STRUCTURAL BIOLOGY OF BACTERIAL PATHOGENESIS
STRUCTURAL BIOLOGY OF BACTERIAL PATHOGENESIS

Edited by

Gabriel Waksman
Institute of Structural Molecular Biology,
Birkbeck College and University College London,
London, United Kingdom

Michael Caparon
Department of Molecular Microbiology,
Washington University School of Medicine,
St. Louis, Missouri

Scott Hultgren
Department of Molecular Microbiology,
Washington University School of Medicine,
St. Louis, Missouri

Washington, D.C.
CONTENTS

Contributors .. vii
Introduction ... ix

1. Regulation of Transcription by Anti-σ Factors • Elizabeth A. Campbell and Seth A. Darst .. 1
2. Two-Component Signal Transduction and Chemotaxis • Jodi B. Lubetsky and Ann M. Stock .. 17
3. Sugar Recognition and Bacterial Attachment • Craig L. Smith, Karen Dodson, Gabriel Waksman, and Scott J. Hultgren 37
4. Host Receptors of Bacterial Origin • Calvin K. Yip, Cecilia P. C. Chiu, and Natalie C. J. Strynadka .. 49
5. The Chaperone-Usher Pathway of Pilus Fiber Biogenesis • Frederic G. Sauer, Scott J. Hultgren, and Gabriel Waksman 69
6. Structure and Assembly of Type IV Pilins • Katrina T. Forest 81
7. Sortase Pathways in Gram-Positive Bacteria • Kevin M. Connolly and Robert T. Clubb .. 101
8. Structural Determinants of *Haemophilus influenzae* Adherence to Host Epithelia: Variations on Type V Secretion • Neeraj K. Surana, Shane E. Cotter, Hye-Jeong Yeo, Gabriel Waksman, and Joseph W. St. Geme III .. 129
9. Type III Secretion Machinery and Effectors • C. Erec Stebbins 149
10. Type IV Secretion Machinery • Gunnar Schröder, Savvas N. Savvides, Gabriel Waksman, and Erich Lanka 179
11. Injectosomes in Gram-Positive Bacteria • Rodney K. Tweten and Michael Caparon .. 223
12. Toll/Interleukin-1 Receptors and Innate Immunity • Liang Tong 241

Index ... 265
CONTRIBUTORS

Elizabeth A. Campbell • The Rockefeller University, 1230 York Ave., Box 224, New York, NY 10021

Michael Caparon • Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1093

Cecilia P. C. Chiu • Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3

Robert T. Clubb • Department of Chemistry and Biochemistry, Molecular Biology Institute, and UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095-1570

Kevin M. Connolly • Department of Chemistry and Biochemistry, Molecular Biology Institute, and UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095-1570

Shane E. Cotter • Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110

Seth A. Darst • The Rockefeller University, 1230 York Ave., Box 224, New York, NY 10021

Karen Dodson • Department of Molecular Microbiology, Washington University, 4940 Parkview Pl., St. Louis, MO 63110

Katrina T. Forest • Department of Bacteriology, University of Wisconsin—Madison, Madison, WI 53706

Scott J. Hultgren • Department of Molecular Microbiology, Washington University School of Medicine, 4940 Parkview Pl., St. Louis, MO 63110

Erich Lanka • Max-Planck-Institut für Molekulare Genetik, Ihnstraße 73, Dahlem, D-14195 Berlin, Germany

Jodi B. Lubetsky • Center for Advanced Biotechnology and Medicine, Howard Hughes Medical Institute, Department of Biochemistry, University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School, Piscataway, NJ 08854

Frederic G. Sauer • Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Ave., New Haven, CT 06536

Savvas N. Savvides • Laboratory for Protein Biochemistry, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium

Gunnar Schröder • Max-Planck-Institut für Molekulare Genetik, Ihnstraße 73, Dahlem, D-14195 Berlin, Germany, and Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstraße 50-70, CH-4056 Basel, Switzerland
INTRODUCTION

Recent years have seen a rapid increase in structural information for proteins implicated in bacterial pathogenesis. From structures involved in adhesion and host recognition to those describing elements of bacterial secretion systems, this explosion in the field of structural microbiology has led to spectacular advances in our understanding of bacterial pathogenesis. To our knowledge, this book is the first attempt at compiling the structural biology work that has taken place in the field of bacterial pathogenesis in recent years. It is only an attempt because the repertoire of structural successes in this field is now so large that recruiting all the people responsible for it to write chapters turned out to be impossible. Moreover, it would have made for a rather unwieldy book. We have thus excluded the structural biology of toxins, as this area has already been covered in other books published by ASM Press. Instead, we have focused on a few areas that represent elements of the basic paradigm of bacterial pathogenesis. Bacteria enter the host and use sophisticated sensory pathways to upregulate expression of virulence factors. They recognize and bind to host receptors by using a diverse array of adhesins whose display on the bacterial cell surface often requires a dedicated assembly pathway. Once bound to the host cell, a bacterium begins to manipulate host cell behavior, using specialized secretion systems to deliver effector proteins to the host-pathogen interface. The actions of these effectors then provoke the host’s response.

Bacterial pathogens actively probe the environment in which they live. Successful virulence relies on bacterial sensing of environmental cues. This is achieved by molecular mechanisms, the most important of which are described in the first two chapters. In chapter 1, Campbell and Darst provide an overview of the molecular basis of regulation of bacterial transcription by anti-σ factors. For bacteria, gene regulation is controlled primarily at the level of transcription initiation, by controlling the ability of σ factors to recognize promoter sequences. Anti-σ factors are an example of proteins involved in linking various cellular processes and signal transduction pathways to the control of σ factor function leading to gene regulation. Some anti-σ factors, notably those that interact with the class of σ factors known as the extracellular function σ factors, have been implicated in bacterial pathogenesis. In chapter 2, Lubetsky and Stock describe another system used by bacteria to sense and respond to their environment, the ubiquitous two-component system. Coordination of expression of virulence factors and changes in housekeeping functions that occur when bacteria migrate from a free-living state to association with a host is essential, and two-component signaling systems are commonly involved in many of these processes. Two-component systems are also attractive targets for design of antibiotics, and this issue is discussed in great and fascinating detail in chapter 2.

Early events in infection must include bacterial attachment and host recognition. Chapter 3, by Smith et al., provides an overview of what is known about the structural biology of adhesion molecules, while chapter 4, by Yip et al., focuses on one particular interaction
which determines adhesion of enteropathogenic *Escherichia coli*, the interaction of intimin with the bacterially encoded Tir receptor. This is a remarkable system in which the bacterium uses a type III secretion system to deliver its own receptor to the targeted eukaryotic cells.

Recognition of receptors requires that adhesion molecules be exposed to the host cell membrane, often at a tip of a pilus structure. Thus, assembly of adhesins often requires specialized secretion machineries. Chapter 5, by Sauer et al., provides the structural details of our understanding of the chaperone-usher pathway. This system, which is geared for the production of adhesive pili, is probably the structurally best-documented system involved in bacterial pathogenesis. Moreover, because pilus biogenesis by chaperone-usher pathways is a polymerization process involving protein monomer subunits that are structurally truncated, its molecular basis could have been unraveled only by using structural biology approaches. Other important adhesive fibers are the type IV pili, which are assembled by a specialized transport machinery that is related to type II secretion systems. In chapter 6, Forest provides an overview of type IV pilus structure and assembly. Finally, the mechanisms leading to display of adhesion molecules at the surface of gram-positive bacteria are addressed by Connolly and Clubb in chapter 7, which focuses on the role and structure of sortases in that process.

