
 Biological Control and Warfare with Microbes 127
 Antibiotics and Aseptic Surgery 129
 A Neglected Lesson 131

14 Pasteur’s Dilemma—The Road Not Taken 132

15 A Dedicated Life 140
 Pasteur and Family 141
 Pasteur and Country 144
 A Higher Dedication 146
 Of His Time and Timeless 149

Chronology 152

Glossary 155

Further Reading 161

Index 163
Figure List

Map of France. 3
House in which Pasteur was born. 5
The house where Pasteur grew up. 6
A drawing by Pasteur when he was 19. 8
Pasteur as a student. 10
Jean-Baptiste Biot. 14
Chemical structures of tartaric acid. 15
Substances which are optically active. 16
(a) Left-handed tartaric acid crystal. (b) Right-handed tartaric acid crystal. 18
(a) Louis Pasteur in 1852. (b) Pasteur's wife. 22
(a) Pasteur's drawings of yeast cells. (b) The simple kind of microscope used by Pasteur. 33
(a) Various shapes of swan-necked flasks. (b) Swan-neck flask with neck removed. 45
(a) Upright swan-neck flask with no microbial growth. (b) Swan-neck flask with microbial growth. 46
(a) Pasteur's method for studying microbial content of air. (b) One of Pasteur's drawings of the microbial structures he observed in air. 49
Equipment in Pasteur's laboratory. 51
(a) Temporary laboratory in house in Arbois. (b) Laboratory in Arbois. 53
Pasteur's heating procedure for small numbers of bottles of wine. 56
Design for larger heating chamber for wine. 57
Procedure for heating small barrels of wine. 58
Device suggested by Pasteur to heat wine in barrels. 59
Nicholas Appert. 61
Pasteurization of milk. 62
Early scientific studies of the pasteurization process. 63
(a) Pasteurizing ovens used in Nathan Straus's New York dairy. (b) Van used by the Nathan Straus dairy to distribute pasteurized milk. (c) Nathan Straus's first public milk station. 64
Pasteur's drawing of the flask he used for studying yeast fermentation. 75
Pasteur's device for studying microorganisms under the microscope in the complete absence of air. 77
Drawing by M. J. Berkeley showing the manner by which the potato blight fungus grows on the potato leaf. 87
(a) Joseph Lister's antiseptic spray apparatus in use in changing a surgical dressing. (b) An operation in progress. 89
(a) House in Alès where Pasteur set up his laboratory. (b) Examining silkworm eggs for evidence of infection. (c) Pasteur's drawing of the silkworm larva. 92
Pasteur in 1968. 95
Pasteur's letter to the Emperor Napoleon III. 96
Robert Koch. 100
17th century drawing warning of the dangers of mad dogs. 104
(a) Trephination of a rabbit in Pasteur's laboratory. (b) Illustration of a trephine. 106
Figure List

(a) Edward Jenner. (b) Drawing by Jenner of pustule on arm of a person inoculated with cowpox vaccine. 110

The farm at Pouilly le Fort at which trials of the anthrax vaccine took place. 115

(a) Pasteur in his laboratory. (b) An original spinal cord preparation of Pasteur’s. 117

The rabies vaccination of Jean Baptiste Jupille. 120

(a) Pasteur amidst a group of children vaccinated for rabies. (b) A group of Russians who came to Paris to receive the Pasteur treatment. 121

Pasteur depicted as the savior of children. 122

(a) Pasteur dictating a paper to Madame Pasteur. (b) Madame Pasteur and daughter Marie-Louise Pasteur. (c) Pasteur surrounded by his family. (d) Pasteur with his grandchildren in 1891. 143

The Pasteur Institute. 148
Almost forty years ago, in 1950, René Dubos published a superb full-scale biography of Pasteur under the title *Louis Pasteur: Free Lance of Science*. Ten years later, in 1960, Dubos distilled the essence of that larger book into *Pasteur and Modern Science*, which was originally published by the Anchor Books division of Doubleday and Company as part of its now-defunct Science Study Series. This series of textbooks and biographies, conceived in the wake of the launching of the Sputnik space satellite by the Soviet Union in 1957, was prepared under the direction of the Physical Science Study Committee of Educational Services Incorporated for an intended audience of students and their teachers.

