Tuberculosis
PATHOGENESIS, PROTECTION, AND CONTROL
To the generations of scientists and physicians who kept the spirit of inquiry and research on tuberculosis and leprosy alive—and especially to Karel Styblo, Philip D’Arcy Hart, Dennis Mitchison, T. Ramakrishnan, Annik Rouillon, Dixie Snider, Sriram Tripathi, Jacinto Convit, S. K. Noordeen, and Tore Godal.
“Il bacillo non è ancora tutta la tuberculosis.”
(“The bacillus is not yet all there is to tuberculosis.”)

G. Bacelli, ca. 1882
Contents

Contributors ... ix
Preface ... xiii
Acknowledgments ... xv

I. INTRODUCTION TO TUBERCULOSIS

1. Global Burden of Tuberculosis. Dixie E. Snider, Jr., Mario Raviglione, and Arata Kochi ... 3
3. Overview of Clinical Tuberculosis. Philip C. Hopewell ... 25
4. Epidemiology of Tuberculosis. P. G. Smith and A. R. Moss ... 47
5. Biological Safety in the Experimental Tuberculosis Laboratory. W. Emmett Barkley and George P. Kubica ... 61
6. Cultivation of Mycobacterium tuberculosis for Research Purposes. Lawrence G. Wayne ... 73
7. Current Laboratory Methods for the Diagnosis of Tuberculosis. Leonid B. Heifets and Robert C. Good ... 85

II. ANIMAL MODELS OF TUBERCULOSIS

8. Mouse Model of Tuberculosis. Ian M. Orme and Frank M. Collins ... 113
9. Guinea Pig Model of Tuberculosis. David N. McMurray ... 135
10. Rabbit Model of Tuberculosis. Arthur M. Dannenberg, Jr ... 149
11. Tuberculosis in Wild and Domestic Mammals. Charles O. Thoen ... 157

III. GENETICS OF MYCOBACTERIUM TUBERCULOSIS

14. Transposition in Mycobacteria. Ruth A. McAdam, Christophe Guilhot, and Brigitte Gicquel ... 199
15. Homologous Recombination, DNA Repair, and Mycobacterial recA Genes. M. Joseph Colston and Elaine O. Davis ... 217
17. Expression of Foreign Genes in Mycobacteria. Jeanne E. Burlein, C. Kendall Stover, Shawn Offutt, and Mark S. Hanson ... 239
18. Molecular Genetic Strategies for Identifying Virulence Determinants of *Mycobacterium tuberculosis*. William R. Jacobs, Jr., and Barry R. Bloom... 253

IV. PHYSIOLOGY OF MYCOBACTERIUM TUBERCULOSIS

23. Metabolism of *Mycobacterium tuberculosis*. Paul R. Wheeler and Colin Ratledge ... 353

V. IMMUNOLOGY AND PATHOGENESIS OF TUBERCULOSIS

25. T-Cell Responses and Cytokines. Peter F. Barnes, Robert L. Modlin, and Jerrold J. Ellner ... 417
29. Pathogenesis of Tuberculosis in Human Immunodeficiency Virus-Infected People. Sebastian Lucas and Ann Marie Nelson ... 503

VI. NEW APPROACHES TO PREVENTION AND TREATMENT OF TUBERCULOSIS

30. Molecular Approaches to the Diagnosis of Tuberculosis. Thomas M. Shinnick and Vivian Jonas ... 517
32. Strategies for New Drug Development. Douglas B. Young ... 559
33. Molecular Epidemiology of Tuberculosis. Peter M. Small and Jan D. A. van Embden ... 569
34. Issues in Operational, Social, and Economic Research on Tuberculosis. Christopher J. L. Murray ... 583

Index ... 623
Contributors

Åse Bengård Andersen
Mycobacteria Department, Sector for Biotechnology, Statens Seruminstitut, DK-2300 Copenhagen, Denmark

W. Emmett Barkley
Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815

Peter F. Barnes
HMR 904, University of Southern California School of Medicine, 2025 Zonal Avenue, Los Angeles, CA 90033

Joseph H. Bates
Department of Medicine, University of Arkansas School for Medical Sciences, John L. McClellan Memorial Veterans' Hospital, 4300 West 7th Street, Little Rock, AR 72205

Gurdyal S. Besra
Department of Microbiology, Colorado State University, Fort Collins, CO 80523

Barry R. Bloom
Howard Hughes Medical Institute and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

Patrick J. Brennan
Department of Microbiology, Colorado State University, Fort Collins, CO 80523

Jeanne E. Burlein
MedImmune Inc., 35 West Watkins Mill Road, Gaithersburg, MD 20878

John Chan
Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467

Delphi Chatterjee
Department of Microbiology, Colorado State University, Fort Collins, CO 80523

Stewart T. Cole
Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France

Frank M. Collins
The Trudeau Institute, Saranac Lake, NY 12983

M. Joseph Colston
National Institute for Medical Research, Mill Hill, London NW7 1AA, England

Nancy D. Connell
Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103

Jack T. Crawford
Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333
x Contributors

Thomas M. Daniel
Center for International Health, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106

Arthur M. Dannenberg, Jr.
Department of Environmental Health Sciences, School of Hygiene and Public Health, The Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205-2179

Elaine O. Davis
National Institute for Medical Research, Mill Hill, London NW7 1AA, England

Katharine A. Downes
Center for International Health, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106

Philip Draper
National Institute for Medical Research, Mill Hill, London NW7 1AA, England

Jerrold J. Eliner
Division of Infectious Diseases, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4984

Joseph A. Falkingham III
Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Paul E. M. Fine
London School of Tropical Medicine and Hygiene, Keppel Street, London WC1E 7HT, United Kingdom

Brigitte Gicquel
Unité de Génétique Mycobactérienne, Département de Bactériologie et Mycologie, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris Cedex 15, France

Robert C. Good
National Center for Infectious Diseases, Centers for Disease Control and Prevention, Mailstop C-09, 1600 Clifton Road, N.E., Atlanta, GA 30333

Christophe Guilhot
Unité de Génétique Mycobactérienne, Département de Bactériologie et Mycologie, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris Cedex 15, France

Mark S. Hanson
MedImmune Inc., 35 West Watkins Mill Road, Gaithersburg, MD 20878

Graham F. Hatfull
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15230

Leonid B. Heifets
National Jewish Center for Immunology and Respiratory Medicine, 1400 Jackson Street, Denver, CO 80206

Philip C. Hopewell
University of California, San Francisco, and Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital, 1001 Potrero Avenue, San Francisco, CA 94110

Juraj Ivanyi
MRC Tuberculosis and Related Infections Unit, Clinical Sciences Centre, London W12 ONN, United Kingdom
Contributors

William R. Jacobs, Jr.
Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461

Vivian Jonas
Gen-Probe Incorporated, 9880 Campus Point Drive, San Diego, CA 92121

Stefan H. E. Kaufmann
Department of Immunology, University of Ulm, Albert-Einstein-Allee 11, D-89070 Ulm, Germany

Arata Kochi
Tuberculosis Programme, World Health Organization, CH-1211, Geneva 27, Switzerland

George P. Kubica
2323 Walton Place, Atlanta, GA 30338

Sebastian Lucas
Department of Histopathology, University College London Medical School, London WC1, United Kingdom

Ruth A. McAdam
Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461

David N. McMurray
Department of Medical Microbiology and Immunology, Texas A&M University Health Science Center, College Station, TX 77843-1114

Robert L. Modlin
Division of Dermatology, 52-121 CHS, University of California Los Angeles School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90024

Andrew R. Moss
Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94110

Christopher J. L. Murray
Harvard Center for Population and Development Studies, Harvard School of Public Health, 9 Bow Street, Cambridge, MA 02138

Ann Marie Nelson
Division of AIDS Pathology M003B, Armed Forces Institute of Pathology, Washington, DC 20306-6000

Hiroshi Nikaido
Department of Molecular and Cell Biology, c/o Stanley/Donner Administrative Services Unit, 229 Stanley Hall, Berkeley, CA 94720

Shawn Offutt
MedImmune Inc., 35 West Watkins Mill Road, Gaithersburg, MD 20878

Ian M. Orme
Mycobacteria Research Laboratories, Department of Microbiology, Colorado State University, Fort Collins, CO 80523

Colin Ratledge
Department of Applied Biology, University of Hull, Hull HU6 7RX, United Kingdom

Mario Raviglione
Tuberculosis Programme, World Health Organization, CH-1211, Geneva 27, Switzerland
Contributors

Graham A. W. Rook
Department of Medical Microbiology, School of Pathology, University College London Medical School, 67-73 Riding House Street, London W1P 7LD, United Kingdom

Thomas M. Shinnick
Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333

Peter M. Small
Division of Infectious Diseases and Geographic Medicine, Beckman Center, Room 251, Stanford University, Stanford, CA 94305-5425