The next four chapters are devoted to the structural biology of general secretion systems. There are six secretion systems in bacteria that have been well characterized to date: types I to V, which operate mostly in gram-negative bacteria, and the recently discovered injectosome in gram-positive bacteria. Recent structural progress has been made in type III, IV, and V secretion as well as the injectosome, and thus we are covering those systems most extensively. We start this section of the book with a chapter that could also have found a place in the previous group of chapters. Chapter 8, by Surana et al., describes the use of the type V secretion system (otherwise known as autotransporters) to display bacterial adhesions at the cell surface of *Haemophilus influenzae*. Autotransporters are fascinating molecules that possess within their primary structure the necessary sequence encoding their own machinery for export through the outer membrane of gram-negative bacteria. Recent structural advances have provided clues as to how this happens. In chapter 9, Stebbins provides an overview of the rapid progress made in defining the molecular basis of type III secretion assembly and effector function. The structural biology of type III effectors has provided insights into the various means that bacteria have developed to hijack host functions and subvert them to their advantage. A general theme has emerged: type III secretion effectors are molecular mimics of existing host proteins and thus utilize their ability to bind to host proteins to inhibit or trigger cellular functions that increase the pathogen’s chances of surviving the onslaught of host defenses to eventually proceed with successful infection.

Chapter 10, by Schröder et al., describes another secretion system of gram-negative bacteria, the type IV secretion system. The type IV secretion system distinguishes itself by being used for export of both proteins and DNAs. It is ancestrally related to bacterial conjugation systems and also exports virulence factors such as the protein CagA of *Helicobacter pylori*, the causative agent of gastric ulcers, and the pertussis toxin of *Bordetella pertussis*, which is responsible for whooping cough. This group of chapters concludes with a chapter (chapter 11, by Tweten and Caparon) on the newly discovered injectosome in gram-negative bacteria. The injectosome appears to be similar to type III secretion machinery in
that both systems appear to be geared for injection of virulence factors directly into the host cells.

Successful bacterial infections mobilize an arsenal of bacterial effectors which serves to overcome host defenses. What do those defenses consist of, and what is their molecular basis? These questions are the focus of the last chapter of the book (chapter 12, by Tong), which describes recent advances in the structural biology of Toll-like receptors. These receptors directly sense the presence of bacteria and thus trigger the first-line defenses against bacterial pathogens.

We hope that this book will provide a flavor of the enormously productive contribution that structural biology has made to our understanding of bacterial diseases. Many more chapters could have been written on the subject. Type I secretion, for example, has seen extraordinary advances in recent years. We would have loved to include a chapter on recent advances in type II secretion. Toxin structures could provide the subject of an entire book. The pace of discovery in these areas has been impressive, and we expect it to accelerate even further. Two factors contribute to this trend: a larger number of structural biology research groups interested in bacterial pathogenesis and the advent of fast methods for structure determination. However, as hinted in chapter 9, one discipline should make a resounding entry into the field in the next few years: high-resolution electron microscopy (cryo-electron microscopy). Most of the systems under study will be unraveled only when visualization of the protein complexes that they form is achieved. Thus, a combined effort in the areas of biochemistry, to purify such complexes, and crystallography and cryo-electron microscopy, to visualize them, holds the key to the future.

Gabriel Waksman
Michael Caparon
Scott Hultgren
INDEX

AAA proteins, similarity to VirB11-like proteins, 199–200
ActA protein, 64
Actin cytoskeleton
 modulation by effectors of type III secretion system, 157–165, Color Plate 39
 reorganization, 62–64
Actin signaling, 62–64
 Tir-based, 64–65
α-Actinin, 60, 63
Actinobacillus actinomycetemcomitans, type IV secretion components, 187
Actin-rich pedestals, 60, 63–64
Adaptor molecules, TIR-containing, 253–256
 MyD88, 256–257, 260–261
 TIRAP/MAL, 257, 260
 TIRP/TRAM, 257–258, 260
 TRIF/TICAM, 257–258, 260
Adherence, H. influenzae to host epithelia, 129–148, Color Plates 28–34
Adhesins, 37
 comparisons among, 44–45, Color Plate 18
 H. influenzae, 129–148, Color Plates 28–34
 host receptors of bacterial origin, 49–68, Color Plate 19
 lectins, 40–43
 pilins, 69–79, 194–195
 vaccines based on, 45
 ADP-ribosylation factor, 184
 A/E pathogens, 50, 65
 Agr system, 28, 31
Agrobacterium tumefaciens, T-DNA transfer system, 180–182, 189–206, Color Plate 46
AIP, see Autoinducing peptide
Akt/PKβα pathway, 165–166
Alginate production system, P. aeruginosa, 30
 AlgR1-AlgR2 system, 30
 Alpha-hemolysin, 228
 Alpha-toxin, S. aureus, 228
Anti-σ factors, 1–16
 FlgM, 7–8, 10, Color Plate 4
 general themes of anti-σ regulation, 8–10
 RseA, 5–7, 9–10, Color Plate 3
 SpoIAB, 3–5, Color Plate 2
Anti-anti-σ factors, SpoIIAA, 3–5, 10
Antimicrobial drugs
 adhesins as targets, 45
 sortases as targets, 103, 121–123
 two-component systems as targets, 17, 26–28
Antiviral compounds, recognition by TLR7 and TLR8, 247–248, Color Plate 50
AP-1 transcription factor, 250, 252, 259
Apoptosis, 234
Arc proteins
 ArcA, 22
 ArcB, 19
Arp2/3 complex, 60, 63–64
B7.1 protein, 245
Bacillus, sporulation, 3–5, Color Plate 2
Bacterial attachment, 37–48
 adhesins, see Adhesins
Bacterial virulence
 convergent evolution, 167–169
 functional mimicry, 166–167, Color Plate 41
 horizontal acquisition, 167–169, Color Plate 41
 two-component systems and, 27–28
Bartonella, type IV secretion system, 180, 185–186
BB loop, 255, Color Plate 52
Bep proteins, 185
Index

β-barrel proteins, 131–132, 139, Color Plate 29
Biofilms, 69, 81
Bordetella pertussis
filamentous hemagglutinin, 135–138, Color Plate 32
Ptl system, 180, 186–187, 203
BrkA protein, 132–133, 140
Brucella, VirB system, 180, 186

Cactus protein, 245
Cafl proteins, 73
CafIM, 71, 74
cag pathogenicity island, 180, 182–183
CagA (cytotoxin-associated gene A), 65, 183
camB system, 183
Campylobacter jejuni, VirB system, 180, 183
Caspase-3, 184
Caspase recruitment domain, 249
CckA protein, 27
CD14, 246
keratinocytes, 231
CDC, see Cholesterol-dependent cytolysin
Cdc42 GTPase, 158–159, 169, Color Plates 36–37

Cell wall
component of sorting reaction, 106–109
perforation by VirB1-like glycosylases, 190
protein display, 101–102
Cell wall-sorting signal (Cws), 102–106, 115, 118
cesT gene, 50
CesT protein, 53–55, 155
Chaperone(s)
F1−G1 loops, 71
type III secretion system, 154–156, Color Plate 35
Chaperone-usher pathway, 37–39
pilus fiber assembly, 69–79, Color Plates 20–23
chaperone and donor strand complementation, 71–72, Color Plates 21–22
donor strand exchange, 72–74, Color Plate 23
donor strand exchange at usher, 74–76, Color Plate 23
Che proteins
CheA, 19–20, 23–25, 30, Color Plates 6, 10
CheB, 22–25, Color Plate 9
CheC, 25
CheD, 25
CheR, 25, Color Plate 10
CheV, 25
CheW, 24, Color Plate 10
CheY, 21, 23–25, Color Plates 10, 52
CheZ, 24–25, Color Plate 10
Chemical library, screening for two-component system inhibitors, 29–30
Chemotaxis, 22–25, Color Plate 10
Chloromethane, 122–123
Cholesterol-dependent cytolysin (CDC), 223–230
expression and secretion, 224
membrane recognition, 226–227, Color Plates 47–48
perfringolysin, 225–226, Color Plates 47–48
pore formation, 227–230, Color Plate 48
primary structure, 224–225, Color Plate 47
sensitivity to membrane cholesterol, 226–227
Choline-binding proteins, 101–102
CiaH-CiaR system, 28
Closantel, 29
ClpAP/ClpXP proteins, 7
ComP protein, 95
Competence, 91
Conjugation, bacterial, 179–181
Conjugative relaxases, 203–206, Color Plate 45
Convergent evolution, in bacterial pathogenesis, 167–169
Coupling proteins, 201
Coxiella burnetii, Dot-Icm system, 180, 184–185
CpG motif, unmethylated, recognition by TLR9, 248
CssD protein, 136
CtrA protein, 27
Cws, see Cell wall-sorting signal
Cysteine proteases, 165
Cytoskeleton, host cell modulation by effectors of type III secretion system, 157–165
Tir in reorganization, 62–65