Like other books in the series, *Pasteur and Modern Science* was out of print for several years. After Dubos's death, Doubleday and Company released the rights to his widow, who transferred them in turn to Science Tech Publishers. Their new edition differs somewhat from the original edition: more than 40 illustrations and tables have been added to Dubos's originally unillustrated book, as well as a new biographical sketch of Dubos, a glossary of technical terms, a chronological outline of Pasteur's career, and a brief list of suggestions for further reading. Finally, there is a new chapter, "Pasteur's Dilemma: The Road Not Taken" (Chapter 14), based on an article published in 1974 by Dubos, that briefly develops a theme originally introduced at the end of Chapter 13 in the 1960 edition. These changes enhance the book's accessibility, appeal, and pedagogic value, which had already won it a wide audience in its original edition.
The book’s enduring appeal is a tribute both to its subject and to its author. Few scientists indeed have so captured the public imagination as Louis Pasteur, and fewer still have had such a dramatic effect on everyday life. Pasteur began his career in the relatively abstruse field of crystallography, but his close study of what he once called “the arid details of crystal form” soon led him to a major achievement of broad significance: the discovery of optical isomers—left- and right-handed crystals of the same chemical composition—in the tartrates, a group of organic compounds associated with wine making. With this discovery in 1848, Pasteur penetrated more deeply than anyone before him into the relationship between crystal form and chemical structure; at the age of 25, his great scientific career was already launched.

During the next decade Pasteur pursued his study of the relationship between optical activity and crystal form. One aspect of that research appealed to the grandiose streak in his nature. Noting the correlation between optical activity, asymmetric crystals, and life, Pasteur briefly and privately sought to produce asymmetric, optically active, “living” substances from symmetric, optically inactive, “dead” starting materials—in short, he tried to create “the immediate principles of life” artificially in the laboratory. In undertaking these bold experiments, Pasteur hoped to become the Galileo or Newton of biology. And though the experiments failed, Pasteur never entirely abandoned his belief in a “cosmic asymmetric force.” Late in life, he wished he could return to those exciting days when he was trying to solve nothing less than the mystery of the relationship between asymmetry and life.

By then, however, Pasteur had long been occupied with more immediately practical matters, beginning with fermentation. The products of fermentation and putrefaction are often optically active, and Pasteur soon linked these processes with life in the form of “germs” or microscopic organisms. No one did more than he to establish the germ theory of fermentation. He especially sought to demonstrate that each decomposition process
results from the biological activity of a specific microbe, so that, for example, the lactic “ferment” that produces sour milk differs from the microorganism (yeast) responsible for alcoholic fermentation. At the same time, Pasteur devoted close attention to industrial fermentations, proposing new methods for the manufacture of wine, vinegar, and eventually beer, and new techniques for preserving the desired products from spoilage or the “diseases” to which they were susceptible. These preventive measures, consisting basically of sterilization by heat and cold, were labeled “pasteurization” almost immediately. By 1900, they had been applied to a wide range of substances, including notably milk.

Pasteur’s excursion into the study of fermentation brought him into two related arenas of debate: spontaneous generation and disease theory. Fermentation, putrefaction, and disease had long been seen as analogous processes, and any theory of one was likely to be extended to the others. When Pasteur arrived on the scene in 1857, the prevailing theory of fermentation was chemical, though some observers had noted the association between microorganisms and fermentation or disease. Even those who accepted this association, however, did not always agree about the nature of the relationship between microbes and these processes of decomposition. Some maintained that the microbes were actually products rather than causes of fermentation and disease—living products that had arisen not by biological reproduction from parents like themselves but by “spontaneous generation” from dead, decomposing materials. By thus raising doubts about the origin of microorganisms and trivializing their causative role, the doctrine of spontaneous generation posed a challenge to the germ theory of fermentation and disease. Despite the advice of friends and mentors to avoid the issue, which had political and religious overtones, Pasteur mounted a vigorous and largely successful campaign against the doctrine of spontaneous generation, ignoring all the while his own early efforts to create life experimentally from dead, optically inactive materials.
Pasteur was quick to note the implications for disease theory of his work on fermentation and spontaneous generation, but he was uncharacteristically cautious about moving directly into the medical domain. The first halting step, a study of silkworm diseases, came in 1865 at the urging of a French government concerned about the economic consequences of a devastating silkworm blight. Even after 1870, by which point he had solved the silkworm problem to his satisfaction, Pasteur hesitated to undertake his long-projected investigation of infectious diseases, citing the need for qualified research assistants and his own lack of medical training. Finally, in 1876, Pasteur did enter directly into veterinary and medical research, beginning with anthrax, another economically significant disease that primarily afflicted sheep.