Douglas R. Smith
Collaborative Research Inc., 1365 Main Street, Waltham, MA 02154

Peter G. Smith
Department of Epidemiology and Population Sciences, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom

Dixie E. Snider, Jr.
Office of the Director, Centers for Disease Control and Prevention, Atlanta, GA 30333

C. Kendall Stover
Department of Tuberculosis and Infectious Diseases, PathoGenesis Corp., 201 Elliott Avenue, West, Seattle, WA 98119

Charles O. Thoen
Department of Microbiology, Immunology, and Preventive Medicine, Iowa State University, Ames, IA 50011

Jelle Thole
Department of Immunohaematology and Blood Bank, University Hospital, 2300 RC Leiden, The Netherlands

Jan D. A. van Embden
Unit Molecular Microbiology, National Institute of Public Health and Environmental Protection, P.O. Box 1, 3720 BA, Bilthoven, The Netherlands

Lawrence G. Wayne
Tuberculosis Research Laboratory (151), Department of Veterans Affairs Medical Center, 5901 East Seventh Street, Long Beach, CA 90822

Paul R. Wheeler
Department of Clinical Sciences, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom

Douglas B. Young
Department of Medical Microbiology, St. Mary’s Hospital Medical School, Norfolk Place, London W2 1PG, United Kingdom
Today, as it has been for centuries, tuberculosis remains the leading cause of death in the world from infectious disease. Approximately a third of the world's population has been infected with Mycobacterium tuberculosis and is at risk for developing disease. Globally, tuberculosis accounts for almost 3 million deaths annually and one-fifth of all deaths of adults in developing countries. Tuberculosis is a reemergent problem in many industrialized countries. In the modern world of global interdependency, rapid transportation, expanding trade, and changing social and cultural patterns, tuberculosis in any country is a threat to people in every country. In the context of infectious diseases, there is no place in the world from which we are remote and no one from whom we are disconnected.

Current knowledge of evolutionary biology and genetics makes clear that what is at stake in the battle against infectious diseases is the survival not only of human and animal hosts but of the pathogens themselves, a confrontation that cannot be taken lightly. Human interventions serve as selections for genetic mutations, adaptations, and migrations that enable pathogens to survive. While societies traditionally deal with epidemics and outbreaks of infectious diseases in an episodic or discontinuous fashion, the evolutionary process of the pathogens is a continuous one. That elementary truth demands vigilance rather than complacency in applying the tools we have and a continuing scientific effort both to anticipate new threats from infectious pathogens and to develop new tools with which to protect the public health. In the case of tuberculosis, the demise of the disease in the industrialized world has been taken for granted and its persistence in developing countries largely ignored. Support for research dwindled, and the expertise of a generation of scientists and clinicians knowledgeable about tuberculosis was lost.

The current global reemergence of tuberculosis can be attributed to several factors. The compromise of immune mechanisms in human immunodeficiency virus (HIV)-infected individuals that leads either to reactivation of old tuberculous infections or to increased susceptibility to new infection is a major contributor to the increasing incidence of tuberculosis. Other factors are social dislocations, poverty, overcrowding, and a failure to invest in public health infrastructures. Particularly ominous is the emergence of multidrug-resistant tubercle bacilli. In the preantibiotic era, the case fatality rate of untreated tuberculosis was about 50%. With appropriate treatment, cure rates greater than 85% can now be achieved in both HIV-positive and immunocompetent individuals with conventional tuberculosis, even in developing countries. However, the case fatality rates of multidrug-resistant tuberculosis in the United States are about 40% for immunocompetent individuals and over 80% for HIV-infected individuals. Thus, tuberculosis has emerged as a major and devastating global threat to health, and many of the tools currently available for rapid diagnosis, prevention, and treatment are woefully lacking.

The aim of this book is to provide in one volume an overview of the current state of knowledge about tuberculosis and a critical appraisal of the exciting new molecular, immunological, and epidemiological ap-
proaches to understanding and controlling tuberculosis. The emphasis is on research. The authors hope to make existing knowledge and new avenues of research accessible to a new generation of researchers and clinicians. We hope to encourage scientists, clinicians, and students in many disciplines to undertake research on tuberculosis and want to facilitate the rapid generation of new knowledge, insights, and interventions.

Distinguished scientists knowledgeable in major areas of tuberculosis research and control have contributed critical reviews of current understanding and their thoughts on new approaches to each area. For most chapters in this book, I asked world experts to write collaboratively in order to provide balance, multiple perspectives on key issues, and critical delineation of the areas of consensus and contention. The authors were asked to be provocative rather than comprehensive. Our hope is that most chapters will be read with interest by anyone concerned with tuberculosis. Our intention is for the book to serve both as a challenge to scientists knowledgeable about aspects of tuberculosis and as a useful introduction to those with expertise in other disciplines who may wish to apply their knowledge and skills to the problem of tuberculosis. We hope, too, that the book will make accessible to scientists and students in developing countries, where the needs are greatest, the excitement of the new approaches to pathogenesis, resistance, and control.