DctD protein, 20–22
Death domain, 243
DegS protein, 7
Diazomethane, 122–123
Dorsal protein, 244
Dot-Icm system, *L. pneumophila* and *C. burnetii*, 180, 184–185
Drosophila, Toll, 244–245
Drr proteins
DrrB, 22, Color Plate 9
DrrD, 22, Color Plate 9
Drug resistance, two-component systems and, 28
Dtr proteins, 197, 201
eae gene, 50
Effectors, type III secretion system, 149, Color Plates 35–36
Ehrlichia, type IV secretion components, 187
EnvZ protein, 19–20
Erwinia carotovora, type IV secretion components, 188
Escherichia coli
enteropathogenic, 49–68, 153, Color Plate 19
type III secretion system, 50–55

Downloaded from www.asmscience.org by
IP: 54.70.40.11
enterotoxigenic, 39
enterohemorrhagic, 64
G\(^2\), 5–7, Color Plate 3
uropathogenic, 38, 69
Escherichia coli O157:H7, 64
Esp proteins, 50
EspA, 52–53, 55, 65, 153
EspB, 52–53, 55
EspD, 52–53, 55
EspF, 53
EspG, 53
EspH, 53
Essential genes, two-component signaling systems, 27
ExoS protein, 159–161, 168
F pilus, 191
F1 antigen (Caf1), *Y. pestis*, 70
F17 fimbriae, assembly, 39
F17a-G adhesin, 43–45, Color Plates 15–18
FHA, see Filamentous hemagglutinin
FhaC protein, 136
Fiber-forming proteins, structural biology, 82–84
Fibrillum, 70
Fibronectin, 168, Color Plate 41
Filamentous hemagglutinin (FHA), *B. pertussis*, 135–138, Color Plate 32
Fim proteins
FimA, 38–39, 70, 75
FimC, 38–39, 70–72, 75
FimD, 38–39, 70, 75
FimF, 38–39, 70, 75
FimG, 38–39, 70, 75
FimH, 38–41, 44–45, 70, 72, 75, Color Plates 11, 18
as vaccine, 45
Fimbriae, assembly, 37–39
FixJ protein, 20–22, Color Plate 9
Flagella
chemotaxis, 22–25
synthesis, 7–8, Color Plate 4
Flagellin, recognition by TLR5, 247
FlgM protein, 7–8, 10, Color Plate 4
Fli proteins
FliA, 7–8, Color Plate 4
FliM, 25
FliY, 25
G fimbriae, assembly, 39
GafD protein, 39, 43–45, Color Plates 14, 18
GAP, see GTPase-activating protein
GEF, see Guanine nucleotide exchange factor
Gene clusters, sortase, 121
Globosides, 44–45, 70
Glycoproteins, containing GlcNAc, 44–45
Gram-negative bacteria, type III secretion system, 149–177, Color Plates 35–41
Gram-positive bacteria
injectosomes, 223–239, Color Plates 47–49
sortase pathways, 101–127
GTPase(s), 167–168
Rho, 157–161, 165, 168–169, Color Plate 36
GTPase-activating protein (GAP), 158–161, 167–168, Color Plates 37, 41
Guanine nucleotide exchange factor (GEF), 158–159, 169, Color Plate 37
Haemophilus influenzae
adherence to host epithelia, 129–148, Color Plates 28–34
Hap adhesin, 130–134, Color Plates 28, 30
hemagglutinating pilus, 70
Hia, 138–143, Color Plates 33–34
HMW adhesins, 135–138, Color Plate 31
Hsf, 138–140
nontypeable, 129
type b, 128
type V secretion system, 129–148, Color Plates 28–34
Hap adhesin, 130–134, Color Plates 28, 30
Hbp protein, 136
Heat shock proteins, 248
Helicobacter pylori
 bacterial receptor, 65
cag pathogenicity island, 180, 182–183
HP0525, 197–198, Color Plate 43
Hemagglutinating pilus, *H. influenzae*, 70
Hia protein, 130, 137–140, Color Plates 33–34
host cell recognition, 140–143, Color Plate 34
Hif proteins
HifA, 70
HifB, 70
HifC, 70, 136
HifD, 70
HifE, 70
Histidine kinase, 18–22, Color Plate 5
 antimicrobial drug targets, 26–28
 functions, 18
 hybrid, 19
 kinase core, 18–19, Color Plate 6
 periplasmic sensing domain, 18
 structural characteristics, 18–20, Color Plates 5–6
HMW adhesins
HMW1, 135–138, Color Plate 31
HMW2, 135–138, Color Plate 31
Host receptors, of bacterial origin, 49–68, Color Plate 19
HP0525, 197–198, 203, Color Plate 43
complex with ATP\(\beta\)S, 198, 200, Color Plate 43
unliganded, 199
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP0532, 196</td>
<td>Hpm proteins</td>
</tr>
<tr>
<td></td>
<td>HpmA, 137</td>
</tr>
<tr>
<td></td>
<td>HpmB, 136</td>
</tr>
<tr>
<td></td>
<td>Hrp pili, 153</td>
</tr>
<tr>
<td></td>
<td>Hsf protein, 130, 138–140</td>
</tr>
<tr>
<td>I-κB, 244</td>
<td>IcsA protein, 64, 136</td>
</tr>
<tr>
<td>IgA protease, 132, 134</td>
<td>ILY, see Intermedilysin</td>
</tr>
<tr>
<td>Imiquimod, recognition by TLR7 and TLR8, 247–248, Color Plate 50</td>
<td>Immunity, innate, 241–263, Color Plates 50–52</td>
</tr>
<tr>
<td>Injectosomes, 223–239, Color Plates 47–49</td>
<td>InlB protein, 102</td>
</tr>
<tr>
<td>gram-positive bacteria, 223–239</td>
<td>Innate immunity, 241–263, Color Plates 50–52</td>
</tr>
<tr>
<td>model, 233, Color Plate 49</td>
<td>Integrin, 168, Color Plate 41</td>
</tr>
<tr>
<td>pathway, 232–233</td>
<td>Interleukin-1 (IL-1), 231–234</td>
</tr>
<tr>
<td>physiological consequences, 233–234</td>
<td>Interleukin-1 (IL-1) receptors, 241–263, Color Plates 50–52</td>
</tr>
<tr>
<td>unique structural features, 234</td>
<td>Interleukin-1 (IL-1) receptors, 241–263, Color Plates 50–52</td>
</tr>
<tr>
<td>InlB protein, 102</td>
<td>AcPL, 251–252</td>
</tr>
<tr>
<td>Innate immunity, 241–263, Color Plates 50–52</td>
<td>IL-18R, 251–252, 260</td>
</tr>
<tr>
<td>β1-Integrin, 168, Color Plate 41</td>
<td>IL-1RI, 250–251, 259, Color Plate 50</td>
</tr>
<tr>
<td>Interferons, 247</td>
<td>IL-1RII, 251</td>
</tr>
<tr>
<td>Interleukin-1 (IL-1), 250</td>
<td>IL-1RacP, 250–251, 259</td>
</tr>
<tr>
<td>IL-1α, 231</td>
<td>IL-1RAPL, 252</td>
</tr>
<tr>
<td>IL-1β, 231</td>
<td>LAMP1 protein, 134</td>
</tr>
<tr>
<td>Interleukin-1 (IL-1) receptors, 241–263, Color Plates 50–52</td>
<td>Lecitins, as adhesins, 40–43</td>
</tr>
<tr>
<td></td>
<td>Lipid II, 105–109</td>
</tr>
<tr>
<td></td>
<td>Lipopolysaccharide (LPS), 241–246</td>
</tr>
<tr>
<td></td>
<td>Lipopolysaccharide-binding protein, 246</td>
</tr>
<tr>
<td></td>
<td>Lipoproteins</td>
</tr>
<tr>
<td></td>
<td>connecting pilus to core complex, 195–196</td>
</tr>
<tr>
<td></td>
<td>recognition by TLR2-(TLR1 or TLR6), 246–247</td>
</tr>
<tr>
<td></td>
<td>Lipoteichoic acid, 101–102</td>
</tr>
<tr>
<td></td>
<td>Listeria monocytogenes, listeriolysin O, 225, 227, 234–235</td>
</tr>
<tr>
<td></td>
<td>Listeriolysin O (LLO), 225, 227, 234–235</td>
</tr>
<tr>
<td></td>
<td>LLO, see Listeriolysin O</td>
</tr>
<tr>
<td></td>
<td>LPS, see Lipopolysaccharide</td>
</tr>
<tr>
<td></td>
<td>Lvh system, 184–185</td>
</tr>
<tr>
<td></td>
<td>LytA protein, 101–102</td>
</tr>
<tr>
<td></td>
<td>Macrophages, Legionella infection, 184</td>
</tr>
<tr>
<td></td>
<td>MALP-2 lipopeptide, 247</td>
</tr>
<tr>
<td></td>
<td>Mammals, Toll-like receptors, 245–248</td>
</tr>
<tr>
<td></td>
<td>Mannose-binding protein (MBP), 56, 58</td>
</tr>
<tr>
<td></td>
<td>MAP kinase, 165, 247, 252, 259, 261</td>
</tr>
<tr>
<td></td>
<td>Map protein, 53</td>
</tr>
<tr>
<td></td>
<td>Mating pair formation (Mpf) complex, 179, 181, 188–189, 197, 201</td>
</tr>
<tr>
<td></td>
<td>MBP, see Mannose-binding protein</td>
</tr>
<tr>
<td></td>
<td>MCP, see Methylated chemotaxis proteins</td>
</tr>
<tr>
<td></td>
<td>MD-2 protein, 246</td>
</tr>
<tr>
<td></td>
<td>Membrane ruffling, 159, 164, Color Plates 36, 39</td>
</tr>
<tr>
<td></td>
<td>Methylated chemotaxis proteins (MCP), 23–25</td>
</tr>
<tr>
<td></td>
<td>Motility, pathogens, 27–28</td>
</tr>
<tr>
<td></td>
<td>Mpf complex, see Mating pair formation complex</td>
</tr>
<tr>
<td></td>
<td>MS11 pilin, 83–88, 90–92, Color Plates 24–25</td>
</tr>
<tr>
<td></td>
<td>MtrA protein, 27</td>
</tr>
<tr>
<td></td>
<td>Mycobacterium tuberculosis, extracytoplasmic σ factors, 5</td>
</tr>
<tr>
<td></td>
<td>MyD88, 256–257, 260–261</td>
</tr>
</tbody>
</table>

