Two-Component Signal Transduction
Two-Component Signal Transduction

edited by
James A. Hoch
DIVISION OF CELLULAR BIOLOGY
DEPARTMENT OF MOLECULAR AND EXPERIMENTAL MEDICINE
THE SCRIPPS RESEARCH INSTITUTE, LA JOLLA, CALIFORNIA

and

Thomas J. Silhavy
DEPARTMENT OF MOLECULAR BIOLOGY
PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY
Contents

Contributors ix
Preface xv

1. Historical Perspective
Boris Magasanik 1

I GENERAL PRINCIPLES 7

2. Genetic Approaches for Signaling Pathways and Proteins
John S. Parkinson 9

3. Two-Component Signal Transduction Systems:
Structure-Function Relationships and
Mechanisms of Catalysis
Jeffry B. Stock, Michael G. Surette, Mikhail Levit, and Peter Park 25

4. Structural and Functional Conservation in Response Regulators
Karl Volz 53

II PARADIGMS 65

5. Control of Nitrogen Assimilation by the NR$_c$-NR$_d$
Two-Component System of Enteric Bacteria
Alexander J. Ninfa, Mariette R. Atkinson, Emmanuel S. Kamberov,
Junli Feng, and Elizabeth G. Ninfa 67

6. Chemotactic Signal Transduction in Escherichia coli and
Salmonella typhimurium
Charles D. Amsler and Philip Matsumura 89
7. Porin Regulon of *Escherichia coli*
 Leslie A. Pratt and Thomas J. Silhavy
 105

8. Control of Cellular Development in Sporulating Bacteria
 by the Phosphorelay Two-Component
 Signal Transduction System
 James A. Hoch
 129

III RESPONSE REGULATOR FUNCTIONS 145

9. Mechanism of Transcriptional Activation by NtrC
 Susan C. Porter, Anne K. North, and Sydney Kustu
 147

10. Transcription Regulation by the *Bacillus subtilis*
 Response Regulator Spo0A
 George B. Spiegelman, Terry H. Bird, and Valerie Voon
 159

11. Flagellar Switch
 Robert M. Macnab
 181

IV CELLULAR PHYSIOLOGY 201

12. Signal Transduction and Cross Regulation in the
 Escherichia coli Phosphate Regulon by PhoR, CreC, and
 Acetyl Phosphate
 Barry L. Wanner
 203

13. Signal Transduction in the Arc System for Control of
 Operons Encoding Aerobic Respiratory Enzymes
 Shiro Iuchi and E. C. C. Lin
 223

14. Dual Sensors and Dual Response Regulators Interact to
 Control Nitrate- and Nitrite-Responsive Gene Expression in
 Escherichia coli
 Valley Stewart and Ross S. Rabin
 233

15. Regulation of Capsule Synthesis: Modification of the
 Two-Component Paradigm by an Accessory Unstable Regulator
 Susan Gottesman
 253

16. Expression of the Uhp Sugar-Phosphate Transport
 System of *Escherichia coli*
 Robert J. Kadner
 263
17. Symbiotic Expression of *Rhizobium meliloti* Nitrogen Fixation Genes Is Regulated by Oxygen
Peter G. Agron and Donald R. Helinski
275

18. Complex Phosphate Regulation by Sequential Switches in *Bacillus subtilis*
F. Marion Hulett
289

V PATHOGENESIS 303

19. Two-Component Signal Transduction and Its Role in the Expression of Bacterial Virulence Factors
Michelle Dziejman and John J. Mekalanos
305

20. Regulation of *Salmonella* Virulence by Two-Component Regulatory Systems
Eduardo A. Groisman and Fred Heffron
319

21. *Bordetella pertussis* BvgAS Virulence Control System
M. Andrew Uhl and Jeff F. Miller
333

22. Three-Component Regulatory System Controlling Virulence in *Vibrio cholerae*
Victor J. DiRita
351

23. Ti Plasmid and Chromosomally Encoded Two-Component Systems Important in Plant Cell Transformation by *Agrobacterium Species*
Joe Don Heath, Trevor C. Charles, and Eugene W. Nester
367

24. Regulation of Glycopeptide Resistance Genes of Enterococcal Transposon Tn1546 by the VanR-VanS Two-Component Regulatory System
Michel Arthur, Florence Depardieu, Theodore Holman, Zhen Wu, Gerard Wright, Christopher T. Walsh, and Patrice Courvalin
387

25. Tetracycline Regulation of Conjugal Transfer Genes
Abigail A. Salyers, Nadja B. Shoemaker, and Ann M. Stevens
393

VI CELLULAR COMMUNICATION AND DEVELOPMENT 401

26. Switches and Signal Transduction Networks in the *Caulobacter crescentus* Cell Cycle
Todd Lane, Andrew Benson, Gregory B. Hecht, George J. Burton, and Austin Newton
403
27. The frz Signal Transduction System Controls Multicellular Behavior in *Myxococcus xanthus*
 Wenyuan Shi and David R. Zusman
 419

28. Intercellular Communication in Marine *Vibrio* Species:
 Density-Dependent Regulation of the Expression of Bioluminescence
 Bonnie L. Bassler and Michael R. Silverman
 431

 Tarek Msadek, Frank Kunst, and Georges Rapoport
 447

Index 473
Contributors

Peter G. Agron
Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634
Present address: Division of Infectious Disease, University of California, San Francisco, San Francisco, California 94143-0654

Charles D. Amsler
Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170

Michel Arthur
Unité des Agents Antibactériens, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France

Mariette R. Atkinson
Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606

Bonnie L. Bassler
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Andrew Benson
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Terry H. Bird
Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada V6T 1Z3

George J. Burton
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Trevor C. Charles
Department of Natural Resource Sciences, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
CONTRIBUTORS

Patrice Courvalin
Unité des Agents Antibactériens, Centre National de la Recherche Scientifique,
Institut Pasteur, Paris, France

Florence Depardieu
Unité des Agents Antibactériens, Centre National de la Recherche Scientifique,
Institut Pasteur, Paris, France

Victor J. DiRita
Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology,
University of Michigan Medical School, Ann Arbor, Michigan 48109

Michelle Dziejman
Department of Microbiology and Molecular Genetics, Harvard Medical School,
Boston, Massachusetts 02115-5701

Junli Feng
Department of Biological Chemistry, University of Michigan Medical School,
Ann Arbor, Michigan 48109-0606

Susan Gottesman
Laboratory of Molecular Biology, National Cancer Institute,
Bethesda, Maryland 20892-4255

Eduardo A. Groisman
Department of Molecular Microbiology, Washington University School of Medicine,
St. Louis, Missouri 63110

Joe Don Heath
Department of Microbiology, University of Washington, Seattle, Washington 98195

Gregory B. Hecht
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Fred Heffron
Department of Microbiology and Immunology, Oregon Health Sciences University,
Portland, Oregon 97201

Donald R. Helinski
Department of Biology and Center for Molecular Genetics, University of California,
San Diego, La Jolla, California 92093-0634

James A. Hoch
Division of Cellular Biology, Department of Molecular and Experimental Medicine,
The Scripps Research Institute, La Jolla, California 92037

Theodore Holman
Department of Biological Chemistry and Molecular Pharmacology,
Harvard Medical School, Boston, Massachusetts 02115

F. Marion Hulett
Laboratory for Molecular Biology, Department of Biological Sciences,
University of Illinois at Chicago, Chicago, Illinois 60607

Shiro Iuchi
Department of Microbiology and Molecular Genetics, Harvard Medical School,
Boston, Massachusetts 02115
Robert J. Kadner
Department of Microbiology, School of Medicine, University of Virginia,
Charlottesville, Virginia 22908

Emmanuel S. Kamberov
Department of Biological Chemistry, University of Michigan Medical School,
Ann Arbor, Michigan 48109-0606

Frank Kunst
Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique,
Département des Biotechnologies, Institut Pasteur, Paris, France

Sydney Kustu
Departments of Plant Biology and Molecular and Cell Biology, University of California,
Berkeley, Berkeley, California 94270

Todd Lane
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Mikhail Levit
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

E. C. C. Lin
Department of Microbiology and Molecular Genetics, Harvard Medical School,
Boston, Massachusetts 02115

Robert M. Macnab
Department of Molecular Biophysics and Biochemistry, Yale University,
New Haven, Connecticut 06520-8114

Boris Magasanik
Department of Biology, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

Philip Matsumura
Department of Microbiology and Immunology (M/C 790),
University of Illinois at Chicago, Chicago, Illinois 60612-7344

John J. Mekalanos
Department of Microbiology and Molecular Genetics, Harvard Medical School,
Boston, Massachusetts 02115-5701

Jeff F. Miller
Molecular Biology Institute, University of California, Los Angeles,
Los Angeles, California 90024