Once Pasteur did take up the study of infectious diseases, he enjoyed swift and spectacular success. His contributions to our understanding of the etiology of anthrax were less important that those of his great German rival, Robert Koch, but Pasteur and his collaborators quickly developed vaccines against chicken cholera, anthrax itself, and swine erysipelas. In 1885, their efforts were crowned by a successful application of rabies vaccine to humans. Long a French national hero, Pasteur now became an international legend and a leading symbol of the humanitarian benefits of scientific research. The vaccine against rabies produced a flood of donations from around the world, and the resulting Institut Pasteur, inaugurated in November 1888, has loomed large ever since in the history of science and medicine.

Such a career has naturally attracted a host of biographers. Two of the earliest biographies remain two of the best. Within a year of the master’s death, his collaborator Émile Duclaux published Pasteur: Histoire d’un Esprit, a brilliant scientific biography which, though it ostensibly ignores personal matters, also provides a revealing glimpse into Pasteur’s personality and
scientific *modus operandi*, including his “Olympian silence” about the direction of his research. In 1900 Pasteur’s son-in-law, René Vallery-Radot, published a detailed two-volume study, *La vie de Pasteur*, which remains a standard source despite its often worshipful tone. A third crucial source from within the Pastorian circle is almost unknown: in the late 1930s, a half century after Pasteur’s death, his nephew and sometime research assistant Adrien Loir published a series of anecdotal but highly illuminating essays in an obscure journal under the collective title *À l’Ombre de Pasteur* (“In the Shadow of Pasteur”). There have been several fine full-length biographies since, but the best of them is René Dubos’s 1950 *Free Lance of Science*, which is in part an elegant synthesis of the works by Duclaux, Vallery-Radot, and Loir.

In Dubos, Pasteur found a modern biographer almost ideally suited to the task. A distinguished French-born microbiologist of broad culture and wide sympathies, Dubos had a deep appreciation for the power and enduring significance of Pasteur’s scientific work. He was also well equipped to recognize its nuances and weaknesses. To the more personal dimensions of the biographer’s task, Dubos brought his keen insight into the wellsprings of human action, behavior, and personality. He appreciated the full range of factors, motives, and fears that needed to be kept in mind, including his subject’s health, which was, like Dubos’s own, sometimes precarious. Dubos also displayed a lively interest in the philosophical, religious, and political dimensions of Pasteur’s life and times. He had the advantage that he had grown up in French culture, but had then spent most of his adult life in the United States, at a tempering distance from the more institutionalized aspects of the Pastorian cult in France. Finally, Dubos brought to the task his hard-won gift of graceful expression, which allowed him to convey the excitement and significance of even the most technical aspects of Pasteur’s work. All of these impressive qualifications did not go for naught. In very large part, Dubos succeeded admirably in the role of Pasteur’s biographer.
Inevitably, Dubos emphasized parts of Pasteur’s thought and work that were in keeping with his own intellectual predilections. In particular, he drew attention wherever possible to what may be called the environmental strain in Pasteur’s microbiological thought. Dubos’s own environmentalism can be traced to his training in agricultural economics in France and then in soil microbiology at Rutgers University in New Jersey. It found expression in his attitudes toward health and disease, and especially in his opposition to the tendency to equate disease simply with the presence of a pathogenic microorganism. Furthermore, despite his own major contributions to the development of antibiotics, Dubos predicted that drug-resistant microbial strains would evolve, and he recognized the role of individual constitution, nutrition, host resistance, and adaptation in health and disease. That position could only have been reinforced by his personal experience with tuberculosis, which took the life of his first wife in 1942 and also afflicted his second wife, Jean. Together he and Jean published in 1952 the prescient book *The White Plague: Tuberculosis, Man, and Society*, which presented some of the arguments and basic evidence for the now widely accepted view that nutrition and environmental conditions are leading determinants of health. Dubos developed this theme further in his influential *Mirage of Health* (1959) and *Man Adapting* (1965). Eventually, Dubos extended his environmentalism into a vision of the delicate interconnectedness of all living things that brought him fame as a sometimes unwitting guru of the ecology movement of the late 1960s.