Keratinocytes
- physiological consequences of injectosomes, 233–234
- proinflammatory response, 231
- streptococcal disease and, 231

KinA protein, 29

β-Lactamases, 115

LAMP1 protein, 134

Lectins, as adhesins, 40–43

LEE (locus of enterocyte effacement), 50, 52, 64

Legionella pneumophila, Dot-ICm system, 180, 184–185

Lep proteins
- LepA, 184
- LepB, 184

Ler protein, 50

Leucine-rich repeats, 166, 247, Color Plates 40, 50

LidA protein, 184

Lid II, 105–109

Lipopolysaccharide (LPS), 241–246

Lipopolysaccharide-binding protein, 246

Lipoproteins
- connecting pilus to core complex, 195–196
- recognition by TLR2-(TLR1 or TLR6), 246–247

Lipoteichoic acid, 101–102

Listeria monocytogenes, listeriolysin O, 225, 227, 234–235

Listeriolysin O (LLO), 225, 227, 234–235

LLO, see Listeriolysin O

LPS, see Lipopolysaccharide

Lvh system, 184–185

LytA protein, 101–102

Macrophages, Legionella infection, 184

MALP-2 lipopeptide, 247

Mammals, Toll-like receptors, 245–248

Mannose-binding protein (MBP), 56, 58

MAP kinase, 165, 247, 252, 259, 261

Map protein, 53

Mating pair formation (Mpf) complex, 179, 181, 188–189, 197, 201

MBP, see Mannose-binding protein

MCP, see Methylated chemotaxis proteins

MD-2 protein, 246

Membrane ruffling, 159, 164, Color Plates 36, 39

Methylated chemotaxis proteins (MCP), 23–25

Motility, pathogens, 27–28

Mpf complex, see Mating pair formation complex

MS11 pilin, 83–88, 90–92, Color Plates 24–25

MtrA protein, 27

Mycobacterium tuberculosis, extracytoplasmic σ factors, 5

MyD88, 256–257, 260–261
NAD glycohydrolase (SPN), 223, 231–232, Color Plate 49

injectosome pathway, 230–234

NalP protein, 131–132, Color Plate 29

NarL/FixJ proteins, 20–22, Color Plate 9

Nck protein, 60, 63–64

Needle complex, type III secretion system, 150–153, 155–156

Neisseria gonorrhoeae

MS11 pilin, 83–88, 90–92, Color Plates 24–25
type IV pilin, 81
type IV secretion system, 181

Neisseria meningitidis

PilQ, 93–94
type IV pilin, 81
NF-κB, 165, 244–245, 247, 249, 252–253, 259, 261
NhhA protein, 139
Nod proteins, 249

Novosphingobium aromaticivorans, type IV secretion components, 188

NRII-NRI proteins, 29
NTPase, ring-shaped cytoplasmic, 197–200

NtrC/DctD proteins, 20–22

N-WASP protein, 63–64

OmpR/PhoB proteins, 20–22

Outer membrane

component of type IV secretion system, 192
secretin, 93–94

P pili, 191

assembly, 39, 69–79, Color Plate 20

PAK pilin, 83, 87–91, Color Plates 24, 26–27

PAMPs, see Pathogen-associated molecular patterns

Pap proteins

PapA, 39, 69, Color Plate 20

PapC, 39, 70, 75

PapD, 39, 70–75, Color Plates 20–23

PapE, 39, 70, 73, Color Plates 20, 23

PapF, 39, 70, Color Plate 20

PapG, 39, 42–45, 70, 75, Color Plates 12–13, 18, 20

PapH, 39

PapK, 39, 70, 72–73, Color Plates 20, 22–23

Pathogen avirulence factors, 248–249

Pathogen-associated molecular patterns (PAMPs), 241, 261

Pathogenesis, two-component systems and, 27–28

Pathogenicity islands
cag, 180, 182–183

LEE, 50, 52, 64

Pattern-recognition receptors (PRRs), 241

Pelle protein, 244–245, 258–261, Color Plate 50

Pellino protein, 259

Penicillin resistance, 28

Penicillin-binding proteins, 28, 115

Peptidoglycan

perforation by VirB1-like glycosylases, 190
recognition by TLR2-(TLR1 or TLR6), 246–247

Perfringolysin (PFO), 225
crystal structure and cytolytic mechanism, 225–226, Color Plates 47–48
membrane recognition, 226–227, Color Plate 48
pore formation, 228–230