Tarek Msadek
Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique,
Département des Biotechnologies, Institut Pasteur, Paris, France
Present address: Division of Cellular Biology, The Scripps Research Institute,
La Jolla, California 92037

Eugene W. Nester
Department of Microbiology, University of Washington, Seattle, Washington 98195

Austin Newton
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
Alexander J. Ninfa
Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606

Elizabeth G. Ninfa
Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606

Anne K. North
Departments of Plant Biology and Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94270

Peter Park
Departments of Molecular Biology and Chemistry, Princeton University, Princeton, New Jersey 08544

John S. Parkinson
Biology Department, University of Utah, Salt Lake City, Utah 84112

Susan C. Porter
Departments of Plant Biology and Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94270

Leslie A. Pratt
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Ross S. Rabin
NeXagen, Inc., Boulder, Colorado 80301

Georges Rapoport
Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique, Département des Biotechnologies, Institut Pasteur, Paris, France

Abigail A. Salyers
Department of Microbiology, University of Illinois, Urbana, Illinois 61801

Wenyuan Shi
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720

Nadja B. Shoemaker
Department of Microbiology, University of Illinois, Urbana, Illinois 61801

Thomas J. Silhavy
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Michael R. Silverman
The Agouron Institute, La Jolla, California 92037

George B. Spiegelman
Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada V6T 1Z3

Ann M. Stevens
Department of Microbiology, University of Iowa, Iowa City, Iowa 52242

Valley Stewart
Sections of Microbiology and Genetics and Development, Cornell University, Ithaca, New York 14853-8101
Jeffry B. Stock
Departments of Molecular Biology and Chemistry, Princeton University, Princeton, New Jersey 08544

Michael G. Surette
Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

M. Andrew Uhl
Department of Microbiology and Immunology, School of Medicine, University of California, Los Angeles, Los Angeles, California 90024

Karl Volz
Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612

Valerie Voon
Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada V6T 1Z3

Christopher T. Walsh
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115

Barry L. Wanner
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907

Gerard Wright
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115

Zhen Wu
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115

David R. Zusman
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720
Preface

Cells must sense and respond to their environment, a process that requires signal transduction across biological membranes. A major mechanism of signal transduction, widespread in bacteria, is the so-called two-component system that has adopted phosphorylation as a means of information transfer. Two-component systems are central to much of the cellular physiology that results from alterations in the environment. Starvation for phosphate or nitrogen, responses to oxygen limitation, and adaptation to new carbon and nitrogen sources are but a few of the environmental insults that cells overcome with modified cellular physiology mediated by two-component systems. Pathogenesis requires two-component modification of cellular physiology as well. There is no doubt that cells sense when they need to express virulence factors, but in most cases what is sensed remains obscure. It is unlikely that any pathogen can survive the varied and changing environments of the human body without involving at least one two-component pathway.

We are only now beginning to understand the bacterial cell cycle and the role of cell-cell communication in population dynamics and development. Yet we can cite examples in which two-component switches process signals required to trigger these events. Because two-component systems form networks that involve more than one system and show dependencies and hierarchies, they are easily adapted for very complex processes. In fact, two-component systems are so widespread, and so important, that without them bacteria would be rendered the equivalent of deaf, dumb, and blind.

In this book we have tried to highlight the global nature of two-component systems and summarize the enormous progress that has been made in less than a decade in our understanding of how these systems work. The book is divided into several sections, each of which deals with a particular aspect of two-component regulation. A few two-component systems have been studied in depth by several investigative groups, and these systems form a reservoir of information about how these systems function. Although some of the systems are complex, the two-component paradigm forms the basis for a common information flow.
Scientists studying microbial physiology, pathogenesis, motility and chemotaxis development, or a variety of other behavioral characteristics of bacteria need to be aware of and understand two-component signal transduction. The functions of two-component systems in eukaryotes such as yeasts and plants are now being appreciated, and astute investigators of these systems will take advantage of the vast knowledge base in bacteria. This book was therefore designed to appeal to the wide variety of disciplines in which signal transduction is a vital component and knowledge of its mechanism is essential.

For those of us who have witnessed the virtual explosion of information on two-component systems in the ten years since we became aware of their existence, the amount of knowledge accumulated seems enormous. Despite this progress, many fundamental issues regarding two-component systems still remain unresolved. We hope that this book will help focus attention on these critical problems and stimulate research to solve them.

The editors would like to thank Susan DiRenzo for service above and beyond the call in keeping the chapters, as well as the authors and editors, organized. We are also grateful to the ASM Press editorial staff—especially Ellie Tupper, Pamela Wilks, and Patrick Fitzgerald—for their continuing help and encouragement.

JAMES A. HOCH
THOMAS J. SILHAVY
The page numbers for entries occurring in figures are followed by an f; those for entries occurring in tables, by a t.
Agrobacterium
 Ti plasmid of, 367–381
 virulence factors of, 307
Agrobacterium radiobacter, 367, 373
Agrobacterium rhizogenes, 367
Agrobacterium tumefaciens
 Ti plasmid of, 308, 367, 434
 virulence factors of, 306t, 307t, 308, 438
Agrobacterium vitis, 367
Ail protein, 325, 326
Alcaligenes eutrophus, 237
AlgRl protein, 307
AlgR2 protein, 307
Alkaline phosphatase genes, 290
 of divf, 405–406
 of divK, 405–406
 of pleC, 405–406
 of Spo0A, 161f
 of transmitters and receivers, 19–21
 of VanR/VanS, 389
amyE gene, 450
Anabaena, 403
Antimicrobials, 62
APase, 289, 290, 293
ApR1 protein, 307
ArcA protein, 35, 228
 bacterial virulence factors and, 320, 321
 Lux compared with, 439, 441
 phosphorylation by ArcB-P, 226
 phosphotransfer to, 346
 primary structures of, 225
ArcA-P protein, 227, 228
arcB gene, 223, 227–228
ArcB protein, 34–35, 227, 229f
 autophosphorylation of, 225–226
 bacterial virulence factors and, 320, 321, 338, 339, 342
 Bvg compared with, 339
 compounds controlling activity of, 226
 Lux compared with, 438, 439, 441
 phosphorylation of ArcA and, 226
 phosphotransfer from, 346
 primary structures of, 225
ArcB-P protein, 226, 227
Association–dissociation mechanism, 209–210
ATase, see Adenylyltransferase
ATP, see Adenosine triphosphate
att gene, 369
ats gene, 313
aup gene, 71
Autophosphatase, 40–41
Autophosphorylation, see also Phosphorylation
 of ArcB, 225–226
 of BvgS, 338–342
 of CheA, 31–33, 110
 of EmfZ, 33–34, 109, 110–111
 of FixL*, 279–280
 of FrzE, 426
 of histidine protein kinases, 31–34
 of nitrogen regulator II, 32, 33, 75–76, 80
Azorhizobium caulinodans, 284, 285
Bacillus, 135, 403
Bacillus anthracis, 307t, 313
Bacillus brevis, 449
Bacillus subtilis, 39, 206, 271, 406, 447–462
 competence gene expression in, 454–457
 degradative enzyme synthesis in, 449–454
 Pho regulon of, 289–300
 phosphatase regulation and, 44
 phosphorelay and, 137
 phosphorylation and, 30
 transcriptional regulation in, 159–176
Bacterial alkaline phosphatase (Bap), 203, 211, 212–213
Bacterial virulence factors, 305–314, 434, 438
 Clostridium perfringens, 306t, 311–312
 E. coli, 288, 306t
 group A streptococci, 312–313
 Klebsiella pneumoniae, 306t, 311, 312
 Neisseria gonorrhoeae, 306t, 310–311, 356
 Salmonella, 307, 308, 311, 319–330
 Shigella flexneri, 306, 307t, 308–309, 328
 Staphylococcus aureus, 309–310, 312
Bacteroides fragilis, 306t
Bacteroides transposons, 393–399
Bap, see Bacterial alkaline phosphatase
BarA protein, 342
Bioluminescence, 431–443
 autoinduction of, 432
 quorum sensing in, 432–434, 442
Bordetella, 307, 363
 avium, 334
 bronchiseptica, 334, 344–345
 parapertussis, 334
bpr gene, 450
Bradyrhizobium japonicum, 279, 285
β-Bromoacetosyringone, 372
BrpA protein, 449
Brute-force screens, 9, 13
Bryophyllum diagremontiana, 380
bug gene, 334
 repression by, 344–345
transcriptional regulation by operon, 335
BvgA protein, 307, 333–346
 activation of virulence factors by, 343–344
 domain organization of, 334–335
 mutational analysis of, 337–338
 phosphorylation of, 342
 phosphotransfer to, 342, 346
BvgS protein, 307, 333–346, 358
 autophosphorylation of, 338–342
 domain organization of, 334–335
 intramolecular complementation of mutations, 337
 requirements for domains in vivo, 336–337
 signal-insensitive mutations in, 336