Acknowledgments

Because of current interest in the problem of tuberculosis, the limited number of experts on the disease are always in great demand. I wish to express my deep appreciation to each of the authors for giving so much of their valuable time and effort to this volume. I am particularly indebted to William R. Jacobs, Jr., and Patrick Brennan for providing continuing advice and wisdom in the planning of this book. Such a project would not have been possible to contemplate without the continuing support of my research from the Howard Hughes Medical Institute. Words cannot repay the dedication and heroic efforts of my secretary, Sandra Glass, for seeing to it that everything got done. I am very grateful for the commitment and care given to this project by the editorial staff of the American Society for Microbiology, particularly Patrick Fitzgerald, Susan Birch, and Marie Smith, whose contributions have been truly outstanding. Finally, I wish to express my deep appreciation for the patient understanding and support of my wife, Irene, and daughter, Inae, for the many hours I was preoccupied with this book.
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>345</td>
<td>ABC transporter, 345</td>
</tr>
<tr>
<td>42-43</td>
<td>Abdominal tuberculosis, 42-43</td>
</tr>
<tr>
<td>68-69, 86</td>
<td>Access control, laboratory</td>
</tr>
<tr>
<td>97-98, 100</td>
<td>AccuProbe, 97-98, 100</td>
</tr>
<tr>
<td>354, 356</td>
<td>Acetyl coenzyme A, 354, 356</td>
</tr>
<tr>
<td>372</td>
<td>N'-Acetylglucosamine-phosphoryl-polyprenol, 372</td>
</tr>
<tr>
<td>91</td>
<td>Acid-fast staining procedure, 91</td>
</tr>
<tr>
<td>20-21, 114</td>
<td>Acquired immunity, 20-21, 114</td>
</tr>
<tr>
<td>389-415, 476-477</td>
<td>Acquired resistance, 389-415, 476-477</td>
</tr>
<tr>
<td>344-349</td>
<td>Active transport, 344-349</td>
</tr>
<tr>
<td>376</td>
<td>Acyl carrier protein, 376</td>
</tr>
<tr>
<td>378</td>
<td>Acyl-CoA carboxylase, 378</td>
</tr>
<tr>
<td>354</td>
<td>5-Adenosylmethionine, 375-376</td>
</tr>
<tr>
<td>494, 496, 549</td>
<td>Adjuvant, 494, 496, 549</td>
</tr>
<tr>
<td>114, 142, 448</td>
<td>Adoptive transfer, 114, 142, 448</td>
</tr>
<tr>
<td>492</td>
<td>Adrenal dysfunction, 492</td>
</tr>
<tr>
<td>74, 78-80</td>
<td>Aeration, culture of M. tuberculosis, 74, 78-80</td>
</tr>
<tr>
<td>264</td>
<td>Agarase gene, 264</td>
</tr>
<tr>
<td>77, 94</td>
<td>Age distribution of smear-positive tuberculosis, 588</td>
</tr>
<tr>
<td>61-71</td>
<td>Aircraft transportation, 18, 48-49, 472</td>
</tr>
<tr>
<td>315, 317</td>
<td>L-Alanine dehydrogenase, 315, 317</td>
</tr>
<tr>
<td>187-188</td>
<td>Alkaline lysis procedure, 187-188</td>
</tr>
<tr>
<td>264</td>
<td>Alkaline phosphatase reporter gene, 264</td>
</tr>
<tr>
<td>245, 420, 425</td>
<td>α antigen, 245, 420, 425</td>
</tr>
<tr>
<td>560</td>
<td>Amikacin, 560</td>
</tr>
<tr>
<td>314-315</td>
<td>Amino acids biosynthesis, 314-315</td>
</tr>
<tr>
<td>346</td>
<td>D isomers, 346</td>
</tr>
<tr>
<td>356</td>
<td>Metabolism, 356</td>
</tr>
<tr>
<td>343, 346-347</td>
<td>Transport, 343, 346-347</td>
</tr>
<tr>
<td>342-343</td>
<td>Aminoglycosides resistance, 342-343</td>
</tr>
<tr>
<td>341-342</td>
<td>Self-promoted uptake, 341-342</td>
</tr>
<tr>
<td>399</td>
<td>S-Aminoethylvalinate synthase, 399</td>
</tr>
<tr>
<td>367</td>
<td>p-Aminosalicylic acid (PAS), 367</td>
</tr>
<tr>
<td>369, 560</td>
<td>Mechanism of action, 369, 560</td>
</tr>
<tr>
<td>340</td>
<td>Movement into cells, 340</td>
</tr>
<tr>
<td>342</td>
<td>Resistance, 342</td>
</tr>
<tr>
<td>560</td>
<td>Structure, 560</td>
</tr>
<tr>
<td>393-394, 406, 488</td>
<td>Ammonia, production by M. tuberculosis, 393-394, 406, 488</td>
</tr>
<tr>
<td>27, 35</td>
<td>Anemia, 27, 35</td>
</tr>
<tr>
<td>344-349</td>
<td>Animal model</td>
</tr>
<tr>
<td>135-147</td>
<td>guinea pig, 135-147</td>
</tr>
<tr>
<td>20</td>
<td>Historical aspects, 20</td>
</tr>
<tr>
<td>78</td>
<td>Inoculation of animals, 78</td>
</tr>
<tr>
<td>113-134</td>
<td>Mouse, 113-134</td>
</tr>
<tr>
<td>149-156</td>
<td>Rabbit, 149-156</td>
</tr>
<tr>
<td>4, 585, 587, 590</td>
<td>Annual risk of infection, 4, 585, 587, 590</td>
</tr>
<tr>
<td>518</td>
<td>Antibody detection tests, 518</td>
</tr>
<tr>
<td>451</td>
<td>Antibody response, 451</td>
</tr>
<tr>
<td>441-442</td>
<td>Genetics, 441-442</td>
</tr>
<tr>
<td>518</td>
<td>Antigen(s), 518</td>
</tr>
<tr>
<td>585-587, 590</td>
<td>Identification and isolation, 518</td>
</tr>
<tr>
<td>309-310</td>
<td>Classic methods, 309-310</td>
</tr>
<tr>
<td>369, 560</td>
<td>Mechanism of action, 369, 560</td>
</tr>
<tr>
<td>369</td>
<td>5-Aminolevulinate synthase, 369</td>
</tr>
<tr>
<td>367</td>
<td>p-Aminosalicylic acid (PAS), 367</td>
</tr>
<tr>
<td>342</td>
<td>Resistance, 342</td>
</tr>
<tr>
<td>560</td>
<td>Structure, 560</td>
</tr>
<tr>
<td>276, 373-376</td>
<td>Attachment of mycolic acids, 276, 373-376</td>
</tr>
<tr>
<td>371-373</td>
<td>Metabolism, 371-373</td>
</tr>
<tr>
<td>298, 562</td>
<td>Arabinomannan, 298, 562</td>
</tr>
<tr>
<td>406</td>
<td>L-Arginine-dependent cytotoxic mechanism, 406</td>
</tr>
<tr>
<td>314-315</td>
<td>antA gene, 314-315</td>
</tr>
<tr>
<td>449-450</td>
<td>Arthritis, adjuvant, 449-450</td>
</tr>
<tr>
<td>42</td>
<td>Ascitic fluid, 42</td>
</tr>
<tr>
<td>229</td>
<td>AsnI restriction profile, 229</td>
</tr>
<tr>
<td>29, 473</td>
<td>Atelectasia, 29, 473</td>
</tr>
<tr>
<td>354, 356</td>
<td>ATP production, 354, 356</td>
</tr>
<tr>
<td>547-548</td>
<td>Attenuated Mycobacterium tuberculosis vaccine, 547-548</td>
</tr>
<tr>
<td>286, 291</td>
<td>Attenuation indicator lipid, 286, 291</td>
</tr>
<tr>
<td>Environmental</td>
<td>Atypical mycobacteria, 286, 291</td>
</tr>
<tr>
<td>495-497</td>
<td>Autoimmune disease, 495-497</td>
</tr>
<tr>
<td>450</td>
<td>Autoimmune disease, 449-450</td>
</tr>
<tr>
<td>262-263</td>
<td>Auxotrophic mutants, 262-263</td>
</tr>
<tr>
<td>265-266</td>
<td>in vivo expression assay, 265-266</td>
</tr>
<tr>
<td>548</td>
<td>Auxotrophic vaccine, 548</td>
</tr>
<tr>
<td>Virulence mutants</td>
<td>Avirulent mutants, see Virulence mutants</td>
</tr>
<tr>
<td>437-458</td>
<td>B cells, 437-458</td>
</tr>
<tr>
<td>91-92</td>
<td>Bacille Calmette-Guérin, see BCG</td>
</tr>
<tr>
<td>94-95</td>
<td>BACTEC 12B vial, 94-95</td>
</tr>
<tr>
<td>94</td>
<td>BACTEC TB-460 system, 94</td>
</tr>
</tbody>
</table>
BACTEC test
indirect qualitative test for drug susceptibility, 107
MIC determination, 107-108
Bacteriophage, see Mycobacteriophage
Bail, O., 390
BCG, 25, 494
historical aspects, 21
infection, 391
rabbit model, 154-155
insertion mutations, 262-263
isolation, 256
Bcg gene, 405-406, 464, 540
BCG vaccine, 154-155, 213, 256, 322, 403, 437, 531-557, 589, 616
case-control studies, 536-537
cohort studies, 536-537
cost-effectiveness, 552, 592
development, 136-140
effect on establishment of pulmonary lesions, 479
future trials, 550-551
groups targeted for, 550-551
heterogeneity, 539
in HIV-infected persons, 533
impact, 551-552
long-term duration of immunity, 551-552
mechanism of protection, 544-547
observational studies, 534-537
origins, 531-532
parent strains, 532
production, 532
protective efficacy, 534-538, 591-593
duration, 592-593
randomized control trials, 534-538
recombinant, 246-248, 547
repeated vaccination, 552, 592-593
route and dose of immunization, 549-550
safety, 533
variation in protective efficacy, 592
difference between vaccines, 539
environmental mycobacterial infections, 542-544
genetic differences in human populations, 540
methodological flaws in studies, 538-539
protection against endogenous and exogenous
infection, 541-542
virulence of M. tuberculosis strains, 540-541
viability, 532
worldwide usage, 591-593
BCG-a antigen, 425
BCG-osis, 533
Biological safety
biosafety level 2, 86, 88
biosafety level 3, 62, 86-88
community standards, 69
containment, 62-69
emergency response guidelines, 69-70
experimental tuberculosis laboratory, 61-71
laboratory practices, 63-64
medical surveillance, 70
mycobacteriology laboratory, 85-89
safety guidelines, 62
safety training, 63, 86
Biological safety cabinet, 64-68, 86, 88
spills within, 69-70
Bioremediation, 246
Blood specimen, 97-98
Bone, see Skeletal tuberculosis
Bovine tuberculosis, 51, 448
Breath sounds, 29
Bronchiectasis, 28
Bronchoalveolar lavage, 32, 34-35
Broncholithiasis, 28
Bronchopneumonia, 473, 478
Bronchoscopy, 32, 35
Bronté family, 19-20
Burden of tuberculosis, 583-591, 616
Calcification, 474
Calcitriol, see 1,25-Dihydroxyvitamin D
Calcium uptake, 348-349
Calmette, A., 531-532
Camel, 158-159
Capsule, 276-277
Carbohydrates
M. tuberculosis, 285-306
metabolism, 356
Carbon source, 354
d-D-Carboxypeptidase, 372
Cardiolipin, 337
Carrier-mediated transport, 343-346
Case detection, 52, 569, 592, see also Diagnosis of tuberculosis
gender differences, 590
Case identification, 599-617
Caseous lesion, 152-154, 459, 463, 467-472, 478, 495, 507
Caseous necrosis, 155, 459-460, 464-466, 469-470, 496
Cat, 158, 161
Catalase, plasmid-encoded, 192
Catalase test, heat-stable, 103-104
Cattle, 157-158, 189, 448
Cavity formation, 29-30, 460, 471-478, 506
Cell division, 280-281
Cell envelope
biosynthesis, 359
components on cell surface, 378-379
fractionation, 273
growth rate and, 358-359
lipids, 285-306
lipoglycans, 296-300
metabolism, 370-378
models, 277-279
nature, 272-273
ultrastructure, 271-278
Cell lysis, 186, 520
Cell membrane, see Plasma membrane
Cell wall, 272, 300, 321
biosynthesis, drug targets, 561-562, 565
lipoglycans, 296-300
model, 334-335
paired fibrous structures, 279-280
permeability, 343
proteins, 280-281, 323-324
structure, 333-337
ultrastructure, 275-277
Cell wall skeleton, 275
Cell wall-deficient forms, 186, 193
Cellular immunity, 476–477
Central nervous system tuberculosis, 26–27, 33, 40–42
Centrifuge, containment equipment, 67–68, 88
Cephalosporins
 movement into cells, 337–339
 resistance, 342
Chase, Merrill, 21, 114, 390
Chemical-energy coupling, direct, 345
Chemiosmotic coupling, 344–345
Chemoprophylaxis, 517–518, 569, 578, 593–599, 616
 adverse effects, 596
 cost-effectiveness, 597–598
 decision analyses, 597
 direct and indirect effects, 594–596
 immunocompetent hosts, 594–596
 immunocompromised hosts, 598–599
 potential role, 599
Chemotherapy, 52, 616–617
 combination preparations, 610
 completion, 606–607
 compliance, see Compliance
duration, 564
evaluation in mouse model, 114
HIV-positive patients, 609
measuring outcomes, 606–608
multidrug resistant tuberculosis, 609–610
regimens, 608–610
self-administered, 610–611
short-course, 608–610, 614
smear-negative tuberculosis, 615–616
supervised, 611–612
Chest radiograph
 disseminated tuberculosis, 35
 pulmonary tuberculosis, 28–32, 601–603
Chloramphenicol resistance, 242
Chopin, Frederick, 16–17
Choroidal tubercle, 35
CIE technique, see Crossed-immunoelectrophoresis technique
Ciprofloxacin
 mechanism of action, 561
 movement into cells, 341
 resistance, 342
Claisen-type condensation reaction, 293
Cleared-lysis technique, 187
Clinical tuberculosis, 25–46, 417–418
HIV-infected patients, 53–55, 505
infection versus, 47
risk of, 48–51
signs and symptoms, 603–604
site of involvement, 25–26
systemic and remote manifestations, 26–27
Clofazimine, 340
Clonal relationships, 569–581
Cloning, 310
Cloning vector
 mycobacteriophage, 165–170, 239–240
 plasmid, 176, 185–186, 192–195, 240–241
Codon usage, 243
Colony-forming unit, 81
Colony morphology, 101
Communal living, 56, 575–576
Community survey, 583
Complement component C5a, 463
Complement receptors, 393, 396, 399
Complementation analysis, 256–259
Compliance, 56, 577, 588, 610–612
 incentives and enhancers, 611
Conjugation, 195, 241
"Consumption," 17
Contact tracing, 52, 446, 597
Containment
 biological safety cabinet, 64–68
 experimental tuberculosis laboratory, 62–69
 facility design, 68–69
 mycobacteriological laboratory, 85–89
 Contig mapping, 228, 230–231
 Control strategies, 52, 583–621
 Copper resistance, 191
 Cord factor, 289, 293, 377, 446, 490
 Cord formation, 92, 96, 101, 289
 Corynebacterium-based shuttle vector, 195
Cosmid library, 228, 230–231
Cosmid pJRD215, 196
Cosmid pYUB18, 230
Cosmid pYUB178, 257
Cosmid pYUB328, 231
Cosmid TBC2, 234–235
Cost-effectiveness
 BCG vaccine, 552, 592
 chemoprophylaxis, 597–598
 chemotherapy, 612–616
Cough, 27–28, 35
 screening patients with, 603–604
Coughing, 48, 472
Crohn's disease, 496
Cross-contamination, laboratory, 576
Crossed-immunoelectrophoresis (CIE) technique, soluble antigens, 309–310, 325, 438
α-Crystallins, 438–439
Cultivation
 aeration, 74, 78–80
 agitation, 78–82
 M. tuberculosis, 73–83
 measurement of growth, 80–82
 medium, see Culture medium
 temperature, 78
 viability of cultures, 80
Culture filtrate, 440–441
 protein profile, 125–126
Culture medium, 74, see also specific types of media
detergent in, 76, 79
glycerol in, 75, 77, 79
inoculation, 78, 94
liquid, 75–77
solid, 77–78, 94
Cure rate, 607–608
Cycloserine
 mechanism of action, 560–561
 movement into cells, 340
 Cycloserine-treated cells, 186–188
Cytokines, 26-27, 312-313, 390, 417-437, 487, 489, 495, see also specific cytokines
excessive release, 490-491
mouse model, 142
immunotherapeutic agents, 429
mouse model, 114, 117, 122-128
protection and immunopathology, 427