Periplasmic stress response, regulation, 5–7, Color Plate 3

Persephone protein, 245

Pertactin, 132–133, 141–142

Pertussis toxin liberation system, see Pil system

PEST sequence, 225

PFO, see Perfringolysin

Phagosomes, 184, 186, 235

Phospholipase C, 235

Phosphotransferase pathways, two-component signaling systems, 18, Color Plate 5

Phosphotyrosine recognition, 162–163

Pil proteins

PilA, 28, Color Plate 24

PilB, 28, 95

PilC, 81

PilD, 95

PilE, Color Plate 24

PilQ, 93–94

PilR, 28

PilS, 28

PilT, 81–82, 95–96

PilU, 95–96

PilV, 81, 95

PilX10, 197

Pili, see also specific types of pili

assembly, 37–39, 190–192

structural subunits in type IV system, 190–192

Pilin(s), 69–79, 190–192

monomer sequences, 82–83
type IV, see Type IV pilin

Pilin precursor proteins, 190

Pilin-like proteins, 95

Pilus fiber assembly, chaperone-usher pathway, 69–79, Color Plates 20–23

chaperone and donor strand complementation, 71–72, Color Plates 21–22
donor strand exchange, 72–74, Color Plate 23
donor strand exchange at usher, 74–76, Color Plate 23

Plant disease resistance proteins, 241, 248–249

TIR domains, 253–256

Plasmid, conjugative, 180–181, 188–189

Plasmid pAtC58, 182
Index

Plasmid pRi, 182
Plasmid pXF51, 188
P-loop, 162
Pneumolysin, 224
Poly(I-C), recognition by TLR3, 247
Pore formation, cholesterol-dependent cytolsins, 227–230, Color Plate 48
Pore-forming proteins, 154
Porins, 132
Prepore complex, 228–230, Color Plate 48
Prostaglandin E2, 231
Protein A, *S. aureus*, 102–105
Protein display, cell wall, 101–102
Protein sorting
 history, 103–105
overview, 105
Protein tyrosine phosphatase (PTP) domain, 159, 161–162, Color Plate 38
PRRs, see Pattern-recognition receptors
Pseudomonas aeruginosa
 alginate production, 30
 extracytoplasmic σ factors, 5
 K12–4 pilin, 83, 88–89, Color Plate 24
 PAK pilin, 83, 87–91, Color Plate 24
type IV pilin, 81
Pseudopilus, 95
Pl system
 B. pertussis, 180, 186–187, 203
 PiIA, 192
PTP domain, see Protein tyrosine phosphatase domain
Pyolysin, 225
Quorum sensing, 28, 31
R-848, recognition by TLR7 and TLR8, 247–248, Color Plate 50
Rac1 GTPase, 158–161, 168, Color Plates 37, 41
Radicocol, 31
RalF protein, 184
Ralstonia solanacearum, type IV secretion components, 188
Relaxase, 181–182, 201–202, Color Plate 45
 conjugal, 203–206, Color Plate 45
 relaxase-DNA interactions, 204–206, Color Plate 45
Relaxosome, 197, 201–202
Response regulators, 18–22, Color Plate 5
 antimicrobial drug targets, 26–28
 effector domains, 20–22, Color Plate 9
 functions, 18
 oligomerization, 22
 regulatory domains, 20–22, Color Plates 8–9
 structural characterization, 20–22, Color Plates 5, 8–9
Rho GTPases, 157–161, 165, 168–169, Color Plate 36
RickA protein, 64
Rickettsia, type IV secretion components, 187
RNA, double-stranded viral, recognition by TLR3, 247
RNA polymerase, 1–5, Color Plates 1–4
 anti-σ factors, 1–16
 holoenzyme, 1, Color Plate 1
Rop protein, 60–61
rpo genes, 6
Rsd protein, 9
rse genes, 6
RseA protein, 5–7, 9–10, Color Plate 3
RteA-RteB proteins, 28
RWJ-49815, 29
Salmonella enterica serovar Typhimurium, extracytoplasmic σ factors, 5
ScaC protein, 102
Sec system, 130, 135, 186, 190, 223–224
S. pyogenes injectosomes, 230–234
Secretin
 outer membrane, 93–94
 PilQ, 93–94
Secretion, see specific types of secretion
SeIC protein, 136
Serine kinase, SpoIIB, 3–4, 9–10
Serine protease, SA clan, 133–134
Sex pilus, 194
Shl proteins
 ShlA, 137
 ShlB, 136
SicP protein, 154–155, Color Plate 35
SigE protein, 54, 155
Sigma (σ) appropriators, 9
Sigma (σ) factors, 1–16, Color Plate 1
 alternative, 2
 extracytoplasmic function, 5–7, 9, Color Plate 3
 FliA, 7–8, 10, Color Plate 4
 group 1, 1–2
 group 3, 7–8
 σ*, 5–7, Color Plate 3
 σ**, 3–5, 9, Color Plate 2
 structural domains, 2, 8–9
Signal peptide, 130
Signal sequence, 136
Signal transduction, host cell, modulation by type III secretion system, 165–166
Signaling systems, two-component, see Two-component signaling systems
Sip proteins
 SipA, 164–165, Color Plate 39
 SipC, 154, 164
β-Sitosterol-3-O-glucopyranoside, 121–122
S-layer proteins, 102
SLO, see Streptolysin O
Sop proteins
SopB, 165–166
SopE, 158–159, 163, 169, Color Plates 36–37, 41
Sortase(s)
 enzyme structure, 107–112
 gene clusters, 121
 inhibitors, 121–123
 medical importance, 103
 nonredundant, 117
 phylogenetic distribution, 115–121
 relationship to other transpeptidases in cell wall, 115
 SrtA subfamily, 118–120
 subfamilies, 117–119
 subfamily 3, 120
 subfamily 4, 120
 subfamily 5, 120
 transpeptidation reaction, 107–115
 active site, 114
 chemical mechanism, 112–115
 kinetics, 113–114
 Sortase pathway, see also Sortase(s)
 components of sorting reaction
 cell wall, 106–109
 cell wall-sorting signal, 105–106
 gram-positive bacteria, 101–127
 Spa15 protein, 156
 SPATEs, 134
 Spätzle protein, 244–245
 SPN, see NAD glycohydrolase
 Spo proteins
 Spo0A, 21
 Spo0B, 19, Color Plate 7
 Spo0F, 29
 SpoI1A, 3–5, 10
 SpoI1AB, 3–5, Color Plate 2