Bypass suppression, 22
C ring, 185, 186
cadA gene, 354
CadC protein, 354, 362, 363
Calcium
 bacterial virulence factors and, 306, 308
 flagellar switch and, 191–192
cAMP, see Cyclic adenosine-3',5'-cyclic monophosphate
Capsule synthesis, see Colanic acid capsule synthesis
Carbamyl phosphate, 73
Carbon sufficiency, 83–84
cat gene, 389–390
Catabolite control
 by acetyl phosphate, 212–213
 by CreC, 210–212
Catabolite gene activator protein (CAP), 175
Caulobacter crescentus
 cell cycle of, 403–415
 response regulator of, 39
ΦChK receptors, 403, 407
Cecropins, 324
Cell division cycle checkpoints, 404–409
Cell separation (CS), 404
cheA gene, 2, 94, 95
CheA protein, 3, 270, 448
 autophosphorylation of, 31–33, 110
 Bvg compared with, 334, 339
 catabolite control by CreC and, 212
 chemotaxis and, 93, 94–95, 96–97, 98
 CheY and, 39, 389
 crosstalk and, 214
 dimerization and, 29–30, 31–32
 failure to function as phosphatase, 44
 flagellar switch and, 189, 190
 Frz compared with, 421, 424–426
 phosphorylation of, 29–30, 38
 phosphotransfer and, 43–44
CheA\textsubscript{L} protein, 94–95, 96, 97
CheA\textsubscript{S} protein, 30, 94–95, 96, 97
CheB protein, 34, 39, 41, 448
 chemotaxis and, 93, 94, 96–97, 98
 Frz compared with, 421
 phosphorylation of, 38, 42, 283
phosphotransfer and, 43
CheB-P protein, 96, 97
Chemotaxis, 13, 89–98, 454
 flagellar regulon motility and expression in, 89–91
 frz in, 421–424
 membrane receptors in, 93–94
CheR protein, 93, 96–97, 421, 427
CheW protein, 270
 chemotaxis and, 93, 94–95, 96–97, 98
 CheY autophosphorylation and, 33
 flagellar switch and, 190
 Frz compared with, 421, 426
 phosphotransfer and, 44
cheY gene, 2, 95, 98, 184, 187
CheY protein, 4, 20, 34, 41, 115, 448
 active site structure of, 56–57
 amino acid sequence analysis of, 406
 chemotaxis and, 93, 94, 95–96, 97, 98
 core and tertiary structure conservation in, 57
 flagellar switch and, 183, 184, 187, 188, 189–191, 192, 193, 196
 FlbD compared with, 413
 Frz compared with, 421, 424–426
 historical perspective on, 53–54
 Lux compared with, 439
 magnesium puzzle and, 60–61
 molecular structure of, 54–57
 phosphatase regulation and, 44
 phosphorelay and, 133, 134
 phosphotransfer and, 43–44, 110
 possible activation mechanism for, 61–62
 secondary structure conservation in, 57–58
 Spo0A compared with, 129, 163
 structural roles of conserved residues in, 59t
 structure-function relationships in, 35–38
 as tertiary template, 61
VanR and, 389
CheY–P (CheY-P) protein, 133
 chemotaxis and, 95–96, 97, 98
 flagellar switch and, 181, 182, 188, 190, 192, 193
cheZ gene, 40, 96, 184, 187
CheZ protein
 chemotaxis and, 93, 96, 97, 98
 CheY and, 38, 40, 44
 flagellar switch and, 187, 188, 189–191
 Frz compared with, 421
 as phosphatase, 44
 phosphorelay and, 136
chvA gene, 369
chvB gene, 369
chvE gene, 369, 372–373
ChvE protein, 373
 Lux compared with, 439
 vir regulation by, 376–379
chvG gene, 369, 380–381
ChvG protein, 379–381
chvl gene, 369, 380–381
Chvl protein, 379–381
Citrobacter freundii, 255, 306t
Clostridium, 135
Clostridium perfringens, 306t, 311–312
cipB gene, 462
ClpC protein, 458–459
ClpP protein, 462
CoA, see Acetyl coenzyme A
coi gene, 163
Colanic acid capsule synthesis, 253–260
comA gene, 133, 455, 458, 459
ComA protein, 271, 300, 448, 449, 461, 462
competence genes and, 455–456
Mec and, 459, 460
phosphorelay and, 136, 137
phosphorylation of, 457
comC gene, 456–457
comE gene, 456–457
comF gene, 456–457
comG gene, 456
comK gene, 450, 457–458, 460, 461, 462
ComK protein, 455, 456–457, 459–460, 461
Communication modules, 19–22
comP gene, 455, 458, 459
ComP protein, 300, 448, 449, 461, 462
ComA phosphorylation and, 457
competence genes and, 455–456
Mec and, 459, 460
phosphorelay and, 136, 137
Competence genes, 454–457
Complementation analysis, 14
comQ protein, 455, 457, 462
comS gene, 456, 458
ComS protein, 455, 456, 458, 460, 462
comX gene, 141
ComX protein, 455, 457, 458, 462
Conformational change mechanism, 209–210
Conformational suppression, 22
Coniferin, 371
Conjugal transfer genes, 393–399
Conservation, 53–62
CopR protein, 307
CopS protein, 307
Core structure conservation, 57
Corynebacterium diphtheriae, 306, 307
cotB gene, 449
cotC gene, 449
cps gene, 255, 258
CreC protein, 204, 290
creA gene, 211, 213
CreA protein, 211
creABCD gene, 210–212
creB gene, 211, 213
CreB protein, 210, 211, 214, 215, 217, 218
creC gene, 211, 212–213
CreC protein, 30, 203, 211, 213, 214, 215, 408
catabolite control of Pho regulon by, 210–212
cross regulation and, 216, 217, 218
creD gene, 211, 213
Cross regulation, 203, 213–218
Crostalk, 17, 213–214, 442
crp gene, 1, 213
Crp protein, 233, 277, 319, 322
Cryptococcus neoformans, 313
ciaA gene, 295
CtaA protein, 295
cdx gene, 359, 360–361
Ctx protein, 360, 361
cya gene, 1, 213, 338, 343–344
cyc gene, 235
Cyclic adenosine-3',5'-cyclic monophosphate (cAMP), 1, 212, 352
Cycloheximide, 371
cyAB gene, 228
cysA gene, 458
Defensins, 324–325
DegM protein, 448
degQ gene, 448, 449, 450, 455–456, 460
DegQ protein, 450
degR gene, 449, 450, 461
DegR protein, 450
Degradative enzyme synthesis, 449–454
degS gene, 449, 451, 452, 453, 460
DegS protein, 300, 448, 449, 462
competence genes and, 455
degradative enzyme synthesis and, 450–451
DegU phosphorylation and, 451–454
functions and properties of, 460–461
degS(Hy) mutants, 461–462
degU gene, 458, 459
degradative enzyme synthesis and, 449
phosphorylation of, 451–454
DegU protein, 271, 295, 300, 448, 449, 458, 462
competence genes and, 455
degradative enzyme synthesis and, 450–451
functions and properties of, 460–461
Mec and, 459
phosphorylation of, 451–454
degU(Hy) mutants, 300, 461–462
Dehydroconiferyl acid, 371
2-Deoxy-glucose-6-phosphate, 265–266
Dephosphorylation, see also Phosphorylation of CheY-P, 190
of FixJ, 280–281
of nitrogen regulator II, 32, 80
Deuridylylation, 81
Dimerization
of histidine protein kinases, 29–32
of nitrogen regulator I, 147, 150–151
of ToxR, 358–359
dinR gene, 461
divJ gene, 405–406, 407–408
DivJ protein, 409, 414
amino acid sequence analysis of, 405–406
catalytic activities of, 406
cell division and, 407–408
divK gene, 405–406, 407
DivK protein, 409, 414–415
amino acid sequence analysis of, 405–406
catalytic activities of, 406
cell cycle checkpoints and, 406–408
flagellar switch and, 410
PleD compared with, 409
divL gene, 405, 408–409
DivL protein, 409