Dangerous disseminators, 569
Dapsone
mechanism of action, 560
movement into cells, 340
Decontamination
of laboratory, 64, 67, 69-70, 88
of specimen, 90-91
Dehydroepiandrosterone sulfate (DHEA-S), 492
Delayed-type hypersensitivity (DTH) reaction, 308, 313, 326, 421, 426, 439, 441-446, 460
A5 desaturase, 376
24:0 desaturase, 375
Detergent, culture medium, 76, 79
Detergent lysis, 187
Developing countries, 49, 582-621
HIV infection, 5-6, 503
Tuberculin skin test, 494
Tuberculosis incidence and mortality, 4-5
Deoxyribonucleic acid, see DNA

Diagnostic delay, 605-606
Diaminopimelic acid, 296, 372
Diaminopimelic acid decarboxylase, 314-315
Diagnosis of tuberculosis, 85-100
antibody detection, 518
antigen detection, 518
culture of specimen, 601-606
detection of infected persons, 517-518
diagnostic algorithm, 603
ELISPOT test, 444, 518
tuberculin skin test, 494
tuberculosis incidence and mortality, 4-5
DHEA-S, see Dehydroepiandrosterone sulfate
2,3-Di-O-acyltrehalose, 291-292
Diffusion
across cell wall, 340
facilitated, 344, 346
passive, 344

Drug(s)
permeability of cell wall, 337-343
prevention of iron acquisition, 369
testing with guinea pig model, 136
Drug abuser, 53-56, 576, 588, 597-598
Drug development, 559-567
biochemical approaches, 565
drug synergisms, 563
drug targets, 559-562
factors relevant to drug design, 562-565
genetic and sequencing approaches, 565-566
rapid tests for determining activity, 526-527
screens using reporter mycobacteriophage, 182, 526-527
therapeutic trials, 32-33
Drug resistance, 9-10, 104, see also Multidrug resistance; specific drugs
acquired, 9, 105
definition, 104
differences among species of mycobacteria, 342-343
initial (primary), 105
mechanism, 245-246
Index 627

mutation, 104
permeability factors in, 337–343
plasmid-encoded, 192
porins and, 280–281
primary, 9
selectable marker, 241–242

Drug screens, 378–379

Drug susceptibility testing, 87
BACTEC indirect qualitative test in 12B broth, 107
definitions, 104–105
direct, 105–107
functional approach, 525–526
functional, 526-527
7H11 agar plates by proportion method, 106–107
indirect, 105–107
principles, 105–106
pyrazinamide MIC determination, 108
quantitative BACTEC test for MIC, 107–108
rapid, 524–526
using reporter mycobacteriophage, 179, 525–526

DTH reaction, see Delayed-type hypersensitivity reaction

Dubos liquid medium, 76
Dubos oleic albumin agar, 77
Dust-associated particles, 48

Eastern Europe, 5, 14

Economic impact, 3

Economic research, 583–621
Egg-based medium, 77, 94, 96
Ehrlich, Paul, 18

Electrodetection, 195
Electron microscopy, 271–284
Electroporation, 170, 194–195, 241, 256
Elephant, 158–159

ELISA, see Enzyme-linked immunosorbent assay
ELISPOT test, 444, 518

Elongation factor EF-Tu, 315

Empyema, 37–38

Energy source, 354
5-Enolpyruvylshikimate-3-phosphate synthetase, 314–315
Enteritis, 42
Enterobactin, see Enterochelin

Enterochelin, 362
Envelope, see Cell envelope

Environmental (atypical) mycobacteria, 584–585
infection, protection against tuberculosis, 542–544
vaccine, 548

Enzyme(s), amino acid and protein biosynthesis, 314–315
Enzyme-linked immunosorbent assay (ELISA), 446–447

Epidemic spread, 13–15
Epidemiology, 47–59
annual risk of infection, 4, 585, 587, 590
drug resistance, 9
epidemiological model, 48–51
future trends, 9–10
HIV-associated tuberculosis, 5–10, 23, 53–57, 503, 576
industrialized countries, 7–9
molecular, 569–581
prevalence of infection, 4
trends in tuberculosis rates, 51–52
tuberculosis incidence and mortality, 4–5
worldwide burden of tuberculosis, 3–11, 578, 583–591, 616