 Sporulation, Bacillus, 3–5, Color Plate 2
 SpIP protein, 154–155, 159–163, 168, Color Plates 35–38, 41
 SpvB protein, 164
 Srt proteins
 S. aureus, 104–127
 SrtA, 104–127
 SrtB, 106, 110, 112, 114, 117, 120
 Staphylococcus aureus
 protein A, 102–105
 Srt proteins, 104–127
 Streptococcus pneumoniae, pneumolysin, 224
 Streptococcus pyogenes
 injectosomes, 230–234
 keratinocytes and streptococcal disease, 231
 NAD glycohydrolase, 223, 231–232
 Streptolysin O (SLO), 223, 225, 227, 229–230
 S. pyogenes injectosomes, 230–234
 unique structural features, 234
 Stress response, periplasmic, 5–7, Color Plate 3
 Subtilisin, 133
 Sugar recognition, 37–48, Color Plates 11–18
 SxxK acetyltransferases, 115
 Syc proteins
 SycE, 54, 154–156, Color Plate 35
 SycH, 162–163
 T pilus, 192, 194
 T4CP protein, 197, 200–203, Color Plate 44
 TAK1 kinase, 261
 Talin, 60, 63
 TCP, see Toxin-coregulated pilus
 TepA protein, 83, 89, 92–93, Color Plate 24
 T-DNA, 180–182, 189–206
 Teichoic acid, 101–102
 Teichuronic acid, 101–102
 Tetanysolin, 227
 Tetracycline resistance, 28
 Ti plasmid, 180–182, 188
 Tiam-1 protein, 169, Color Plate 41
 Tir (translocated intimin receptor), 49–68, Color Plate 19
 actin cytoskeleton reorganization, 62–64
 delivery into host, 50–55
 dimerization, 59–61
 Tir-based actin signaling, 64–65
 Tir-intimin interactions, 55–58, 60–62, Color Plate 19
 Tir-membrane topology, 59–61
 TIR domain, see Toll/IL-1 receptor domain
 TIRAP/MAL, 257, 260
 TIRP/TRAM, 257–258, 260
 TLR, see Toll-like receptors
 TMH, see Transmembrane β-hairpin
 TNF superfamily, see Tumor necrosis factor superfamily
 TocL protein, 132
 Toll receptors, Drosophila Toll and its homologs, 244–245
 Toll/IL-1 receptor (TIR) domain, 243–244, 249, 253–256, 260–261
 BB loop, 255, Color Plate 52
 covalent modifications, 255–256
 functions, 254, Color Plate 51
 sequence conservation, 253, Color Plate 51
 structure, 254–255, Color Plate 52
 TOLLIP protein, 259–260
Toll-like receptors (TLR), 241–263, Color Plates 50–52
keratinocytes, 231
mammalian, 245–248
recognition of host proteins, 248
signaling pathways, 243, 259–261, Color Plate 52
TIR domains, 253–256
TLR2-(TLR1 or TLR6), 246–247, 260
TLR3, 247
TLR4, 245–246, 260
TLR5, 247
TLR7, 247–248, Color Plate 50
TLR8, 247–248, Color Plate 50
TLR9, 248
Toxin-coregulated pili (TCP), 81, 89, 92–93
TPS, see Two-partner secretion pathway
Tps proteins
TpsA, 135–138
TpsB, 135–138
Tra proteins
TraA, 190–191
TraC, 194, Color Plate 42
TraD, 201–202
TraF, 197
TraG, 200–201
TraI, Color Plate 45
DNA-binding site and relaxase-DNA interactions, 204–205, Color Plate 45
relaxase domain, 204, Color Plate 45
TraM, 202
Tra system, 182–183
TRAF6, 261
Transcription, anti-α factors, 1–16
Transformation, pilus-mediated, 91–92
Translocon, type III secretion system, 153–154
Transmembrane β-hairpin (TMH)
TMH1, 228–230, Color Plate 48
TMH2, 228–230, Color Plate 48
Transpeptidation, sortase, 107–115
Trb proteins
TrbB, 197
TrbC, 191–193
TrbE, 193
TrbB protein, 197
TriC protein, 192
TRIF/TICAM, 257–258, 260
Trw proteins, 185–186
TrwB, 202, Color Plate 44
TrwBΔN70, 202–203, Color Plate 44
TrwC, Color Plate 45
DNA-binding site and relaxase-DNA interactions, 204–205, Color Plate 45
relaxase domain, 204, Color Plate 45
TrwD, 197–198
TrwE, 197
Tsr protein, 24
Tube protein, 244–245, 258, 260, Color Plate 50
Tumor necrosis factor α, 247
Tumor necrosis factor (TNF) superfamily, 142
Two-component signaling systems, 17–36, Color Plates 5–10
antimicrobial drug targets, 17, 26–28
chemotaxis, 22–25, Color Plate 10
in drug resistance, 28
essential genes, 27
histidine kinases, 18–22, Color Plate 5
inhibitors
chemical library screening, 29–30
rational inhibitor design, 30–31
response regulators, 18–22, Color Plate 5
in virulence, 27–28
Two-partner secretion (TPS) pathway, 135–138, Color Plate 31
Type I pili, assembly, 38–39, 69–79, Color Plate 20
Type III secretion system, 50, 149–177, Color Plates 35–41
actin cytoskeleton modulation, 157–165, Color Plate 39
chaperones, 154–156, Color Plate 35
effectors, 52
enteropathogenic E. coli, 50–55
filamentous structures associated with, 153
machinery in bacterial cytoplasm, 154–156
modulation of host signal transduction, 165–166
needle complex, 150–153, 155–156
translocon, 153–154
Type IV pili
assembly proteins
assembly and retraction ATPases, 95–96
outer membrane secretin, 93–94
pilin-like proteins, 95
functions, 81–82
pilus filament models, 90–93, Color Plate 27
structure and assembly, 81–100, Color Plates 24–27
type IVa, 90–92, Color Plate 27
type IVb, 92–93
Type IV pilin
antigenic variation, 85
K122-4, 83, 88–89, Color Plate 24
MS11, 83–88, 90, Color Plates 24–25
PAK, 83, 87–91, Color Plate 24
pilus filament models, 90–93, Color Plate 27
structural biology, 82–84
subunit structures, 84–90, Color Plates 24–27
TcpA, 83, 89, Color Plate 24
type IVa, 82
type IVb, 82, 89, Color Plate 24
Type IV secretion system, 179–221, Color Plates 43–46
bacterial conjugation systems, 180–181