dmsA gene, 237, 248
DNA binding
by Arc, 225
by FliJ, 284
by FlbD, 413
by Lux O, 441
by nitrogen regulator I, 149, 150, 151, 154, 156–157
by OmpR, 112–114, 115–117, 119, 120
receivers and, 11
by response regulators, 34
by RtcE, 398
by Spo0A, 135, 160–162, 164, 167–168, 175
by ToxR, 354, 355, 358, 359–360, 363
by UhpA, 449
by VirG, 375–376
dnaj gene, 259
DnaJ protein, 98, 259
dnak gene, 259
DnaK protein, 98, 259
Domain liberation, 17–19
dsbA gene, 257
dsbB gene, 257
dsrA gene, 260
DsrA protein, 260
eamm6 gene, 313
Enteric bacteria, 67–85; see also Nitrogen assimilation;
specific types
Enterobacter cloacae, 326
Enterococcus faecium, 306t, 394
envZ gene, 2
bacterial virulence factors and, 308–309, 330
porin regulation and, 105, 109–110, 114
EnvZ protein, 164
autophosphorylation of, 33–34, 109, 110–111
bacterial virulence factors and, 308, 310, 320, 321,
354, 356
CrecC compared with, 212
crosstalk and, 214
domain structure of, 108f
kinase:phosphatase ratio regulated by, 243
phosphatase regulation by, 44, 45
phosphorylation of, 29
porin regulation and, 105–112, 114, 115, 307
quenching and, 17–18
transplantations and, 17
Epistasis, 14–15
Enwinia amylovora, 255, 306t, 312, 449
Enwinia tansatana, 434
Enwinia stewartii, 255, 449
Escherichia coli, 28, 39, 162, 173–174, 370–371, 373,
380, 405, 412, 427, 438, 439, 441, 449, 458,
460, 461, 462
aerobic respiratory enzymes in, 223, 226
bioluminescence in, 432, 434, 435
catabolite repression protein in, 175
chemotaxis and, 13, 89–98, 421, 454
CheY in, 55
colic acid capsule synthesis in, 253, 255, 259
flagellar switch and, 181–196
glutamine synthetase in, 3
jamming and, 18
mutations in genes of, 1
nisA regulation by, 281–282
nitrate/nitrite gene expression in, 233–249, 408
nitrogen assimilation in, 2, 67, 69, 71, 72f
nitrogen fixation genes in, 277, 279, 281–282, 284
Pho regulon of, 203–218, 290–292
porin regulon of, 105–124, 174, 307
response regulator of, 54
RNA polymerase of, 69, 169, 173, 282–283, 284, 389, 411
succinyl-CoA synthetase of, 29
Uhp system of, 263–273
virulence factors of, 306, 308, 310, 311, 312, 321, 325,
328, 329, 336, 338, 343, 344, 354, 356–357,
358, 359, 362, 363
Ethyl ferulate, 371
ETR1, 409
expl gene, 434
Factor Z, 294, 295
FapR protein, 307
fanG gene, 233, 234, 236, 238, 239, 240, 242, 243, 249
narX null mutants and, 244
operon control region of, 245, 247
Ferulic acid, 371
fha gene, 335, 338, 343, 344
fhaB gene, 338, 344
fim gene, 335, 343
FIS protein, 54
fixGHIS gene, 277
fixj gene, 277–278, 281–282, 283
FixI* and, 278, 279
phosphorylation of, 283, 453
principal domains of, 283–284
RcsB compared with, 255, 258
transcriptional activation and, 282–283
fixK gene, 281, 284
fixL/fixJ and, 277–278
promoters of, 284
transcriptional activation and, 282
FixK protein, 277
fixL gene, 277–278, 281–282
FixL protein, 242, 282
amino acid sequence analysis of, 405
principal domains of, 279
properties of, 277–278
transcriptional activation and, 282
fixL* gene, 282
FixL* protein, 278
autophosphorylation of, 279–280
FixJ dephosphorylation and, 280–281
transcriptional activation and, 282–283
fixLJ gene, 277
fixNOQP gene, 277
fla gene, 404, 415
ai-acting sequences in transcription of, 412
flagellar switch and, 410–411
FlbD in transcription of, 414
specialized nature of promoters, 411–412
flaA gene, 344
Flagellar protein transport apparatus, 410
Flagellar regulon, 89–91
Flagellar switch, 96, 181–196
in Caulobacter crescentus, 409–414
components of, 183–184
functional analysis of, 187–188
interaction among, 194–195
location of, 184–185
model for, 192–193, 194f
proteins in, 95, 184
rotor versus stator of, 186–187
stoichiometric composition of, 186
flaN gene, see flgK gene
Flavobacterium, 399
flbD gene, 412
FlbD protein, 39, 404, 415
in fla transcription, 414
as flagellar switch protein, 409–414
at ftr sequence elements, 412–413
regulation of activity, 413–414
flbG gene, 412–413
flgK gene, 412
flgL gene, 412
flhC gene, 90
FlbC protein, 90
flhCD gene, 344
flhD gene, 90, 97–98
FlhD protein, 90
flIA gene, 90
flIC gene, 90
flIF gene, 185, 412–413
FlIP protein, 185, 186
flIG gene, 95, 183, 184–185
FlIG protein, 95, 97, 183–184, 190, 192, 193
biochemical properties of, 184
CheY and, 426
description of, 189
functional analysis of, 187, 188
location of, 184–185
stoichiometric composition of, 186
flIM gene, 95, 183
FlIM protein, 34, 95, 97, 183–184, 190, 192, 193
biochemical properties of, 184
CheY and, 39, 196, 426
description of, 189
functional analysis of, 187, 188
location of, 185
stoichiometric composition of, 186
flJ gene, 183
FlJ protein, 95, 183–184, 190, 192, 193
biochemical properties of, 184
CheY and, 426
description of, 189
functional analysis of, 187, 188
location of, 185
stoichiometric composition of, 186
FN516 protein, 227
FN517 protein, 227
fur gene, 227
Fnr protein, 233, 245, 247, 248, 277
Fosfomycin, 265
flaA gene, 233, 234, 236, 238, 239, 240, 242, 243, 249
operon control region of, 248
flAB gene, 344–345
FruR protein, 319, 322
frz gene, 419–429
biochemical analysis of, 424–427
chemotaxis and, 421–424
social behaviors and, 427–429
frzA gene, 421, 422, 428
FrzA protein, 421
frzB gene, 421, 422, 428
frzC gene, 421, 422
frzCD gene, 421, 422, 428
FrzCD protein, 421, 427–428, 429
frzE gene, 421, 422, 428
FrzE protein, 424–426, 429
autophosphorylation of, 426
Bvg compared with, 334, 338, 339
chemotaxis and, 421
FrzZ phosphorylation and, 427
Lux compared with, 438
frzF gene, 421, 422, 428
FrzF protein, 421
FrzG protein, 39, 421
frzZ gene, 421, 427
FrzZ protein, 421, 426–427, 429
ftsZ gene, 257
Fumarate, 191
Functional analysis, 187–188
Gain-of-function mutants, 14, 15
β-Galactosidase, 3, 13
gbpR gene, 373
GbpK protein, 373
GerE protein, 449
glnA gene, 2, 67, 153, 154, 156
 in absence of nitrogen regulator II, 72
 derivatives of, 150
 glnL mutations and, 78, 79
 mutations in histidine kinase C-terminal, 76, 78
 nitrogen regulator I dimer binding to, 150–151
 protein II regulation of transcription, 81–82
 regulation of, 70–71

glnALG gene, 71
glnAp1 gene, 69, 70

 glnAp2 gene, 2, 4, 67, 69, 70
 in absence of nitrogen regulator II, 71, 73–74, 75

 glnB gene, 2, 69, 79, 85

glnD gene, 68, 81

glnD::Tn10, 78–79

glnG (ntrC) gene, 2, 67, 71, 276

glnH gene, 153

glnHtp2 gene, 71

glnL (ntrB) gene, 2, 67, 71, 276
 mutations in histidine kinase C-terminal domain
 and, 76–78
 nitrogen regulator II/protein II interaction and,
 78–79

glnL::Tn10, 78–79

GlpR protein, 265

GlpT protein, 265

Glucose, 1, 73, 211, 272–273

Glucose 6-phosphate (Glu6P), 263, 265–266, 268,
 272, 273

Glutamate synthase, 75

Glutamine, 68, 69
 nitrogen regulator I phosphorylation and, 82–83
 uridylyltransferase/uridylyl and, 81

Glutamine synthetase, 3, 85
 in absence of nitrogen regulator II, 71, 72–73, 75
 mechanisms of regulation of, 67–69
 regulation of expression, 70–71

Glutamine synthetase-adenosine monophosphate
 (AMP), 69

Glycerol, 73

Glycopeptide resistance genes, 387–390

Group A streptococci, 312–313

GrpE protein, 98

gsiA gene, 136, 137, 455–456, 460–461, 462

HAl, 432

HAl-1, 435–439, 441

HAl-2, 435–439, 442

Heparin, 171

hil gene, 326

his gene, 253

HisP protein, 207

Histidine protein kinases, 25–34
 dimerization of, 29–32
 mutations in C-terminal domain of, 76–78
 phosphatase regulation and, 44–45
 phosphotransfer regulation and, 43–44
 as response regulators, 34–43
 structure-function relationships between domains,
 26–29