Long before Dubos became famous for it, his environmentalism was evident in his treatment of Pasteur. In some elusive way, it informed his entire quest as biographer. Consider, for example, his attempt to articulate the sense in which Pasteur was both “Of His Time and Timeless” (pp. 150–151). There Dubos insists that “all scientists, like artists, naturally reflect the characteristics of the civilization and of the times in which they arise.” And if the great ones, like Pasteur, do sometimes seem to escape their cultural conditions, they should not be
seen as “aberrations in the natural sequence of cultural events.” Rather, they constitute “peculiar mentalities through which emerge and become manifest social undercurrents that remain hidden to less perceptive minds.” Some of them, including Pasteur and other popular scientific heroes, “succeed in converting their visions—which are really signs from the social and cultural subconscious—into messages and products meaningful and of immediate value to their fellow humans.” By pointing to this link between peculiar individual “mentalities” and “signs from the social and cultural subconscious,” Dubos extended his environmentalism into the realm of human intellect, its products, and their cultural reception.

More concretely, Dubos gave special attention to Pasteur’s relatively neglected work on the silkworm diseases, pébrine and flacherie. Dubos was especially impressed that, in the case of flacherie, Pasteur resisted the temptation to embrace a simple microbial explanation and emphasized instead the constitutional and nutritional susceptibility of diseased worms. In the full-scale biography of 1950, Dubos wrote of Pasteur’s study of silkworm diseases that he did not know a “more beautiful example of scientific investigation,” and he describes it in this book (page 94) as “one of the most dramatic and spectacular feats of [Pasteur’s] scientific life.”

Similarly, Dubos reveled in Pasteur’s experimental demonstration of how temperature could affect an organism’s susceptibility to microbial disease. Pasteur induced anthrax in a hen, ordinarily resistant to the disease because of its high body temperature, simply by chilling it in an ice-water bath. For Dubos, this experiment was a spectacular vindication of the environmental approach to disease, and he did what he could to enlist Pasteur in the cause. Ultimately, however, even Dubos had to concede that he could not quite transform Pasteur into a “Dubosian” ecologist of disease. Perhaps, theoretically, Pasteur could have followed this path, as Dubos suggests. Perhaps it was in keeping with the internal logic of his research. Yet in the end, as Dubos admits in the very subtitle of the new Chapter
14 printed here, this ecological road was, for Pasteur, "the road not taken."

Apart from his environmentalism, Dubos gently intruded himself into the Pasteur story in another way. In the personal realm, too, Dubos's Pasteur is more Dubosian than he was in real life. True, they were alike in many respects. Both were French-born microbiologists, "pure" scientists, who turned to practical issues partly out of a desire to contribute to human welfare. Both had a romantic, almost poetic side to their nature. But Dubos and Pasteur were by no means identical in personality and character. In particular, the biographer was more idealistic, optimistic, and generous of spirit than his subject. Dubos managed to extend his generosity of spirit to Pasteur, even when he seemed puzzled by the latter's behavior. Dubos did not ignore, but he did tend to minimize the less appealing aspects of Pasteur's character and conduct, including his preoccupation with fame and money and his self-serving treatment of his rivals and sometimes even his collaborators. If Dubos was too shrewd to miss the clear evidence of such behavior, he was also too generous or perhaps too wise to make much of it.

There was, in fact, only one real defect in Dubos as Pasteur's biographer: his scholarship was occasionally careless, and his decision to omit footnotes makes it hard to identify the sources of his information and insights. However, much the same could be said of all the existing books on Pasteur. Today there is still no proper scholarly biography of him, but such a book will one day appear. When it does, it will benefit from the rich collection of surviving Pasteur manuscripts, the bulk of which are now available to scholars at the Bibliothèque Nationale in Paris. Research into those manuscripts, which include Pasteur's laboratory notebooks, has been underway for some time now, and some of the results are beginning to appear (see Further Reading). Yet even when all the results of this future scholarship reach the light of day, readers will still turn with profit to Dubos's biographical efforts. They will still want to read the concise
and accessible introduction to Pasteur found in *Pasteur and Modern Science*. Indeed, one can say of this book somewhat the same thing that Dubos says at the book’s end about the work of Pasteur: it retains its value despite inevitable defects in details and changes of perspective. In this centennial year of the Institut Pasteur in Paris, the reprinted edition is especially welcome. It should find a new and larger audience still.