* Bartonella*, 180, 185–186

cag pathogenicity island of *H. pylori*, 180, 182–183

Dot-lcm of *L. pneumophila* and *C. burnetii*, 180, 184–185

genetics, 188–189

mechanism

bridge over periplasm, 196

connecting inner and outer membrane proteins, 196–197

cytoplasmic NTPase fueling secretion machinery, 197–200

lipoprotein connecting pilus to core complex, 195–196

modulation of secretion channel, 195

motor, 192–194

outer membrane anchor of core complex, 196

outer membrane component, 192

perforation of peptidoglycan cell wall, 190

pilus mediating cell adhesion, 194–195

structural subunit of pili, 190–192

model view, 206–207, Color Plate 46

occurrence, 180–188

Pil system of *B. pertussis*, 180, 186–187

structure and function of components, 189–203

substrates, 203–206

conjugative relaxases, 203–206, Color Plate 45

T-DNA, 206

T-DNA transfer in *A. tumefaciens*, 180–182, 189–203, 206, Color Plate 46

type IVb system, 185, 189

VirB of *Brucella*, 180, 186

VirB of *C. jejuni*, 180, 183

Type V secretion system, *H. influenzae*, 129–148, Color Plates 28–34

Ubiquitin-like proteins, 165

Uroplakins, 44

Usher, see Chaperone-usher pathway

Vaccine, adhesin, 45

VanS-VanR system, 28

Vancomycin resistance, 28

VASP protein, 63

Vibrio cholerae

extracytoplasmic σ factors, 5

TcpA, 83, 89, 92–93, Color Plate 24

Vinyl sulfone, 122–123

Vir proteins

VirB, 180–181, 183, 185

VirD2, 182

VirD4, 181, 185, 189, 200–203

VirE2, 182, 201

VirE3, 182

VirF, 182

VirB-like components

VirB1, 190, 196–197

VirB1*, 190

VirB2, 190–192, 197

VirB3, 192, 195, 197

VirB4, 181, 192–194

VirB5, 194–195

VirB6, 192, 194–195

VirB7, 195–197

VirB8, 196

VirB9, 195–197

VirB10, 196–197, 201

VirB11, 195, 197–200

similarity to AAA proteins, 199–200

VirD4, 200–203, Color Plate 44

VirB-like systems, 188–189

Virulence

two-component systems and, 27–28

virulence proteins, 149, Color Plates 35–36

Virus, double-stranded RNA recognition by TLR3, 247

Walker A motif, 192–193, 200

Walker B motif, 200

WASP protein, 60, 63–64

Wolbachia, type IV secretion components, 180, 187

Xanthomonas, type IV secretion components, 188

XerD protein, 202

Xylella fastidiosa, type IV secretion components, 188

YadA protein, 139–140, 142, Color Plate 34

YaeL protein, 7

Yersinia pestis, F1 antigen, 70

Yop proteins

YopE, 154–155, 159–161, 163, Color Plate 35

YopH, 161–162, 167, Color Plate 38

dual-function amino-terminal domain, 162–163

PTP domain, 161–162

YopJ, 165, 167

YopM, 166–167, Color Plate 40

YopO, 167

YopT, 165, 167

Ypd1 protein, 19, Color Plate 7

YpkA protein, 161, 167

YycF-YycG system, 27

Zymosan, yeast, recognition by TLR2-(TLR1 or TLR6), 246–247
INDEX

AAA proteins, similarity to VirB11-like proteins, 199–200
ActA protein, 64
Actin cytoskeleton
modulation by effectors of type III secretion system, 157–165, Color Plate 39
reorganization, 62–64
Actin signaling, 62–64
Tir-based, 64–65
α-Actinin, 60, 63
Actinobacillus actinomycetemcomitans, type IV secretion components, 187
Actin-rich pedestals, 60, 63–64
Adaptor molecules, TIR-containing, 253–256
MyD88, 256–257, 260–261
TIRAP/MAL, 257, 260
TIRP/TRAM, 257–258, 260
TRIF/TICAM, 257–258, 260
Adherence, *H. influenzae* to host epithelia, 129–148, Color Plates 28–34
Adhesins, 37
comparisons among, 44–45, Color Plate 18
H. influenzae, 129–148, Color Plates 28–34
host receptors of bacterial origin, 49–68, Color Plate 19
lectins, 40–43
pilins, 69–79, 194–195
vaccines based on, 45
ADP-ribosylation factor, 184
A/E pathogens, 50, 65
Agr system, 28, 31
Agrobacterium tumefaciens, T-DNA transfer system, 180–182, 189–206, Color Plate 46
AIP, see Autoinducing peptide
Akt/PKBα pathway, 165–166
Alginate production system, *P. aeruginosa*, 30
AlgR1-AlgR2 system, 30
Alpha-hemolysin, 228
Alpha-toxin, *S. aureus*, 228
Anti-σ factors, 1–16
FlgM, 7–8, 10, Color Plate 4
general themes of anti-σ regulation, 8–10
RseA, 5–7, 9–10, Color Plate 3
SpoIIB, 3–5, Color Plate 2
Anti-anti-σ factors, SpoIIA, 3–5, 10
Antimicrobial drugs
adhescins as targets, 45
sortases as targets, 103, 121–123
two-component systems as targets, 17, 26–28
Antiviral compounds, recognition by TLR7 and TLR8, 247–248, Color Plate 50
AP-1 transcription factor, 250, 252, 259
Apoptosis, 234
Arc proteins
ArcA, 22
ArcB, 19
Arp2/3 complex, 60, 63–64
AsiA protein, 9
Asialoglycolipid receptors, 88
ATPase
assembly and retraction, 95–96
p97 AAA, 199–200
traffic, 192–194
type II secretion, 95
type III secretion, 55, 161
type IV secretion, 95
VirB11, 199–200
ATPyS-HP0525 complex, 198, 200, Color Plate 43
Attaching and effacing lesion, 49–51
Autoinucing peptide (AIP), 28, 31
Autotransporter, 130–138
trimeric, 138–140
AvhB system, 182
AvrA protein, 165, 167
B7.1 protein, 245
Bacillus, sporulation, 3–5, Color Plate 2
Bacterial attachment, 37–48
adhescins, see Adhesins
Bacterial virulence
convergent evolution, 167–169
functional mimicry, 166–167, Color Plate 41
horizontal acquisition, 167–169, Color Plate 41
two-component systems and, 27–28
Bartonella, type IV secretion system, 180, 185–186
BB loop, 255, Color Plate 52
Bep proteins, 185
β-barrel proteins, 131–132, 139, Color Plate 29
Biofilms, 69, 81

Bordetella pertussis
filamentous hemagglutinin, 135–138, Color Plate 32
Pil system, 180, 186–187, 203
BrkA protein, 132–133, 140

Brucella, VirB system, 180, 186

Cactus protein, 245
Caf1 proteins, 73
Caf1M, 71, 74

cag pathogenicity island, 180, 182–183
CagA (cytotoxin-associated gene A), 65, 183
camb system, 183

Campylobacter jejuni, VirB system, 180, 183
Caspase-3, 184
Caspase recruitment domain, 249

CckA protein, 27
CD14, 246
kinatinocyctes, 231

CDC, see Cholesterol-dependent cytolysin
Cdc42 GTPase, 158–159, 169, Color Plates 36–37

Cell wall
component of sorting reaction, 106–109
perforation by VirB1-like glycosylases, 190
protein display, 101–102

Cell wall-sorting signal (Cws), 102–106, 115, 118
cesT gene, 50

CesT protein, 53–55, 155

Chaperone(s)
F1-G, loops, 71
type III secretion system, 154–156, Color Plate 35

Chaperone-usher pathway, 37–39
pilus fiber assembly, 69–79, Color Plates 20–23
chaperone and donor strand complementation, 71–72, Color Plates 21–22
donor strand exchange, 72–74, Color Plate 23
donor strand exchange at usher, 74–76, Color Plate 23

Che proteins
CheA, 19–20, 23–25, 30, Color Plates 6, 10
CheB, 22–25, Color Plate 9
CheC, 25
CheD, 25
CheR, 25, Color Plate 10
CheV, 25
CheW, 24, Color Plate 10
CheY, 21, 23–25, Color Plates 10, 52
CheZ, 24–25, Color Plate 10

Chemical library, screening for two-component system inhibitors, 29–30
Chemotaxis, 22–25, Color Plate 10

Chloromethane, 122–123
Cholesterol-dependent cytolysin (CDC), 223–230
expression and secretion, 224
membrane recognition, 226–227, Color Plate 47–48
perfringolysin, 225–226, Color Plates 47–48
pore formation, 227–230, Color Plate 48
primary structure, 224–225, Color Plate 47
sensitivity to membrane cholesterol, 226–227

Choline-binding proteins, 101–102
CiaH-CiaR system, 28
Closantel, 29
ClpAP/ClpXP proteins, 7
ComP protein, 95

Conjugation, bacterial, 179–181
Conjugative relaxases, 203–206, Color Plate 45
Convergent evolution, in bacterial pathogenesis, 167–169

Coupling proteins, 201
Coxiella burnetii, Dot-Icm system, 180, 184–185
CpG motif, unmethylated, recognition by TLR9, 248

CssD protein, 136
CtrA protein, 27

Cws, see Cell wall-sorting signal

Cysteine proteases, 165

Cytokeleton, host cell
modulation by effectors of type III secretion system, 157–165

Tir in reorganization, 62–65

DctD protein, 20–22
Death domain, 243
DegS protein, 7
Diazomethane, 122–123
Dorsal protein, 244