HOG1 protein, 409

hpr gene, 462

Hpr protein, 139–140

hrp gene, 312

HrpK protein, 307

HrpS protein, 307, 312

hut gene, 71

hutC gene, 1

hutU gene, 1

Hydroxy-acetosyringone, 371

N-(3-hydroxybutanoyl)-L-homoserine lactone, see HAI

idc gene, 213

In vitro transcription regulation, 167–173

Initiation of division (DIVi), 404, 407

Input-output communication, 15–17

Integration host factor (IHF), 121, 245–247

isp gene, 450

iur gene, 369

Jamming, 18

2-Ketogluutarate, 68, 69, 75, 80
 nitrogen regulator I phosphorylation and, 82–83
 protein II as carbon sufficiency sensor and, 83–84
 uridylyltransferase/uridylyl and, 81

3-Ketogluutarate, 83

kinA gene, 133

KinA protein, 129, 132–133, 135, 136, 448

KinA-P protein, 135

Kinase–phosphatase antagonism, 137–139

Kinase–phosphatase ratio
 EnvZ regulation of, 243
 in porin regulation, 110–111

kinB gene, 132

KinB protein, 129, 132–133, 448

Klebsiella, 255, 307, 312, 456

Klebsiella aerogenes, 1, 71, 72f

Klebsiella pneumoniae, 2, 4, 449
 colanic acid capsule synthesis in, 259, 260
 nitrogen assimilation in, 71, 72f
 nitrogen fixation genes in, 276, 277
 virulence factors of, 306t, 311, 312

D-Lactate, 226

LacZ protein, 266

lasA gene, 434

lasB gene, 434
lasl gene, 434
lasR gene, 434
LasR protein, 449
licS gene, 450
Listeria monocytogenes, 307t, 308
Lorn protein, 325-326
lon gene, 255, 257, 259
Lon protease, 253
Loss-of-function mutants, 15
lux gene, 431, 432-434
luxA gene, 432
luxB gene, 432
luxC gene, 432
luxCDABEG gene, 432
luxCDABEGH gene, 434, 435-436, 438, 439, 441, 442
luxD gene, 432
luxE gene, 432
luxG gene, 432
luxH gene, 432
luxI gene, 434
LuxI protein, 308, 434, 442
luxICDABEG gene, 432
luxL gene, 435, 436, 438, 443
LuxL protein, 435
luxM gene, 435, 438, 443
LuxM protein, 435, 438
luxN gene, 435, 438, 439, 443
LuxN protein, 437, 438-442, 443
LuxO protein, 439-443
luxP gene, 437, 438, 443
LuxP protein, 437, 438, 439
luxPQ gene, 437
LuxPQ protein, 438
luxQ gene, 437, 438, 443
LuxQ protein, 437, 438-442, 443
luxR gene, 432, 433, 434, 435-436
LuxR protein, 271, 434, 442, 449
bacterial virulence factors and, 308, 362, 363
quorum sensing and, 433-434
RcsB compared with, 255, 258
luxRICDABEG gene, 432
luxR-luxI signal response system, see Quorum sensing system
LysR protein, 311, 371-372
M protein, 313
M ring, 186
Magainins, 324-325, 328-329
Magnesium
CheY and, 36-37, 40, 41, 53, 60-61
glutamine synthetase and, 68
protein II and, 84
Magnesium adenosine diphosphate (MgADP), 32
Magnesium adenosine triphosphate (MgATP)
CheA and, 31, 32
histidine protein kinases and, 26, 28, 45
phosphatase regulation and, 44
thermodynamics and, 41
MalT protein, 255, 270, 449
Manganese
FixL* and, 279-280
glutamine synthetase and, 68
MAP protein, 409
Mastoparan, 324-325
MCPs, see Methyl-accepting chemotaxis proteins
mdh gene, 213
mecA gene, 458, 462
MecA protein, 457-460, 462
mecB gene, 458, 460, 462
MecB protein, 457-460, 462
Melittin, 324-325
Membrane-derived oligosaccharides (MDO), 107
Membrane receptors, 93-94
MerR protein, 173
Methyl-accepting chemotaxis proteins (MCPs), 93-95, 98
Frz compared with, 421, 426, 427
methylation of, 96-97
nor compared with, 235
Methyl syringate, 371
Methylation, 96-97
micF gene, 122-123
modA (chlD) gene, 237
Monosaccharides, 372-373
motA gene, 90
MotA protein, 184, 185, 186, 187
MotB protein, 184, 185, 186
MoxX protein, 271
mpr gene, 450
Mry protein, 313
MS ring, 181-182, 183, 184-185, 186, 193, 410
MudJ protein, 326
Mutant screens, 13
Mutations, see also Null mutants
BvgA, 337-338
BvgS, 336, 337
in communication modules, 21-22
complementation analysis of, 14
ap, 1
in C-terminal histidine kinase domain, 76-78
cyA, 1
frz, 421
functional defects of, 13-14
gain-of-function, 14, 15
glnL, 78-79
loss-of-function, 15
nor, 239
norX*, 241-242
norX(H399Q), 240-241
nitrogen regulator 1, 150
pleC, 404-405
in response regulators, 58-60
sporulation, 297-299
ToxR DNA binding analysis and, 359–360

Mycobacterium, 13, 438
chemotaxis in, 421–424
response regulator of, 39
social behaviors of, 427–429

nac gene, 71
NAC protein, 311
NapAB protein, 237
nap-cyc fusion gene, 235, 236–237, 238, 242, 248
Nar protein, 233, 460
narG gene, 233, 236, 238, 240, 242, 243, 249
narX null mutants and, 244
operon control region of, 245–247

Narigenin, 371–372
narK gene, 236, 247
narL gene, 239
effect of null mutants on nitrate/nitrite, 235–238
identification and characterization of, 234–235
NarL protein, 156, 233, 234, 235–236, 237, 243, 244, 271, 408
hierarchy of nitrate/nitrite regulation by, 242
operon control region of, 234t, 245–247, 248
phosphatase regulation and, 44
phosphotransfer with *NarX*, 238–239
structure of, 235

narQ gene, 236–238
operon control region of, 234t, 245, 247, 248
structure of, 235

narQ narL double null strain, 242, 244
NarQ protein, 233, 236, 239, 240, 242, 408
equilibrium model for functions of, 242–244
negative regulation by, 244–245
phosphatase regulation and, 44
structure of, 235

narX gene, 236, 242
identification and characterization of, 234–235
null mutations of, 238, 239–240
narQ narL double null strain, 242, 244
NarX protein, 233, 234, 240, 242, 408
equilibrium model for functions of, 242–244
negative regulation by, 244–245
phosphatase regulation and, 44
phosphotransfer with NarL, 238–239
signal-insensitive mutations in, 336
structure of, 235

narX gene, 241–242, 244
NarX protein, 242
*narX*H399Q* gene, 240–241, 244
*NarX*H399Q* protein, 240, 241
narXL gene, 235, 247

NarQ protein, 233, 234, 240, 242, 408
equilibrium model for functions of, 242–244
negative regulation by, 244–245
phosphatase regulation and, 44
phosphotransfer with NarL, 238–239
signal-insensitive mutations in, 336
structure of, 235

NarXL gene, 241–242, 244
NarXL protein, 242
*NarXL*H399Q* gene, 240–241, 244
*NarXL*H399Q* protein, 240, 241
NarXL gene, 235, 247

NDPK, see Nucleotide diphosphate kinase

negA gene, 428–429

Neisseria gonorrhoeae, 306e, 310–311, 356
nif gene, 4, 71
nifA gene, 276, 277, 284, 449
*fixL/*fixJ* and, 277–278
negative and positive regulation of, 281–282
promoters of, 284
transcriptional activation and, 282

NifA protein, 4, 312
nifHKD gene, 276, 277
NifL protein, 311
nifLA gene, 71, 153
nirB gene, 247–248, 249
Nitrate-nitrite responsive gene expression, 233–249, 408
equilibrium model for, 242–244
negative regulation of, 244–245
target operon control regions for, 245–248
Nitrate-responsive gene expression, see Nitrate-nitrite responsive gene expression

Nitrogen assimilation, 2, 67–85
in absence of nitrogen regulator II, 71–75
redundancy of uridylyltransferase/uridylyl and protein II in, 84–85

Nitrogen fixation genes, 275–276

Nitrogen regulator I (NRi/NtrC), 2, 3–4, 34, 54, 67, 69–70, 71, 73–74, 207
autophosphorylation of, 33
background information on, 147–150
bacterial virulence factors and, 310, 311
central activation domain of, 154–156
dimerization of, 147, 150–151
FibD compared with, 412
mode of action of, 284
nitrogen regulator II/protein II regulated phosphatase and, 79–80
oligomerization of, 147, 148, 151–156, 173
phosphorylation of, 35, 39, 41, 74, 80, 82–83, 150–151, 180
SpoOA compared with, 173, 174
transcriptional activation by, 147–157
UhpA distinguished from, 270