Epoxymycolates, 293, 295
Erythromycin, 341

Escherichia coli, surrogate host for cloning virulence genes, 259–260

Establishment of tuberculosis, 462
rabbit model, 150–151

Ethambutol
mechanism of action, 372–373, 560, 562–563
resistance, 342
structure, 560
treatment regimens, 608–610

Ethionamide
mechanism of action, 560, 562
resistance, 524, 562
structure, 560

Evolution, 578–579
Exochelin, 348, 357, 362–367, 563
Exochelin receptor, 367–369

Exotic mammals, 157–162
Experimental tuberculosis laboratory, 61–71
Expression vector
extrachromosomal and integrating modes of replication, 241
phage-based, 239–240
plasmid-based, 240–241
selectable markers, 241–242
transcription and translation initiation, 242–243

Extrachromosomal vector, 241
Extrapulmonary tuberculosis, 33–44, 447
diagnosis, 33–34
HIV-infected patients, 34, 53, 504–508, 511
smear-negative, 599–601
smear-positive, 599–601

Facilitated diffusion, 344, 346
Facility design, 68–69, 87–88

Fatty acid(s)
biosynthesis, 374–377
metabolism, 377
short-chain, gas-liquid chromatography, 100–101
Fatty acid synthase, 375–377
Fatty acyl elongase, 375–377
Fc receptor, 142, 393, 396
Ferric citrate, 369
Ferritin, 361, 363, 399
Fever, 27, 35

Fibronectin-binding protein, 325–326, 425, 441, 444, 447, 563–564

Fibrotic lesion, 474–475

Fluoroquinolone
mechanism of action, 560–561
movement into cells, 341

Fluoroscopy, 603

Foreign genes
expression in BCG, 246–248
expression in mycobacteria, 239–252
expression vector, 241–243
introduction and maintenance
phage-based systems, 239–240
plasmid-based systems, 240
transformation, 241
recombinant vaccines, 246–249
Foreign proteins, 243–245
export, 244–245
posttranslational modifications, 244–245
translational efficiency, 243–244
Fracastoro, H., 17
Freeze-etching technique, 277
Freeze-fracture technique, 277
Fungus ball, 28
β-Galactosidase, 151–152, 263–264, 463, 468, 473–474
Gas-liquid chromatography (GLC), identification of M. tuberculosis, 96, 100–101
Gender, differential impact of tuberculosis, 589–591
Gene expression
foreign genes in mycobacteria, see Foreign genes
mycobacteriophage L5, 178
Gene knockout techniques, 219–220
Gene mapping, 231–232
Gene-disrupted mouse model, 116, 129
Generation time, 74
Genetics
antibody response, 441–442
rabbit model, 155
susceptibility to tuberculosis, 405–406, 462, 540
Genitourinary tuberculosis, 26, 33, 37–39
Genome sequencing, 227–238
cosmid TBC2, 234–235
data management, 233–234
future prospects, 235
large-scale, 231–235
sequence analysis, 234
sequence production, 233
Genome technology, 231–233
Gen-Probe MTD Test, 522–524
Gen-Probe Rapid Diagnostic System, 525
GLC, see Gas-liquid chromatography
Global burden, 3–11, 578, 583–591, 616
Glucocorticoid, 492
Glutamate transport, 346
Glycerol
culture medium, 75, 77, 79
movement into cells, 343
Glycolipids, 246
phenolic, 286, 292, 377–378, 395–396
wall-associated, 278–279
Glycolysis, 354, 356
Glycosylation of proteins, 440, 564
Glycosylphosphatidylinositol, 288
Glycyltransferase, 372
GM-CSF, see Granulocyte macrophage-colony-stimulating factor
Goat, 158, 160
Granulocyte macrophage-colony-stimulating factor (GM-CSF), 123, 126, 418, 421, 427, 545
Granuloma, 34, 36, 44, 122, 141, 153, 389
formation, 120, 391, 404, 437, 490
liquefaction, 404
productive, 402, 404
GroEL protein, 316, 320–322, 360, 438
GroES protein, 317, 320–321, 360, 438, 564
Group translocation, 345
Growth
cell envelope and, 358–359
dynamics, 81–82
limiting factors, 357–360
M. tuberculosis, 74
measurement, 80–81
nucleic acid synthesis and, 358
rates, 357–360
stationary-phase changes, 564–565
stress response and, 359–360
temperature dependence, 78, 191–192
Growth factors, 357
Guérin, C., 531–532
Guinea pig model, 135–147, 158
application to clinical and experimental tuberculosis, 135–137
application of immunological techniques, 141–143
BCG in, 540–541
drug testing, 136
historical aspects, 135
nonpulmonary tuberculosis, 143
protective immunity, 449
pulmonary tuberculosis, 137–141
vaccination, 137–139
7H10 agar, 97
7H11 agar, 94–97
drug susceptibility testing, 106–107
H-2 locus, 441, 443
Handwashing, 64, 88
Health care facility, screening for tuberculosis, 604–605
in autoimmunity, 449–450
hsplO, 438–439
hsp60, 126–128, 445–446, 449
hsp65, 438–439, 442–445, 450, 496–497
hsp70, 438–439
hsp71, 446–447
hsp90, 438
promoters, 243
Heating plate, 88
Heat-stable catalase test, 103–104
Helmholtz, H., 390
Hematogenous dissemination, 152–154, 417, 466–469
Hematologic abnormalities, 27
Hematuria, 39
Hemin, 357
Hemoglobin, 361, 398–399
Hemolytic activity, tubercle bacillus, 393–394, 547
Hemoptysis, 28, 473
HEPA filter, see High-efficiency particulate air filter
Hepatic tuberculosis, 42–43
Hepatitis, isoniazid, 596–597
Herd immunity, 13
Hexokinase, 346
High-efficiency particulate air (HEPA) filter, 65–66, 88
High-molecular-weight high-iron protein (HIP), 367–369
High-performance liquid chromatography (HPLC), identification of *M. tuberculosis*, 95–96, 99–100, 519
HIP, see High-molecular-weight high-iron protein
| Interleukin-1 (IL-1), 126, 142, 391, 397, 418–421, 427, 545 |
| Interleukin-2 (IL-2) receptor, 419, 423, 443 |
| Interleukin-3 (IL-3), 418, 421 |
| Interleukin-4 (IL-4), 119, 126, 391, 397, 418, 421–424, 428, 429, 441–492, 509, 545 |
| Interleukin-4 (IL4) knockout mouse model, 129 |
| Interleukin-5 (IL-5), 142, 418, 421–422, 424, 428, 492, 509 |
| Interleukin-6 (IL-6), 126, 391, 418–421, 428 |
| Interleukin-8 (IL-8), 142, 391, 418, 427, 464 |
| Interleukin-10 (IL-10), 126, 391, 397–398, 418–424, 427–429, 442, 491, 495, 509, 545 |
| Interleukin-12 (IL-12), 126, 391–392, 423, 491, 545 |
| International travel, 578 |
| Intestinal tuberculosis, 42, 506 |
| Intracellular mycobacteria, 92, 281–282, 357, 392–399, 546 |
| Invasin, 400 |
| Invasin gene, 259 |
| IREP, see Iron-regulated envelope protein |
| Iron acquisition, 348, 360–370, 563 |
| functions, 360–361 |
| metabolism, 360–370, 398–399 |
| reduction, 366 |
| Iron-regulated envelope protein (IREP), 367–369 |
| IS, see Insertion sequence |
| Isolation, primary, M. tuberculosis, 94–95 |
| Isoniazid (INH) hepatitis related to, 596–597 |
| historical aspects, 22 |
| mechanism of action, 294, 376, 560, 562 |
| movement into cells, 340 |
| prophylactic, 593–599 |
| in HIV-infected patients, 510 |
| resistance, 10, 245, 325, 342, 524–525, 562–563 |
| structure, 560 |
| treatment regimens, 608–610 |