Gerald L. Geison

Princeton, New Jersey
About the Author

René J. Dubos, the noted scientist and author, died in 1982 at the age of 81. Throughout his long and productive career, he wrote 33 books and over 300 laboratory research articles. Among his books are important technical works for the physician and scientist as well as numerous books for the general public. He was one of those rare individuals able to write not only for the scientist but for the student and layperson as well. He was awarded the Pulitzer Prize in 1969 for his book *So Human an Animal*.

Dr. Dubos was born in France and received his early education there. He earned his Ph.D. in 1927 from Rutgers University (New Jersey). Except for a two-year period as a professor at Harvard University, he spent all of his long and productive career at the Rockefeller Institute for Medical Research in New York City. Although his early training was in agriculture and soil microbiology, he made major contributions to antibiotics research and to the understanding of tuberculosis and other infectious diseases. He was also a pioneer in the important and burgeoning field of environmental medicine. His prominent role in studying social and environmental effects on health
brought him very early into the mainstream of the environmental movement in the late 1960s. His highly publicized views that everything in life plays an interconnected part made him a dominant spokesperson for those disturbed about the effects of rapidly expanding technological civilization on human life. His eloquent skills in speaking and writing, coupled with his stature as a scientist, enabled him to bring the issues to the attention of an extensive public audience. His well-deserved fame in his final years was a result of his passionate involvement in serving as the "conscience of the environment." His human-centered views, considerate of both liberals and conservatives in the environmental movement, continue to influence public policy.

His French upbringing and his background as an agricultural and medical scholar make René Dubos an ideal person to explain Louis Pasteur and his work to a broad audience, and his skills are evident in Pasteur and Modern Science. In addition to this book, his other popular books include The White Plague: Tuberculosis, Man, and Society (with Jean Dubos), Mirage of Health: Utopias, Progress, and Biological Change, The Dreams of Reason: Science and Utopias, Man Adapting, So Human an Animal, A God Within, The Wooing of Earth, and Celebrations of Life.

René Dubos achieved worldwide fame as a microbiologist, experimental pathologist, author, lecturer, and environmentalist. Any one of these careers would have sufficed for most people, but he managed to combine them all. He was endowed with many intellectual talents, great sensitivity, originality, and rigorous self-discipline. His contagious enthusiasm for new ventures and his endless curiosity and wonder about life are especially well revealed in Pasteur and Modern Science, a book he originally wrote for students but which can now have a much wider audience.
Académie Française, see French Academy of Letters
Academy of Medicine, 130, 154
Acetic acid, 32-33, 54, 61, 75, 78
Acetone, 70
Adaptation, 135
Agriculture, 71
Air microorganisms, 49
Alcohol:
 fermentation, 31-37, 43-44, 52, 73-75, 79-80
 oxidation, 75-76, 78
Alès, France, 3, 92-94
Amino acids, 70
Ampère, 4
Amyl alcohol, 32
Anaerobic life, 76-79
Anderson, J.F., 107
Antibiotics, 37, 52-54, 152
Antiseptics, 37, 70, 129-131
Aseptic surgery, 88-90
Appert, Nicholas, 61, 63
Arbois, France, 3, 6, 52-54, 152
Asparte, 70
Aspergillus niger, 81
Asymmetry:
 and biochemistry, 28-29
 molecular, 26-29
 of universe, 26-29
Attenuation, 112, 114, 124
Autoclave, 51
Bacillus anthracis, 103
Bacteria, 52, 76
 anaerobic, 76-79
 inhibitors of growth, 61
Bacterial pneumonia, 124
Bacterial polysaccharide, 124
Bacterial spore, 44-47, 99
Bacteriology, 50-51
Bacteriophage, 107
Beer, 54-55, 58, 60, 69, 78
Bee juice, 31-32
Beijerinck, M.W., 107
Berkeley, M.J., 87
Bernard, Claude, 43
Berzelius, Jons Jakob, 33
Bigo, M., 31, 36
Biochemical unity of life, 82-83
Biochemistry, 28-29, 73-83
Biological control, 127-129
Biological specificity, 29, 82
Biological warfare, 127-129
Biology, 21-29
Biot, Jean Baptiste, 14-15, 19-20
Biotechnology, 69-71
Blight:
 potato, 85-88, 98
Bonaparte, Napoleon, 7
Bordet, Jules, 103, 148
Bordetella pertussis, 103
Botulism, 103
Bovet, Daniel, 148
Brewing industry, 71
Budding: yeast, 33
Butanol, 70
Butyric acid, 76, 78, 80