Nitrogen regulator II (NRn/NtrB), 2, 3, 67, 70–71, 270
autophosphorylation of, 32, 33, 75–76, 80
bacterial virulence factors and, 311
crosstalk and, 214
dephosphorylation of, 32, 80
dimerization of, 31
glnL alteration of protein II interaction, 78–79
nitrogen regulation in absence of, 71–75
nitrogen regulator I phosphorylation and, 82, 83, 1
phosphatase regulation and, 44, 45
phosphorylation of, 29, 39
protein II as carbon sufficiency sensor and, 84
reconstitution of phosphatase regulated by, 79–80
structure–function analysis of, 75–79
nod gene, 371–372
NoD protein, 371–372
Nonreplicating Bacteroides units (NBUs), 394–395, 398, 399
nprE gene, 139, 450, 461
nfxA gene, 237, 242–243, 244, 248, 249
NtrB, see Nitrogen regulator II
ntrB (glnL) gene, see glnL (ntrB) gene
NtrC, see Nitrogen regulator I
ntrC (glnG) gene, see glnG (ntrC) gene
Nucleotide diphosphate kinase (NDPK), 28
Null mutants, 15
 functional defects of, 14
 narL, 235–238
 narP, 235–238
 narQ, 238, 239–240
 narX, 238, 239–240, 243, 244