| Kanamycin mechanism of action, 560 resistance, 242, 256 |
| katG gene, 245, 563 |
| Keats, John, 19 |
| Ketomycolate, 293–294 |
| Killed vaccine, 548 |
| ‘‘King’s Evil,’’ 16 |
| Koch’s molecular postulates, 253–254 |
| Koch’s old tuberculin, 308, 485, 489 |
| Koch’s postulates, 17–18, 135, 253–254 |
| Laboratory errors, 576 |
| Laboratory risk, 62 |
| Laboratory-acquired tuberculosis, 61–71, 85–89, see also Biological safety |
| β-Lactam(s), 337–339, 372, 561 |
| β-Lactamase, 337–339, 372 |
| Lactoferrin, 361, 365–366 |
| Laennec, Theophile, 17 |
| LAM, see Lipoarabinomannan |
| Langhans giant cells, 470, 506–508 |
| Latent tuberculosis, 25, 29, 47, 50 |
| Leader sequence, see Signal peptide |
| Lectin, 373–374 |
| immunoregulatory functions, 298 |
| incapacitation of oxygen radical, 393, 395, 398 |
| mannos-capped, 298–299, 398 |
| structure, 297–300 |
| Lipoplysaccharide, 292 |
| Lipoproteins associated with surface structures, 323–324 |
| membrane, antigenic, 439–440, 450 |
| Lipoylation of peptides, 440 |
| Liquefacton, 153, 459, 471–476, 496 |
| Livestock, 157–162 |
| vaccines, 249 |
| Lobar pneumonia, 473 |
| Local immunity, 480 |
| Lowenstein-Jensen slant, 94, 97, 101 |
| Luciferase, 263–264 |
| Luciferase reporter phage, 179–182, 379, 524–527 |
| Lumbar puncture, 41 |
| Lung biopsy, transbronchial, 32, 34–35 |
| Lupus vulgaris, 16, 489 |
| Lurie, Max B., 20, 449–156, 390, 461 |
| Lymphadenitis, 36, 401, 511 |
| Lymphatic dissemination, 152–153, 467, 469 |
| Lymphatic tuberculosis, 26, 33, 36, 504, 506 |
| Lymphoblasts, 471, 486–487, 492, 495 |
| Lymphotixin, 418, 421–422, 491, 545 |
| lysA gene, 314–315 |
| Lysogenic cycle, mycobacteriophage L5, 177–178 |
| Lysosome, 392–394, 488 |
| Mackness, G. B., 390 |
| Macrophage(s), 390, 419 |
| antimycobacterial effector functions, 392–399 |
| antimycobacterial functions, 390–392 |
| direct toxicity, 487–489 |
| entering liquefied caseum, 475 |
| entering lungs from bloodstream, 463–465 |
| incontinent, 466–468, 473 |
| intracellular mycobacteria, 92, 281–282 |
| in vitro activation, 390–392 |
| mouse model, 125–128 |
| Macrophage–colony-stimulating factor, 126 |
mAGP, see Mycolyl-arabinogalactan-peptidoglycan complex
Major histocompatibility complex (MHC), 419, 486
class I molecules, 400, 403-404, 437, 546
class II molecules, 400, 403-404, 437, 487, 546
Major polymorphic tandem repeat (MPTR), 570-572
Malnutrition, 140-141
Mannophosphoinositides, 337
Mannose receptor, 393, 399
Mannose-capped lipoarabinomannan (Man-LAM), 298-299, 398
Mannosylphosphopolyprenols, 288-289
Mannosyltransferase, 372-373, 375-376
Mapping, 227-238
contig, 228, 230-231
future prospects, 235
gene, 231-232
pulsed-field gel electrophoresis, 228-230
Marble, Alice, 21-22
Marten, Benjamin, 17
MCP-1, see Monocyte chemoattractant protein
Medium, see Culture medium
Membrane anchor, 298
Meningitis, 40-42, 53, 143, 447, 511, 541, 592
HIV-infected patient, 504-506
Mercury resistance, 191, 242
Meromycolate chain, 374-375
Metabolism
M. tuberculosis, 353-385
Metal analog, growth effects, 369-370
Metciniakhoff, E., 390
Metered-dose delivery system, 610
Methoxy mycolates, 293-294
Methylglucolipopolysaccharide, 296
3-O-Methyltransferase, 375-376
MHC, see Major histocompatibility complex
MIC, see Minimum inhibitory concentration
β2-Microglobulin-deficient mouse model, 112-122,
129, 400-401, 486-487, 546
Microscopy, diagnosis of tuberculosis, 601
Middlebrook 7H9 broth, 94, 97
Middlebrook 7H12 broth, 94
Middlebrook media, 77
Middlebrook-Cohn 7H10 agar, 94
Migration inhibition factor, 120
Miliary tuberculosis, 417, 428, 467-469, 478, 507-508, 511, 541, 592
Milk, see Pasteurization of milk
Minimum inhibitory concentration (MIC) pyrazinamide, 108
quantitative BACTEC test, 107-108
Mixed-linked polymerase chain reaction, 572-573
Molecular chaperones, 320, 438
Molecular clocks, 579
Monkey, 158, 160
class I molecules, 400, 403-404, 437, 487, 546
Monoclonal antibody TB72 competition test, 447
Monoclonal antibody techniques, 310-311, 438
Monocyte(s)
BCG-induced antinmycobacterial activity, 545
direct toxicity, 487-489
Monocyte chemoattractant protein (MCP-1), 142, 463
Mononuclear phagocytes, 418-426, 466, 471
Mortality, 4-6, 14, 587-591
Morton, Robert, 17
Mouse lung, as "culture media," 77
Mouse model, 113-134, 158
activated macrophages, 486
adoptive immunity, 114
αβ-T-cell-deficient, 400
drug evaluation, 114
evolution, 113-115
experimental infection of mice, 115-118
gamma interferon knockout mouse, 129
γδ knockout mouse, 129
γδ T cells, 445
gene-disrupted mouse, 116, 129
genetics, 441-442
host resistance, 405-406
of disease resistance, 405-406
of protective immunity, 449
retroviral infection, 128-129
scid mouse, 128
target antigens in immune response, 124-126
T-cell repertoire, 442-443
TXB mouse, 128
TxCD4+ mouse, 128-129
Mycetoma, 28
Mycobacterial envelope, see Cell envelope
Mycobacterial membrane, see Plasma membrane
Mycobacterial wall, see Cell wall
Mycobacteriology laboratory
biological safety, 85-89
detection of laboratory errors, 576
Mycobacteriophage, 165-183
cloning vector, 165-170, 239-240
gene, 167-168
introduction of foreign DNA in mycobacteria, 167-169
luciferase reporter, 179-182
molecular genetic systems, 166
optimizing DNA uptake, 166-167
Mycobacteriophage D29, 171, 196
Mycobacteriophage 13, 170-171
Mycobacteriophage L1, 170-171
Mycobacteriophage L5, 171-179
attachment site, 172, 175-176
clear-plaque mutants, 177
excisionase gene, 176-177
gene expression, 178
genome
 essential and nonessential regions, 178-179
 structure, 171-174
host range, 171
immunity genes, 177-178
integrating plasmids based on, 195
regulation of lysogeny, 177-178
site-specific integration, 175-177
transposon delivery, 213
tRNA genes, 172, 176
virion structure and assembly, 174-175
Mycobacteriophage phAE40, 181
Mycobacteriophage TM4, 168-170, 181
M. avium
 infection, protection against tuberculosis, 542-543
insertion sequences, 204-206
plasmids, 188-190
Mycobacterium bovis, virulence mutants, 256
Mycobacterium bovis BCG, see BCG
Mycobacterium fortuitum
 infection, protection against tuberculosis, 542-543
 plasmids, 190
Mycobacterium gaussia, 542-543
Mycobacterium intracellularare, insertion sequences, 204-206
Mycobacterium kansasii, infection, protection against tuberculosis, 542-543
Mycobacterium leprae, recA gene, 222-223
Mycobacterium microti vaccine, 543, 548-549
Mycobacterium paratuberculosis, insertion sequences, 204-206
Mycobacterium scrofulaceum, plasmids, 190
Mycobacterium smegmatis
 insertion sequences, 207-209
 plasmid transformation, 193-194
Mycobacterium tuberculosis
 antigens, 307-332, 424-426, 438-441, 493-494, 549
 auxotrophs, 263-266
 carbohydrates, 285-306
 cultivation, 73-83
 drug targets, 559-562
 general characteristics, 73-75
 insertion mutations, 262-263
 insertion sequences, 206-207
 intracellular, 281-282, 392-399
 invasion of nonphagocytic cells, 399-400
 lipids, 285-306
 membrane permeability, 333-352
 metabolism, 353-385
 plasmids, 188
 primary isolation, 94-95
 proteins, 307-332
 strain differences in virulence, 540-541
 transport into cells, 333-352
 ultrastructure, 271-274
virulence mutants, 256
Mycobacterium vaccae, immunotherapeutic agent, 429, 494, 548
Mycobacterium W, 548
Mycobactin, 295, 348, 357, 362-368, 399, 563
Mycocerosate synthase, 206-207
Mycocerosic acids, 286-287, 370
α-Mycolates, 293-295, 375
α'-Mycolates, 293
Mycolic acids, 275-276, 289-297, 333-335, 370, 519
attachment, 374-377
biosynthesis, 374-377
drug targets, 561-562
high-performance liquid chromatography, 99-100
structure of cell wall, 277-279
Mycoplapanic acids, 291-292
Mycoplalic acids, 291
Mycoly-arabinogalactan-peptidoglycan complex (mAGP), 296-297
Mycopolytransferase, 373-374, 377
NADH-dependent reductase, 366
NALC-NaOH method, specimen processing, 90-91
NAP test, 95, 99
Native Americans, 15, 405
Natural history of tuberculosis, 49-51, 54-55, 594-595, 599-601
mouse model, 115-116
Natural killer (NK) cells, 392, 402, 404, 545
Necrotizing lesion, 389-390
Needle aspiration biopsy, lung, 32
Negative staining, cell envelope, 279
Neutrophil activation protein-1, 142
Nicacin test, 101-102
Nitrate reduction test, 101-102
Nitric oxide synthase, 396-399
Nitrogen oxides, see Reactive nitrogen oxides
Nitrogen source, 356
NK cells, see Natural killer cells
Nocardiosis, 510-511
Noncompliance, see Compliance
Nonuberculous mycobacteria, 96-97
North America, 7-8, 14-15
Nosocomial tuberculosis, 8, 55-56, 575
Nramp phenotype, 405-406
Nucleic acid(s), biosynthesis, 358, 379
drug targets, 560
Nucleic acid probe, diagnosis of tuberculosis, 95-98, 519-520
Nutrient
 in host tissues, 354-355
 transport, 343
 amino acids, 346-347
 carrier-mediated, 343-346
 regulation, 345-346
 sugars, 347-348
Nutritional immunity, 369
Nutritional status, T cells and, 140-141
Oflxacin
 mechanism of action, 561
 susceptibility testing, 106
Oleic acid, culture medium, 191-192
Operational research, 583-621
Outbreak, 7-8, 55
Ovatransferrin, 361
Overcrowding, 15
Oxaloacetate, 354
Oxidative burst, see Respiratory burst
Oxygen requirement, 357