Canning, 61, 63
Chamberland, 114
Chappius, Charles, 8, 13, 26
Chateau Villeneure-l’Étang (Paris), 154
Cheese making, 69, 138
Chemicals industry, 71
Chemical vaccine, 123–125
Cholera, 99–100, 103, 124
Chronology of Pasteur’s life, 152–154
Citric acid, 70
Claviceps purpurea, 70
Clay: ripening, 69
Clostridium botulinum, 103
Clostridium perfringens, 103
Clostridium tetani, 103
Cocoa beans, 69
Colds, 85
Contagious disease, 85–88
Corynebacterium diphtheriae, 103
Cowpox, 110–112, 125
Crystals, 11, 13–20, 25–26, 132–133, 150
Culture: pure, 100
Culture flask, 51
Culture medium, 104

De Blowitz, 114
Decomposition, 48, 68
Delafosse, Gabriel, 14
Desiccation, 60
d’Herelle, F., 107
Diarrhea, 103
Diphtheria, 103, 124
Disease, 84–97, see also Germ theory; specific diseases resistance, 133, 135–136 transmission of, 85
Dôle, France, 2–3, 5, 152
Duclaux, Emile, 92–93, 136, 138
Dumas, Jean Baptiste, 91, 133
Dysentery, 103
Eberth, C.J., 103
École des Beaux Arts (Paris), 133–134
École Normale Supérieure (Paris), 6–7, 10–19, 38–40, 73, 143, 152–153
Ecology, 139
Edelfelt, Albert, 9
Enders, J.H., 107
Environmental conditions: and disease, 133–138
Enzymes, 70
Epidemic, 85, 87
Ergot, 70
Escherich, T., 103
Escherichia coli, 103
Evolutionary adaptation, 135
Exhaustion theory, 137
Experimental method, 12
Faraday, Michael, 4
Foot-and-mouth disease, 107
Fowl cholera, 109, 112–113, 123
Fraenkel, A., 103
France:
 map, 3
 Pasteur’s devotion to, 144–145
Franco-Prussian War (1870–1871), 96, 144, 154
French Academy of Letters, 12, 140, 154
French Academy of Sciences, 28, 153
French Orleans process, 74–75
Frosch, P., 107
Fungi:
 separating crystals with, 25–26
Gaertner, A.A.H., 103
Gas gangrene, 103
Gengou, O., 103
Germfree animal, 138
Germ theory, 37, 48–51, 84–97
 establishment, 98–108
 hostility to, 73–74
Gernez, Désiré, 95
Gluconic acid, 70
Glucose, 34–35
Glutamic acid, 70
Glycerol, 70
Goldberger, J., 107
Golden age of microbiology, 102–103
Gonorrhea, 103
Goodpasture, E.W., 107
Grape juice, 43–44

Health:
 environment and, 133–135
Heat:
 as preserving agent, see Pasteurization
Heredity, 83, 136
High-fructose syrup, 71
Hoffman, E., 103
Immunity, 113