obg gene, 141
Obg protein, 141
Oligomerization, 147, 149, 151–156, 173
ompB gene, 105, 107, 309
 bacterial virulence factors and, 309, 321
 DNA binding and, 115, 117
 promoter of, 121–122
 transcriptional activation of, 117, 118
 transcriptional repression of, 167
OmpC protein, 105, 106, 107, 123–124, 174
 bacterial virulence factors and, 308, 309, 321
ompF gene, 105, 114, 116f, 122, 123, 162, 164
 bacterial virulence factors and, 321
 DNA binding and, 115, 117
 promoter of, 120–121
 transcriptional activation of, 117
 transcriptional repression of, 118–119, 167
OmpF protein, 105, 106, 107, 122–124, 174
 bacterial virulence factors and, 308, 321
ompR gene, 2, 105, 109–110, 114
 bacterial virulence factors and, 308, 309, 321, 330
Pho regulon and, 213
 bacterial virulence factors and, 308, 309, 310, 319, 320, 321, 322, 323, 354, 356, 359
 domain structure of, 108f
EnvZ and, 243
 mode of action of, 284
 phosphatase regulation and, 44
 phosphorylation of, 453
 porin promoters and, 120–122
 quenching and, 17–18
Spo0A compared with, 162, 164, 167, 174
 transcriptional activation in, 117–118
 transcriptional repression in, 118–119
 transplantations and, 17
UhpA distinguished from, 270
 VanK compared with, 389
OmpR–P protein, 109, 110, 112, 117
OmpT protein, 363
ompU gene, 361
OmpU protein, 360
OmpX protein, 326
opB gene, see spo0k (opp) gene
ops gene, 213
ORF1 protein, 387
ORF2 protein, 387
ORFX–17 protein, 448
ORFX–18 protein, 448
orgA gene, 321
onT gene, 394, 395, 398
Oxaloacetate, 83
OxyR protein, 266
PnR, see Protein II
pagA gene, 323
pagB gene, 323
pagC gene, 325–326, 327, 329
PagC protein, 323, 325–326
pai gene, 462
Paracoccus denitrificans, 271
Penicillin G, 404
Petunia extracts, 371
PfR protein, 307
PfS protein, 307
PfSxK protein, 284–285
pfl gene, 228, 237
pfrR gene, 312
pgf gene, 372
PgpP protein, 265
pH
 autophosphatase and, 40
 bacterial virulence factors and, 305, 306, 310, 323–324, 325, 327, 353, 361
 porin regulation and, 122
 Ti plasmid and, 373–374, 375, 376, 380
Phenolic compounds, 371–372
PknCDE protein, 215
Pkn box, 290–291
Pho regulon, 73, 203–218, 289–300
 alkaline phosphatase genes as reporters of, 290
 catabolite control by acetyl phosphate, 212–213
 catabolite control by CreC, 210–212
 cross regulation of, 203, 213–218
 regulatory network of, 292–295
 regulatory site mechanism for, 207, 208f, 210
 stoichiometric mechanism for, 207, 208f, 209–210
phoA gene, 203, 289, 290, 291
 bacterial virulence factors and, 327
 cross regulation and, 218
 induction of, 292
ToxR and, 354
PhoA protein, 266
phoB gene, 2, 289, 290, 291
induction of, 292
Spo0A~P repression of, 293
sporulation mutants and, 297–298
virG regulation and, 380
PhoB protein, 4, 34, 35, 54, 173–174, 204, 205, 214, 291, 408
bacterial virulence factors and, 327, 329
catabolite control by acetyl phosphate and, 213
catabolite control by CreC and, 210
cross regulation and, 216, 217, 218
discovery of, 322
gene regulation by, 215
VanR compared with, 389
virG regulation and, 380
PhoB-P protein, 174
PhoE protein, 215
phoH gene, 322, 325, 329
PhoM protein, see CreC protein
phoN gene, 322, 325, 329
phoP gene, 290, 294
bacterial virulence factors and, 322, 323–324, 326, 327, 328–329, 330
discovery of, 322
induction of, 292
phylogenetic distribution of, 328–329
PhoP protein, 54, 289, 290–292, 300, 448
bacterial virulence factors and, 307, 319, 320, 322–330
discovery of, 322
phoPR induction and, 293
sap sporulation mutants and, 297–299
signal transduction during sporulation, 295–296
PhoP-P protein, 291, 294, 299
phoPQ protein, 323, 325–326, 330
phoPR gene
autoregulated induction of, 292–293
induction during spore development, 295–296
sap sporulation mutants and, 297–299
phoPR protein, 293–294, 295, 300
phoQ gene, 322, 323–324, 326
PhoQ protein, 307, 320, 322–330
discovery of, 322
pathogenicity of, 322–323
signals transmitted by, 327–328
phoR gene, 2, 290, 294
catabolite control by acetyl phosphate and, 212–213
catabolite control by CreC and, 210, 211
cross regulation and, 217, 218
induction of, 292
PhoR protein, 203, 214, 242, 270, 289, 290–292, 300, 408, 448
bacterial virulence factors and, 329
catabolite control by acetyl phosphate and, 213
catabolite control by CreC and, 211
cross regulation and, 217, 218
mechanisms of interconversion of, 209–210
phoS gene, 299
PhoS protein, see PstS protein
Phosphatases, 44–45
kinase antagonism with, 137–139
kinase ratio to, see Kinase–phosphatase ratio
nitrogen regulator II regulated, 79–80
phosphorelay phosphate regulation of, 135–137
protein II regulated, 44, 79–80, 81–82
in response regulators, 42–43
Phosphate, 203–204
Bacillus subtilis, 289–300
catabolite control by CreC and, 210–211
detection of environmental, 207–209
pathways of genes regulated by, 214–215
Pst system control of, 204–210
regulation of phosphorelay, 135–137
repression complexes of, 205–207
Phosphate regulon, see Pho regulon
Phosphoenolpyruvate-sugar phosphotransferase (PTS) system, 92–93
Phosphorus assimilation, 214–215
Phosphorelay system, 129–142
enzymatic activities of proteins, 133–134
kinase-phosphatase antagonism in, 137–139
nature of signals in, 140–141
quaternary structure of, 134–135
repressor-activator antagonism in, 139–140
signal input into, 132–133
transcriptional regulation of, 130–132
Phosphorylation, see also Autophosphorylation; Dephosphorylation
of ArcA, 226
of BvgA, 342
of ComA, 457
of DegU, 451–454
of FixJ, 283, 453
of FixZ, 427
of histidine protein kinases, 25–26, 29–31
of nitrogen regulator I, 35, 39, 41, 74, 80, 82–83, 150–151
of RcsB, 257–258
of response regulators, 35, 38–40, 41–43
transmitters and receivers in, 11
Phosphotransacetylase-acetate kinase (Pta-AckA), 204, 216–217
Phosphotransfer, 238–239
to BvgA, 342, 346
CheY and, 43–44, 110
NatL-NarX, 238–239
in VanR/VanS, 389
Photobacterium leiognathi, 432
Photobacterium phosphoreum, 432
phoU gene, 207
PhoU protein, 203, 270
catabolite control by CreC and, 211
cross regulation and, 216, 218
gene regulation by, 215
phosphate control of, 204–210
pilA gene, 310–311
PilA protein, 310–311
pilB protein, 310–311, 355–356
pilE gene, 310, 311
PilR protein, 307
PilS protein, 307
Piston model, 93
Pivot model, 93
pksX gene, 450
Plant cell transformation, 367–381
pleC gene, 409
amino acid sequence analysis of, 405–406
cell division and, 407–408
pseudo reversion analysis of mutants, 404–405
PleC protein, 409, 414–415
catalytic activities of, 406
cell division cycle checkpoints and, 406–408
flagellar switch and, 410
pleD gene, 408–409
PleD protein, 408, 409, 414
ptrA gene, 321
PtrA protein, 320–321
ptrB gene, 321
PtrB protein, 320–321
PtrA protein, 284–285
Porin promoters, 116F, 120–122
Porin regulation, 105–124, 174, 307
response regulator in, 112–119
sensor in, 107–112
stimulus for, 106–107
transmembrane signal transduction in, 111–112
pkB gene, 213
pkB gene, 327
pkB gene, 326, 327, 329
PkhR protein, 326
proB gene, 454
Progression of division (DIVp), 404, 407
Promoters
activated by Spo0A, 164–166
in nitrogen fixation genes, 284–285
repressed by Spo0A, 166–167
in VanR/VanS, 389–390
Protein II (PII), 2, 3, 69, 70, 270
ghL in nitrogen regulator II interaction, 78–79
mutations in histidine kinase C-terminal domain and, 76, 78
nitrogen regulator I phosphorylation and, 82
nitrogen regulator II autophosphorylation and, 76
phosphatase regulation and, 44, 79–80, 81–82
PhoU compared with, 206–207
purification and crystallization of, 79–80
redundancy of, 84–85
as sensor of carbon sufficiency, 83–84
uridylylation/deuridylylation of, 81
Protein II-uduridine monophosphate (PII-UMP), 69, 71, 81–82
Protein D, 149, 152
Proton motive force, 191
Pseudomonas, 306T, 308, 456
Pseudomonas aeruginosa, 449
virulence factors of, 306, 307–308, 312, 434
Pseudomonas fluorescens, 394
Pseudomonas solanacearum, 460
Pseudomonas syringae, 306T, 312
Pseudoreversion analysis, 404–405
psiD gene, 323, 326
psiE gene, 215
psiF gene, 215
psiH gene, see phoH gene
Pst system, 203, 204–210
catabolite control by CreC and, 211
cross regulation and, 218
PstA protein, 204, 206, 207, 211
psiA2 gene, 206
PstB protein, 204, 206, 207, 211
PstC protein, 204, 206, 207, 211
psiHI gene, 213
PstS protein, 204, 206, 207, 208, 209, 211
PstSCAB protein, 215, 216
psiA gene, 73, 75
Pta-AckA, see Phosphotransacetylase-acetate kinase
PstG protein, 310
psiA gene, 338, 343–344
pur gene, 213
put gene, 71
Pyruvate, 73, 211, 226
Quenching, 17–18
Quorum sensing (luxR-luxI) system, 432–434, 442
Random walk, 91
rapA gene, 137
RapA protein, 137, 461
RapB protein, 137
rnxA gene, 255, 258, 260
RcsA protein, 256–257, 260, 449
bacterial virulence factors and, 311
RcsB stimulation by, 258–259
rcsB gene, 256, 257, 259, 312
RcsB protein, 255–257, 259–260, 271
bacterial virulence factors and, 311
phosphorylation of, 257–258
RcsA stimulation of, 258–259
rcsC gene, 257, 258, 259, 312
RcsC protein, 257–258, 259, 260, 311
rcsF gene, 258
RcsF protein, 256, 258
recA gene, 450, 461
Receivers, 10–11; see also specific receivers
phosphorylation activities of, 11
signaling properties of, 11–12
signaling transactions between transmitters and, 17–19
structure-function studies of, 19–22
Regulatory genes, 454–455
Regulatory site mechanism, 207, 208f, 210
resD gene, 295
ResD protein, 289, 294–295, 299, 300
resDE gene, 294–295, 299
resE gene, 295
ResE protein, 289, 294–295, 299, 300
Response regulators, 2, 10–11, 25, 34–43; see also specific response regulators
autophosphatase activities in, 40–41
conservation in, 53–62
family relationships in, 54
historical perspective on, 53–54
modular design of, 54
mutant sites in regulatory domains of, 58–60
phosphatase kinetics in, 42–43
phosphorylation of, 35, 38–40, 41–43
in porin regulation, 112–119
SpoOA as model for, 173–175
structure-function relationships in, 35–38
thermodynamics and, 41–42
Reverse OA boxes, 164, 166
Reversion analysis, 22
gfb gene, 253
rhiR gene, 434
Rhizobium, 312, 403
Rhizobium leguminosanum, 371–372, 434
Rhizobium melloti, 275–286, 405, 449
rmpA gene, 259
RmpA protein, 259, 449
rmpA2 gene, 311
RmpA2 protein, 311
RNA III, 309–310
RNA polymerase
bacterial virulence factors and, 344, 355
FixJ and, 282–283, 284
flu and, 411
nitrogen assimilation and, 69, 70, 73
PhoB and, 204
phosphorelay and, 135, 140
porin regulation and, 117–118, 119
RteA/RteB and, 396
SpoOA and, 162, 166, 168–171, 173, 174, 175
VanR/VanS and, 389
VirG and, 375, 378
Rotors, 186–187
rpiA gene, 213
rpoA gene, 118, 119
RpoA protein, 344
rpoB gene, 458
rpoN gene, 411–412
rpoS gene, 123
RpoS protein, 322
rscA gene, 253
RscA protein, 253, 255
rscB gene, 253
RscB protein, 253
rscC gene, 253
RscC protein, 256
rscF gene, 253
RscF protein, 258
rteA gene, 394, 395–398
RteA protein, 395–398, 399
rteB gene, 394, 395–398
RteB protein, 395–398, 399
rteC gene, 398
RteC protein, 398, 399
rvtA gene, 163
S ring, 186
sacB gene, 300, 450–451, 454, 460, 461, 462
Saccharomyces cerevisiae, 30, 328, 409, 447
sacXY gene, 450
sad gene, 163, 164
Salmonella, 307, 308, 311, 319–330
pathogenesis biology in, 319–320
virulence phenotypes in, 323–325
Salmonella typhi, 320, 321, 324
Salmonella typhimurium, 150, 405, 439
chemotaxis in, 89–98
flagellar switch and, 181–196
nitrogen assimilation in, 67, 71
organophosphate transport systems of, 264, 265
response regulator of, 54
virulence factors of, 308, 319, 320, 321, 322, 323–324, 325, 328, 329, 363
sap gene, 297–299
sapA gene, 297, 299
sapB gene, 297
sasA gene, 206
Scissions, 15, 16–17
Φ(sdh-lacZ), 223, 226, 227
Secondary structure conservation, 57–58
Selection schemes, 9, 13
Sensors, 2, 10–11; see also specific sensors
in porin regulation, 107–112
Sesbania rostrata, 284
Shielding, 19
sigD gene, 462
Sigma factor-6, 123
Sigma factor-32, 355
Sigma factor-54, 2, 3–4, 147, 149f, 152, 154, 156, 173
bacterial virulence factors and, 311
fla and, 411–412
nitrogen assimilation and, 70, 73
RteA/RteB and, 396
Sigma factor-70, 4, 156, 173
bacterial virulence factors and, 311, 355
FixJ and, 282, 284
nitrogen assimilation and, 69
PhoB and, 204
VanR/VanS and, 389
Sigma factor-A, 130–132, 140, 162, 168
Sigma factor-F, 30
Sigma factor-H, 130–132, 140, 168, 169
Signaling pathways
chemotactic, 92–98
genetic analysis of, 13–15
reconstruction of, 14–15
Signaling proteins, 15–19
sin gene, 458
Sin protein, 455, 458
sin1 gene, 139
Sinl protein, 139, 140
sinR gene, 140
SinR protein, 139–140
SLN1 protein, 409
Slow-switchers, 183
Smooth swimming, 91
sms gene, 458
sob gene, 163, 164
sodA gene, 228
sof gene, 163, 164
soxRS gene, 123
SoxRS protein, 123
spac gene, 456
SpaK protein, 448
SpaR protein, 448
spoA gene, 159–160, 164, 175, 293, 299
activation of, 166
res not dependent on, 295
transcriptional activation of phosphorelay components and, 131
Spo0A protein, 129, 133–134, 299, 300, 448, 460–461, 462
competence genes and, 455
domains of, 160–164
kinase–phosphatase antagonism and, 137, 139
phoPR during spore development and, 295–296
phosphorylation of, 39, 453
promoters activated by, 164–166
promoters repressed by, 166–167
quaternary structure of phosphorelay components and, 135
repressor-activator antagonism and, 140
signal input into phosphorelay and, 132
transcriptional activation of phosphorelay components and, 131, 132
transcriptional regulation by, 159–176
Spo0ABD protein, 160–162, 167, 171, 172f, 175
spo0Ap gene, 168
conversion of Spo0F–P to, 138f
kinase–phosphatase antagonism and, 137
phoPR during spore development and, 295–296
phoPR repression by, 293–294
repressor-activator antagonism and, 139, 140
ResD antagonism to, 295
cellular activation and, 168, 169, 170–171, 172f
transcriptional activation of phosphorelay components and, 130–132
transcriptional repression and, 168
spoB gene, 132, 141, 163, 293, 295
Spo0B protein, 39, 133, 137, 141, 142, 299
Spo0B–P protein, 133
goOE gene, 136
SpoOE protein, 136, 137, 139
spoOF gene, 163, 293
promotion activation in, 166
promotion repression in, 166
res not dependent on, 295
signal input into phosphorelay and, 132
transcriptional activation of phosphorelay components and, 131
Spo0F protein, 129, 133–134, 137, 141, 299, 448, 461
amino acid sequence analysis of, 406
kinase–phosphatase antagonism and, 138f
phosphorylation and, 39
quaternary structure of phosphorelay components and, 134
signal input into phosphorelay and, 132
transcriptional activation of phosphorelay components and, 131, 132
spoOFp gene, 169
spoOF–P protein, 133, 134, 136, 141, 142
conversion to Spo0A–P, 138f
kinase–phosphatase antagonism and, 137
spoOH gene, 168
Spo0K protein, 455, 457, 462
spo0K(opp) gene, 141, 457
spoOL gene, 136–137, 460–461
Spo0L protein, 136–137
spo0P gene, 136, 137
Spo0P protein, 136, 137
spoIIA gene, 130, 160, 162, 175
promotion activation in, 166
repressor-activator antagonism and, 139, 140
signal input into phosphorelay and, 132
sporulation APase and, 297
SpoIIAA protein, 30
SpoIIAB protein, 30
spoIIAp gene, 162, 166, 168, 169, 174
spolIE gene, 139, 140, 166, 175, 297
spolIG gene, 130, 160, 173, 175, 448
 promotion activation in, 166
 repressor-activator antagonism and, 139, 140
 signal input into phosphorelay and, 132
 SpoOA phosphorylation and, 453
 sporulation APase and, 297
 transcriptional repression in, 168
spolIGp gene, 160, 174
 promotion activation in, 164-166
 transcriptional activation in, 169-173
SpoIIJ protein, 461
Sporulation
 PhoP/PhoR and, 295-296
 phosphorelay system in, 129-142
 regulatory mutants of, 297-299
Sporulation APase, 297-299
SpvR protein, 322
srfA gene, 448, 450, 455-456, 457-458, 460
srfAB gene, 458
Streptococci, 306t
Streptomyces griseus, 271
Streptomyces hygroscopicus, 449
Strong enhancers, 150, 154, 155f
Strong sites, 150, 155f
Structure-function relationships
 in CheY, 35-38
 in communication modules, 19-22
 in histidine protein kinase domains, 26-29
 in nitrogen regulator II, 75-79
 in response regulators, 35-38
Succinyl-CoA synthetase, 29
suv-3 gene, 162
suv-4 gene, 162
tac gene, 361
Tap protein, 93, 212
tar gene, 90
Tar protein, 212
 chemotaxis and, 93, 94
 porin regulation and, 107-108
 Ti plasmid and, 373-374
 transplantsations and, 17
Tax1 protein, 107-108, 111-112
Tax1d1A protein, 112
tep gene, 360, 361
tepA gene, 353
TcpA protein, 361
TcpI protein, 363
T-DNA, 367-368, 369, 379
Teicoplanin, 387
Temperature
 bacterial virulence factors and, 305
porin regulation and, 122, 123-124
 Ti plasmid and, 374
Tertiary structure conservation, 57
tetQ gene, 393, 394, 395, 396-397, 398, 399
Tetracycline, 393-399
Thermodynamics, 41-42
Ti plasmid, 308, 367-381, 434
 acidity and, 373-374, 375
 monosaccharides and, 372-373
 phenolic compounds and, 371-372
 temperature and, 374
Tn916, 393
Tn1545, 393
Tn1546, 387-390
Tobacco, 371
toxA gene, 434
Toxin-coregulated pilus (TCP), 353-354, 360
toxR gene, 351, 353, 354, 360, 361
ToxR protein, 307, 351, 362-363
 coordinate gene expression controlled by, 360-361
dimerization of, 358-359
 mutagenesis analysis and, 359-360
 regulon of, 353-354
 signaling by, 354-356
 ToxS periplasmic interaction with, 356-358
toxT expression and, 361-362
 transmembrane nature of, 354
toxR-phoA fusion gene, 355
ToxR-PhoA fusion protein, 354-355, 356, 359
toxRS gene, 361
toxS gene, 351
ToxS protein, 351, 363
 periplasmic interaction with ToxR, 356-358
 ToxR dimerization and, 358-359
 ToxR DNA binding and, 360
toxT gene, 360-362
ToxT protein, 307, 351, 360-361, 363
tal gene, 434
Transcriptional activation
 in FixJ, 282-283
 by nitrogen regulator I, 147-157
 by OmpR, 117-118
 by SpoOA, 168-173
 in ToxR/ToxS, 356-358
Transcriptional regulation
 by bvg operon, 335
 of phosphorelay components, 130-132
 by SpoOA, 159-176
Transcriptional repression
 by OmpR, 118-119
 by SpoOA, 167-168
Transmembrane signal transduction, 111-112
Transmitters, 10-11; see also specific transmitters
 phosphorylation activities of, 11
 signaling properties of, 11-12
 signaling transactions between receivers and, 17-19
 structure-function studies of, 19-22
Transplantations, of foreign domains, 15, 16f, 17