PANTA, 94
Paracentesis, 42
PAS, see p-Aminosalicylic acid
Passive diffusion, 344
Pasteurization of milk, 51, 157
Pathogenesis mechanism, 485-501
pulmonary tuberculosis, 459-483
stage I: onset, 461-462, 465
stage II: symbiosis, 462-465
stage III: ccaseous necrosis, 464-466
stage IV: tissue-damaging and macrophage-activating immune response, 466-471
stage V: liquefaction and cavity formation, 471-476
tuberculosis in HIV-infected patient, 503-513
Paucibacillary infection, 447, 518
PCR, see Polymerase chain reaction
Pediatric tuberculosis, 510
Pellicle formation, 74-75
Penicillin-binding protein, 372, 561
Penta-arabinan motif, 377
Pentose phosphate pathway, 354, 356
Pentoxifylline, 428
Phagolysosome, 488, 546-547
Phagosome, 281-282, 392-394
Phasmid, see Shuttle phasmid
Phenolic glycolipids, 286, 292, 377-378, 395-396
Phenolphthiocerols, 286-287
Phenotypic characteristics, strain-specific, 578
PhoS protein, 317, 440
Phosphate transport, 323-324, 440, 563
Phosphatidyldithanolamine, 337
Phosphatidylinositol, 287, 298
Phosphatidylinositol dimannoside, 288
Phosphatidylinositol hexamannoside, 288
Phosphatidylinositol mannoside (PIM), 273, 278-279, 288, 299, 370-371
Phosphatidylinositol pentamannioside, 288
Phosphodiacylglycerols, 287
Phospholipase, 370
Phospholipids, 287-289
membrane-associated, 370
metabolism, 370-371
wall-associated, 278
Phthiocerols, 286-287, 377-378, 562
Phthioadiolone, 286
Phthiotriols, 286
"Phthisis," 16
Pig, 158, 160-161, 189
PIM, see Phosphatidylinositol mannoside
Plasma membrane, 272
metabolism, 370-371
permeability, 333-352
proteins associated with, 323-324
structure, 333-337
transport across, 321-322
ultrastructure, 273-275
Plasmid(s), 176, 185-198, 256
cloning vector, 185-186, 192-195, 240-241
conditionally replicative, 212
detection by dot-blot hybridization, 188
evolution, 190
functions coded by, 185
gram-negative, inherited stably by mycobacteria, 196
isolation from mycobacteria, 186-187
M. avium, 188-190
M. fortuitum complex, 190
M. scrofulaceum, 190
M. tuberculosis, 188
plasmid-encoded functions
background, 190-191
catalase, 192
drug resistance, 192
effect of oleic acid, 191-192
growth temperature, 191-192
mercury and copper resistance, 191
restriction and modification, 191
virulence, 192
rapid screening methods, 187-188
transfer
coujigation, 195
electroduction, 195
electroporation, 194-195
problems, 193
transformation of M. smegmatis, 193-194
Plasmid pAL5000, 167, 170, 186, 240
colorization, 192-193
cloning vector, 195
temperature-sensitive inheritance, 193
Plasmid pB4, 193
Plasmid pJ3666, 194, 196
Plasmid pLR7, 189-190
Plasmid pMSC1, 195
Plasmid pMSC262, 195
Plasmid pMV261, 195, 240-241
Plasmid pMV361, 195, 240
Plasmid pMY10, 195
Plasmid pRR3, 195
Plasmid pSGMU37, 194, 196
Plasmid pVT2, 189–190
Plasmid pYT72, 195
Plasmid RSF1010, 195–196
Pleural biopsy, 37
Pleural effusion, 143
Pleural tuberculosis, 26, 36–37
Pleuritis, 37, 44, 143, 417–422, 425, 428
Pneumonia, 473–474, 478
RecA protein
DNA repair, 218
homologous recombination, 218–219
SOS response, 217–218
structure, 220–221
Recombinant DNA techniques, 438
antigen identification and isolation, 310–311
Recombinant vaccine, 246–249, 547
Recombination, homologous, 217–226, 259
as laboratory tool, 219–220
RecA protein in, 218–219
Reinfection, exogenous, 49–50, 426, 466, 477–478
BCG vaccine and, 541–542
epidemiologic studies, 577–578
guinea pig model, 143
HIV-infected patient, 55, 503–504, 510, 577–578
Renal tuberculosis, 39
Repetitive DNA elements, 569–571
Reporter genes, 263–264
Reporter mycobacteriophage, 524
drug screens, 526–527
drug susceptibility testing, 525–526
Repressor, mycobacteriophage L5, 177
Respirator, dust/mist, 67–68
Respiratory burst, 390, 393–397
Restriction analysis, 254–255
Restriction enzyme, 229, 572
Restriction fragment length polymorphism (RFLP), see also DNA polymorphisms
epidemiologic studies, 572
Restriction-modification system, plasmid-encoded, 191
Retroviral infection, mouse model, 128–129
Reverse mutagenesis, 203
RFLP, see Restriction fragment length polymorphism
Rheumatoid arthritis, 495–497
Ribosomal RNA, 525
Rifampin
mechanism of action, 560–561
resistance, 10, 524–525, 561
treatment regimens, 608–610
Rifamycin
movement into cells, 340
resistance, 342
RNA polymerase, 358, 524–525, 561, 564–565
RNase, see Reactive nitrogen oxides
Rotary shaker, flask culture, 79–80
Ruthenium red staining, 276–277
Safety, see also Biological safety
BCG vaccine, 533
Salicylic acid, 362, 364, 366–367
Sampling survey, 583
Sanatoria, 22, 51
Sararacen Lake, New York, 18
Sarcoidosis, 495–496
Screening for tuberculosis
active or passive strategies, 603–604
case-finding methods, 604
entry criterion for, 603
at health care facility, 604–605
"Scrofula," 16, 20
SDA, see Strand displacement amplification
Secondary gene products, 246
Secondary infection, 595–596, 598
Secondary transmission, 596
Seed pool, 78
Selectable markers, 241–242, 256
Septi-Chek AFB system, 94
Serodiagnosis, 446–448
Seronegative tuberculosis, 451
2SH/6HE regimen, 609
Sheep, 158, 160–161
Shock, tuberculin, 491
Short-course chemotherapy, 608–610, 614
Shuttle phasmid, 168–170, 239–240, 255–256
phAE1, 240
TM4, 169–170
Shuttle plasmid pAL8, 194
Shuttle vector, 241
Corynebacterium-based, 195
Shwartzman reaction, 489
Siderophore, 348, 361–370, 398–399, 563
extracellular, 363
intracellular, 362
Signal peptide, 321, 323, 440–441
Skeletal tuberculosis, 15, 26, 39–40
Skin tuberculosis, 16, 489
S-layer glycoprotein, 280
Smear examination, 91–94
Smear preparation, 91
biological safety, 87
Smear-negative tuberculosis, 599–601, 615–616
Smear-positive tuberculosis, 50–52, 95, 599–601
Sneeze, 48
Social impact, 3
Social research, 583–621
Socioeconomic development, 51–52
SOD, see Superoxide dismutase
SodA protein, 317, 360
SOS response, 217–218
South America, 15, 53, 587
Southern blotting, epidemiologic studies, 572–575
Sparfloxacin, 561
Species identification, 519
Specimen collection, 89–90
Specimen processing, 90–91
biological safety, 87
Specimen shipment, 88, 90
Specimen transport, 89–90
Spills (laboratory accident), 69–70, 89
Spinal tuberculosis, 39–40
prehistoric peoples, 15–16
Sputum specimen, 31, 34–35
AFB-positive, 95
collection, 89–90
examination, 602–606
gene amplification, 520
induced, 90
technique for collection, 31–32
smear preparation, 91
Staining, 91–94
Stevens-Johnson syndrome, 609
Stevenson, Robert Louis, 19
2STH/10–16TH regimen, 608–609
Strand displacement amplification (SDA), 520–521
Strand displacement amplification (SDA), 520–521
Streptomycin
historical aspects, 22
mechanism of action, 560
resistance, 560
treatment regimens, 608–610