Immunology, 109–126
Incubator, 51
Infectious disease, 29, 36–37
Influenza, 124
Ivanovski, D.I., 107
Jacob, François, 148
Jefferson, Thomas, 112
Jenner, Edward, 107, 110–112, 125
Johnson, C.D., 107
Jupille, Jean Baptiste, 119–120
Kausche, G.A., 107
Kitasato, S., 103
Klebs, T.A.E., 103
Koch, Robert, 98–100, 102–103
Koch’s Postulates, 100
Laboratory facilities, 39, 51–54, 94, 96, 116
Lactic-acid fermentation, 32–37, 61, 70, 73–74, 78–81, 129
Laveran, Charles, 148
Lavoisier, Antoine, 151
Legion of Honor medal, 153
Lewis, P.A., 107
Liebig, Justus von, 33, 73
Life:
 anaerobic, 76–79
 and biochemistry, 73–83
Lille, France, 3, 52, 153
Lister, Joseph, 88–90
Loeffler, F., 107
Louse:
 plant, 128
Lwoff, André, 148
Lysine, 70
Measles, 107, 124
Meat:
 preservation, 60–61
Medical microbiology, 98, 100
Medium, 74, 81, 104
Meister, Joseph, 119, 154
Mémoire sur la fermentation appelée lactique, 35–37, 134
Meningitis, 103, 124
Mental state, 136
Metchnikoff, Elie, 148
Microbiology, 34–35
 golden age of, 102–103
Microorganisms, 29, 48
 in air, 49
 in human disease, 98
 nutrition, 81–82
 origin, 41–51
 in technological processes, 69–72
 uses, 67–72
 in wound suppuration, 88–90
Microscope, 33, 77
Milk:
 pasteurization, 62–64
 sour, 34–35
Minerals, 71, 81
Ministry of Agriculture, 91
Mitscherlich, Eilhardt, 15
Molecular asymmetry, 26–29
Monod, Jacques, 148
Mother of vinegar, 75–76
Mumps, 107, 124
Muscle, 81
Mycobacterium tuberculosis, 103
Mycoderma aceti, 54
Myxomatosis, 128

Napoleon I, 2, 7
Napoleon III, 96, 138
Negri, A., 107
Negri body, 107
Neisser, A.L.S., 103
Neisseria gonorrhoeae, 103
Neisseria meningitidis, 103
Nerve tissue, 105–107
Nicholaier, A., 103
Nicolle, Charles, 148
Nobel Prize, 148
Nutrition, 136–137
 microbial, 81–82

Oersted, Hans Christian, 4
Ogston, A., 103
Oil industry, 71
Onion juice, 35, 129

Optical activity, 14–16, 18–20,
 26–29, 82
Origin of life, 28, 41–51
Oxygen, 79–80, 134

Painting, 7–11
Parasite, 127–128
Paratartaric acid, 16–20, 25–26
Paratyphoid fever, 103, 124
Paris, France, 3, 39–40
Pasteur, Camille, 94, 153
Pasteur, Cécile, 94, 153
Pasteur, Jean Baptiste, 153
Pasteur, Jeanne, 152
Pasteur, Louis:
 birth, 2–6
 childhood, 6–7
 chronology of life, 152–154
 dedication to science, 146–149
 doctor’s degree, 13
 at Ecole Normale Superieure, 38–40
 education, 6–7, 10–11
 family, 2, 6, 94–95, 141–144
 France and, 144–145
 health, 95, 124, 140
 inner conflicts, 149–151
 marriage, 24
 as painter, 7–11
 patents, 60
 personality, 140
 seventieth birthday, 147
Pasteur, Marie Laurent, 21–25,
 94, 141, 143, 152
Pasteur, Marie Louise, 94–95,
 143, 153–154
Pasteur effect, 1

Pasteurella multocida, 128
Pasteur Institute (Paris), 40, 47,
 119, 147–148, 154
Pasteurization, 1, 52–66
Patents, 60
Pathology:
 experimental, 91–92
Pébrine, 94, 98, 136
Penicillin, 70, 129
Pertussis, 103, 124
Pfankuch, E., 107