tnaR gene, 434

tnY gene, 228

Trg protein, 17, 93, 94, 108, 212, 373

Trypanosoma brucei, 447

Trz1 protein, 108

tsr gene, 241

Tsr protein, 212, 370–371

bacterial virulence factors and, 358

chemotaxis and, 93, 94

jamming and, 18

shielding and, 19

signal-insensitive mutations in, 336

Tumbling, 13, 91–92, 97, 98

ubiD gene, 226

ugpAB gene, 327

UgpBAEC protein, 215

Uh system, 263–273

complexity of signal transduction in, 270

genes of, 265

signal and response in, 265–266

uhpA gene, 265, 266, 267, 268, 271

UhpA protein, 265, 266, 268, 284

degradative enzyme synthesis and, 449

intracellular signal of, 270–271

sequence analysis of, 405

target of, 271–273

uhpABC gene, 268

uhpABCT gene, 265

uhpB gene, 267, 268, 270

UhpB protein, 242, 265, 266–267, 268, 270, 271

sequence analysis of, 405–406

uhpBC gene, 268

uhpC gene, 267, 268

UhpC protein, 265, 266–267, 268, 270, 271, 406

uhpT gene, 265, 266, 268, 270, 271–273

UhpT protein, 264–266, 267, 268, 273

uidA gene, 396–397, 398

URF-1 protein, 448

URF-2 protein, 448

Uridylylation, 81

Uridylyltransferase, 3

Uridylyltransferase/uridylyl (UTase/UR), 68–69, 70

nitrogen regulator I phosphorylation and, 82, 83

protein II uridylylation/deuridylylation by, 81

purification of, 80, 81

redundancy of, 84–85

Urocanase, 1

Urocanate, 1

UvrC2, 271

vanA gene, 390

VanA protein, 387, 389

Vancomycin resistance, 387–390

vanH gene, 390

VanH protein, 387

VanR protein, 387–390, 394

VanS protein, 387–390, 394

vanX gene, 390

VanX protein, 387

VanY protein, 387

VanZ protein, 387

Vibrio

bioluminescence in, 431–443

virulence factors of, 308

pathogenicity in, 352–353

transcriptional activation in, 356–358

Vibrio fischeri, 362, 442, 443, 449

bioluminescence in, 431, 432–434

virulence factors of, 308

Vibrio harveyi, 431, 432, 439, 441, 442, 443

multichannel sensory circuit of, 434–438

Vibrio parahemolyticus, 306t

vir box, 375–376

vir gene, 344, see also bvg gene

monosaccharides in induction of, 372–373

VirA/VirG-ChvE model of, 376–379

virA gene, 368–369

VirA protein, 34

bacterial virulence factors and, 307

Lux compared with, 438, 439

monosaccharides and, 372

Ti plasmid and, 369–374, 375, 376–379, 380–381

vir regulation by, 376–379

virB gene, 368, 374, 380

virC gene, 368

virD gene, 368

virE gene, 368

VirF protein, 307

virG gene, 368–369, 375, 380

VirG protein, 54

bacterial virulence factors and, 307

monosaccharides and, 372

phosphorylation and, 35

Ti plasmid and, 369, 370, 371, 374–379, 380–381

vir regulation by, 376–379

virH gene, 368

virR gene, 312

VirR protein, 312

vpr gene, 450

Vsr protein, 460

Weak enhancers, 150

Xenorhabdus luminescens, 432

YecB protein, 394

Yersinia, 306, 307, 308, 325

Yersinia enterocolitica, 328

Yersinia pestis, 307, 328

YopN protein, 308