Stringent response, 359–360
Subtractive mRNA library, 259
Subunit vaccine, 451, 549
Sugar transport, 343, 347–348

Suicide vector, 212, 262–263

Sulfatides, 290–291, 393–396
Sulfolipids, 377
Sulfonamides
mechanism of action, 560
resistance, 242
Superantigen, 426
Superoxide dismutase (SOD), 324–325, 360, 440, 564
Surveillance, 3
laboratory personnel, 70, 89
population-based, 576–577
Suter, E., 390
Sylvius, Franciscus, 17
Symport, 344–345
Systemic immunity, 480

T cells, 311–313, 389, 468, 478, 480, 486
acquired resistance, 400–403
activated, 119
αβ, 400, 404–405, 420, 427, 448–449
antigen recognition, 420, 424–426
antigens, 402–403
blood count, 504–505, 508
cytokines produced by, 421–423
Th1, 421–423, 437, 442, 489, 491–495, 509, 545
Th2, 421–423, 437, 442, 489, 491–493, 495, 509, 545
CD44, 119
CD45RA, 421
CD45RB, 119
cytokines and, 417–435
cytolytic, 119, 126, 402, 423, 439, 486–487, 546–547
delayed-type hypersensitivity effector, 117, 119
functions, 402
γδ, 122–126, 400–405, 420, 424, 427, 437, 445–446, 449, 487
guinea pig model, 140–143
memory, 117, 120–121, 313, 420–421, 426–427
mouse model, 114, 116–126, 128, 130
nutritional status and, 140–141
protective, 117, 119–120
repertoire, 442–445, 451
specificity and function in tuberculosis, 437–458
subsets, 404–405, 426
TB Broth Base, 76–77
TCH susceptibility test, 101, 103
Teicoplanin, 561
Temperature effect, growth of M. tuberculosis, 78
Tetracycline, 340
Tetrahydrobiopterin, 397, 486
Tetrahydrofolate pathway, 560
TGF-β, see Transforming growth factor beta
Thalidomide, 428–429, 490
Therapeutic vaccine, 551
Thiacetazone, 598, 608–610
Thin-layer chromatography, identification of M. tuberculosis, 96
Thiophene-2-carboxylic acid hydrazide, see TCH susceptibility test
Thoracentesis, 37
Thyroiditis, 496
Ticarcillin, 342
Tissue damage, 459–463, 485–491
TMA, see Transcription-mediated amplification
TNF, see Tumor necrosis factor
Training, laboratory safety, 63, 86
Transcription, expression vector, 242–243
Transcription-mediated amplification (TMA), 522–524
Transduction, 165
Transfection, 165–167
Transferrin, 361, 363, 365–366, 399
Transformation, 166, 176, 193–194, 241, 256
Transforming growth factor beta (TGF-β), 391, 397–398, 418–419, 428–429, 495
Translation, expression vector, 242–243
Transmission, 48
associated with HIV infection, 55–57
confirmation with molecular techniques, 575–576
detection of unsuspected transmission in group, 576
diagnostic delay, 605–606
prevention by chemoprophylaxis, 595–596
reactivation versus, 577
secondary, 569
unsuspected, 576
Transport
across cell membrane, 321–322
carrier-mediated, 343–346
drug, 562–563
M. tuberculosis, 333–352
regulation, 345–346
Transposable element, 199, see also Insertion sequence; Transposon
general uses, 202
genetic studies in mycobacteria, 211–214
mycobacterial, 203–211
pathogenic bacteria, 202–203
structure and occurrence, 199–200
Transposition, 199–21
Transposon, 199–200
delivery systems, 212–213
pathogenic bacteria, 202–203
reporter, 263–264
from Streptomyces, 203
Transposon library, 262
Transposon mutagenesis, 212–213
Transposon Tn6/0, 204, 209–211
Transposon trap, 263
Treatment of tuberculosis, 599–616, see also
- Chemotherapy
categories of treatment outcome, 607
duration, 564
historical aspects, 21–22
HIV-infected patient, 509–510
immunotherapy, 429, 494
Trehalose 2'-sulfate, 290–291
Trehalose 6,6'-dimycolate, see Cord factor
Trehalose esters, 289–292, 562
Trehalose mycolyltransferase, 373
Triacylglycerols, 287
Tricarboxylic acid cycle, 354, 356
Trimethoprim, 560
Trudeau, Edward Livingston, 18
Tubercle
- exudative, 468, 470, 478
- guinea pig model, 137, 141
- proliferative, 468, 470, 478
- rabbit model, 153–154
Tuberculoma, 308–309
Tuberculin, 308–309
standardization, 136
Tuberculin skin test, 25, 47–50, 308, 426, 446, 493,
517–518, 544–545, 584
cattle, 448
developing countries, 494
disseminated tuberculosis, 35
false-positive, 50
guinea pig, 137
HIV-infected patients, 54
induration size, 584–585
laboratory personnel, 70, 89
negative, 419, 426
positive, 417, 427–428
significance in healthy people, 494–495
significance in patients with active tuberculosis,
495
surveys, 4, 589
Tuberculosis, 40–42
Tuberculostearic acid, 370, 519
Tuberculous lesions, 476, 478
tuf gene, 315
Tumor necrosis factor (TNF), 119–120, 126–127, 142,
312, 399, 404, 418–421, 427–429
Tumor necrosis factor alpha (TNF-α), 26, 143, 390–
392, 396–398, 422, 427, 486–491, 509, 545, 547
Tumor necrosis factor beta (TNF-β), see
Lymphotoxin
Tween 80-albumin medium, 76
Ultrastructure
- limitations of studies, 271–272
- M. tuberculosis, 271–284
United States, 7–8, 14, 57, 588–589
- age distribution of tuberculosis, 56
- AIDS and tuberculosis, 53
- chemoprophylaxis, 597–598
- Urinalysis, 39
- US-Japan reference system, antigens, 309
- Vaccination, guinea pig, 137–139
- Vaccine, 312, 493, 531–557
- attenuated M. tuberculosis, 429–430
- BCG, see BCG tuberculosis
- DNA, 549
- effect on establishment of pulmonary lesions, 479
- environmental mycobacterial, 548
- killed, 548
- M. microti, 543
- recombinant, 246–249, 547
- subunit, 451, 549
- therapeutic, 551
- for use in livestock, 249
- Vancomycin, 561
- Ventilation system, laboratory, 64, 68–70, 88
- Viability
- BCG vaccines, 532
- estimation, 379–380
- mycobacterial cultures, 80
- Villemin, 17
Virulence
- culture medium and, 75
- Dral polymorphism and, 230
- elucidation of determinants, 245
- genotype, 253–255
- guinea pig model, 136, 139
- molecular genetic strategies for identifying
determinants, 253–268
- phenotype, 255
- plasmid-encoded factors, 192
- rabbit model, 150–151
- recA gene and, 220
- strain differences, 540–541
- Virulence genes, 213, 253–255
- homologs in other genera, 259–260
- identification
- using E. coli as surrogate host, 259–260
- using reporter screens, 263–264
- using transposon mutagenesis, 260–261
- Virulence mutants, 255
- complementation analysis, 256–259
- M. bovis, 256
- M. tuberculosis, 256
- Wasting, 490
- Waxes, 286–287
- Wax-ester mycolates, 293
- Weight loss, 27
- Wells, William, 18
- Western Europe, 8, 14–15
- Wild animals, 157–162
- Wild strain, 104
- Ziehl-Neelsen stain, 91–93
- Zimmermann-Rosselet method, 337–339, 343