On the Antiseptic Principle in the
Practice of Surgery, 90
Pharmaceutical industry, 71
Pharmacy Society of Paris, 153
Phenol, 88–89
Phenylalanine, 70
Phylloxera, 128
Physiological well-being, 135
Phytophthora infestans, 86–88
Pickling, 61
Plague, 85, 103, 124
Plant louse, 128
Pneumonia, 103, 124
Polarimeter, 16, 19–20
Polio, 107, 124–125
Polysaccharide: bacterial, 124
Pont-Gisquet, France, 143
Potato blight, 85–88, 98
Pouilly le Fort, France, 3, 114–115, 154
Public health, 11
Pure culture, 100
Pure science, 31, 59
Putrefaction, 48, 67
Quarantine, 85, 88
Quartz, 14–15
Rabbit:
 control, 128–129
Rabies, 102, 105–107, 113, 117–124
Racemic acid, 16
Radiation, 66
Raulin, Jules, 81
Reed, Walter, 107
Remlinger, P., 107
Renan, Ernest, 12, 140
Respiration, 11
Riboflavin, 70
Riffat-Bey, 107
Robbins, F.C., 107
Rossignol, 114
Rou, P., 107
Roux, Émile, 24, 105, 114, 148
Royal Society of London, 153–154
Rubella, 124
Rumford Medal, 153
Ruska, H., 107
Sabin, A., 107
Sabine vaccine, 125
Saint-Aubin, France, 143
Salk, J., 107
Salk vaccine, 125
Salmonella enteritidis, 103
Salmonella paratyphi, 103
Salmonella typhi, 103
Sanitation, 85, 130–131
Sauerkraut, 61
Schaffer, F.L., 107
Schaudiann, F.R., 103
Schottmüller, H., 103
Schwerdt, C.E., 107
Science:
 applied, 30–31, 59, 150
 pure, 31, 59
Sewage, 68, 138
Shiga, K., 103
Shigella dysenteriae, 103
Silkworms, 91–98, 133, 135–136
Smallpox, 107, 111–112, 119, 124–125
Soil, 68, 138
Sorbonne University (Paris), 47–50, 147, 153
Souring, 54
Sour milk, 34–35
Soxhlet, F., 62
Specificity, 137
Spices, 61
Spinal cord preparation, 117–118
Spontaneous generation, 39–51, 83
Spore:
 bacterial, 44–47, 99
 heat-resistant, 44–47
Stanley, W.M., 107
Staphylococcus, 103
Steamer, 51
Sterilization, 51
 partial, see Pasteurization
Strasbourg, France, 3
Straus, Nathan, 64
Streptococcus, 103
Streptococcus pneumoniae, 103
Studies on beer, its diseases, and their causes, 55

Surgery:
- antiseptic, 88–90
- aseptic, 129–131

Swan-neck flask, 44–48
Swine erysipelas, 113, 123
Synthetic medium, 74
Syphilis, 103

Tartaric acid, 15–20, 25, 82
Temperature:
- body, 136–137
Terrain, 134
Tetanus, 103, 124
Thuillier, 114
Tobacco mosaic virus, 107
Toxoid, 124
Trephination, 104–106
Treponema pallidum, 103
Tryptophan, 70
Tuberculosis, 85, 99–100, 103, 124, 136
Tumor virus, 107
Twort, F.W., 107
Typhoid fever, 103, 124
Typhus fever, 124

Unity of life:
- biochemical, 82–83

Universe:
- asymmetry, 26–29

University of Lille (France), 30
University of Pisa (Italy), 144
University of Strasbourg (France), 21–29

Vaccination, 1, 11, 109–111, 113–123
- origins, 111–113

Vaccine, 107
- chemical, 123–125
Vallery-Radot, Camile, 143
Vallery-Radot, Louis Pasteur, 143, 149–150, 154
Vallery-Radot, Marie Louise, see Pasteur, Marie Louise
Vallery-Radot, René, 143, 154
van Ermengen, E.M.P., 103
Vibrio cholerae, 103
Vinegar, 32, 54–55, 58, 60–61, 69, 74–76
Virchow, Rudolf, 42
Virulence principle, 101
Viruses, 102–107, 124
Vital phenomena, 83
Vitamins, 70, 82

Warfare:
- biological, 127–129
Waterhouse, Benjamin, 112
Weischselbaum, Å., 103
Welch, W.H., 103
Weller, T.H., 107
Whooping cough, 103, 124
Wine, 54–55, 60, 69
- pasteurization, 56–60
- souring, 55–54
Witbread brewery, 55
Wöhler, Friedrich, 73
Wound suppuration, 88–90, 103

Yeast, 32–36, 43–44, 52, 54, 73, 134
- growth medium, 74
- large-scale production, 70–72
- oxygen utilization, 79–80
Yellow fever, 107, 123–124
Yersin, A.J.E., 103
Yersinia pestis, 103