Dot-Icm system, *L. pneumophila* and *C. burnetii*, 180, 184–185

Drosophila, Toll, 244–245

Drr proteins
DrrB, 22, Color Plate 9
DrrD, 22, Color Plate 9

Drug resistance, two-component systems and, 28
Dsr proteins, 197, 201

eae gene, 50
Effecotrs, type III secretion system, 149, Color Plates 35–36

Ehrlichia, type IV secretion components, 187

EnvZ protein, 19–20

Erwinia carotovora, type IV secretion components, 188

Escherichia coli
enteropathogenic, 49–68, 153, Color Plate 19
type III secretion system, 50–55
enterotoxigenic, 39
enterohemorrhagic, 64
\(\sigma^A \), 5–7, Color Plate 3
uropathogenic, 38, 69
Escherichia coli O157:H7, 64
Esp proteins, 50
 EspA, 52–53, 55, 65, 153
 EspB, 52–53, 55
 EspD, 52–53, 55
 EspF, 53
 EspG, 53
 EspH, 53
Essential genes, two-component signaling systems, 27
ExoS protein, 159–161, 168
F pilus, 191
F1 antigen (Caf1), _Y. pestis_, 70
F17 fimbiae, assembly, 39
F17a-G adhesin, 43–45, Color Plates 15–18
FHA, see Filamentous hemagglutinin
FhaC protein, 136
Fiber-forming proteins, structural biology, 82–84
Fibrillum, 70
Fibronectin, 168, Color Plate 41
Filamentous hemagglutinin (FHA), _B. pertussis_, 135–138, Color Plate 32
Fim proteins
 FimA, 38–39, 70, 75
 FimC, 38–39, 70–72, 75
 FimD, 38–39, 70, 75
 FimF, 38–39, 70, 75
 FimG, 38–39, 70, 75
 FimH, 38–41, 44–45, 70, 72, 75, Color Plates 11, 18
 as vaccine, 45
Fimbriae, assembly, 37–39
FixJ protein, 20–22, Color Plate 9
Flagella
 chemotaxis, 22–25
 synthesis, 7–8, Color Plate 4
Flagellin, recognition by TLR5, 247
FliM protein, 7–8, 10, Color Plate 4
Flp proteins
 FlIA, 7–8, Color Plate 4
 FlIM, 25
 FlIY, 25
G fimbriae, assembly, 39
GafD protein, 39, 43–45, Color Plates 14, 18
GAP, see GTPase-activating protein
GEF, see Guanine nucleotide exchange factor
Gene clusters, sortase, 121
Globosides, 44–45, 70
Glycoproteins, containing GlcNAc, 44–45
Gram-negative bacteria, type III secretion system, 149–177, Color Plates 35–41
Gram-positive bacteria
 injectosomes, 223–239, Color Plates 47–49
 sortase pathways, 101–127
GTPase(s), 167–168
 Rho, 157–161, 165, 168–169, Color Plate 36
GTPase-activating protein (GAP), 158–161, 167–168, Color Plates 37, 41
Guanine nucleotide exchange factor (GEF), 158–159, 169, Color Plate 37
Haemophilus influenzae
 adherence to host epithelia, 129–148, Color Plates 28–34
 Hap adhesin, 130–134, Color Plates 28, 30
 hemagglutinating pilus, 70
 Hia, 138–143, Color Plates 33–34
 HMW adhesins, 135–138, Color Plate 31
 Hsf, 138–140
 nontypeable, 129
type b, 128
type V secretion system, 129–148, Color Plates 28–34
 Hap adhesin, 130–134, Color Plates 28, 30
 Hbp protein, 136
Heat shock proteins, 248
Helicobacter pylori
 bacterial receptor, 65
 cag pathogenicity island, 180, 182–183
 HP0525, 197–198, Color Plate 43
Hemagglutinating pilus, _H. influenzae_, 70
Hia protein, 130, 137–140, Color Plates 33–34
 host cell recognition, 140–143, Color Plate 34
Hif proteins
 HiFA, 70
 HiFB, 70
 HiFC, 70, 136
 HiFD, 70
 HiFE, 70
Histidine kinase, 18–22, Color Plate 5
 antimicrobial drug targets, 26–28
 functions, 18
 hybrid, 19
 kinase core, 18–19, Color Plate 6
 periplasmic sensing domain, 18
 structural characteristics, 18–20, Color Plates 5–6
HMW adhesins
 HMW1, 135–138, Color Plate 31
 HMW2, 135–138, Color Plate 31
Host receptors, of bacterial origin, 49–68, Color Plate 19
HP0525, 197–198, 203, Color Plate 43
 complex with ATPyS, 198, 200, Color Plate 43
 unliganded, 199
HP0532, 196
Hpm proteins
 HpmA, 137
 HpmB, 136
Hrp pili, 153
Hsf protein, 130, 138–140

I-κB, 244
IcsA protein, 64, 136
IgA protease, 132, 134
ILY, see Intermedilysin
Imiquimod, recognition by TLR7 and TLR8, 247–248, Color Plate 50

Immunity, innate, 241–263, Color Plates 50–52
Injectosomes, 223–239, Color Plates 47–49
 gram-positive bacteria, 223–239
 model, 233, Color Plate 49
 pathway, 232–233
 physiological consequences, 233–234
 unique structural features, 234
InlB protein, 102

Innate immunity, 241–263, Color Plates 50–52
 Integrin, 168, Color Plate 41
Interferons, 247

Interleukin-1 (IL-1), 250
 IL-1α, 231
 IL-1β, 231
Interleukin-1 (IL-1) receptors, 241–263, Color Plates 50–52
 AcPL, 251–252
 IL-18R, 251–252, 260
 IL-1RI, 250–251, 259, Color Plate 50
 IL-1RII, 251
 IL-1RAPL, 250–251, 259
 IL-1Rp2, 253
 SIGIRR, 253
 signaling pathways, 243, 259–261, Color Plate 52
 T1/ST2, 252
 TIGIRR, 252
 TIR domains, 253–256
Interleukin-8 (IL-8), 183, 231

Interleukin-18-binding protein (IL-18bp), 252
Intermedilysin (ILY), 225, 227, 229
Intimin, 49–68, Color Plate 19
 structural characteristics, 56–59
 Tir-intimin interactions, 55–58, 60–62, Color Plate 19
InvB protein, 156
Invasin, 56, 58–59, 62, 168, Color Plate 41
IRAK (IL-1 receptor-associated kinase), 258–261
IRF-3 transcription factor, 259

K122-4 pilin, 83, 88–89, Color Plate 24
Keratinocytes
 physiological consequences of injectosomes, 233–234
 proinflammatory response, 231
 streptococcal disease and, 231
KinA protein, 29
β-Lactamases, 115
LAMP1 protein, 134
Lectins, as adhesins, 40–43
LEE (locus of enterocyte effacement), 50, 52, 64
Legionella pneumophila, Dot-ICm system, 180, 184–185
Lep proteins
 LepA, 184
 LepB, 184
Ler protein, 50
Leucine-rich repeats, 166, 247, Color Plates 40, 50
LidA protein, 184
Lipid II, 105–109
Lipopolysaccharide (LPS), 241
 recognition by TLR4, 245–246
 Lipopolysaccharide-binding protein, 246
Lipoproteins
 connecting pilus to core complex, 195–196
 recognition by TLR2-(TLR1 or TLR6), 246–247
Lipoteichoic acid, 101–102
Listeria monocytogenes, listeriolsin O, 225, 227, 234–235
 Listeriolysin O (LLO), 225, 227, 234–235
 LLO, see Listeriolysin O
 LPS, see Lipopolysaccharide
 Lvh system, 184–185
 LytA protein, 101–102
Macrophages, Legionella infection, 184
MALP-2 lipopeptide, 247
Mammals, Toll-like receptors, 245–248
Mannose-binding protein (MBP), 56, 58
MAP kinase, 165, 247, 252, 259, 261
Map protein, 53
Mating pair formation (Mpf) complex, 179, 181, 188–189, 197, 201
MBP, see Mannose-binding protein
MCP, see Methylated chemotaxis proteins
MD-2 protein, 246
Membrane ruffling, 159, 164, Color Plates 36, 39
Methylated chemotaxis proteins (MCP), 23–25
Motility, pathogens, 27–28
Mpf complex, see Mating pair formation complex
MS11 pilin, 83–88, 90–92, Color Plates 24–25
MtrA protein, 27
Mycobacterium tuberculosis, extracytoplasmic σ factors, 5
 MyD88, 256–257, 260–261
NAD glycohydrolase (SPN), 223, 231–232, Color Plate 49

injectosome pathway, 230–234

NalP protein, 131–132, Color Plate 29

NalR/FixJ proteins, 20–22, Color Plate 9

Nck protein, 60, 63–64

Needle complex, type III secretion system, 150–153, 155–156

Neisseria gonorrhoeae

MS11 pilin, 83–88, 90–92, Color Plates 24–25
type IV pili, 81
type IV secretion system, 181

Neisseria meningitidis

PilQ, 93–94
type IV pilin, 81

NF/H9260, 165, 244–245, 247, 249, 252–253, 259, 261

NhhA protein, 139

Nod proteins, 249

Novosphingobium aromaticivorans, type IV secretion components, 188

NR1-NRI proteins, 29

NTPase, ring-shaped cytoplasmic, 197–200

NtrC/DctD proteins, 20–22

N-W ASP protein, 63–64

OmpR/PhoB proteins, 20–22

Outer membrane

component of type IV secretion system, 192
secretin, 93–94

P pili, 191

assembly, 39, 69–79, Color Plate 20

PAK pilin, 83, 87–91, Color Plates 24, 26–27

PAMPs, see Pathogen-associated molecular patterns

Pap proteins

PapA, 39, 69, Color Plate 20

PapC, 39, 70, 75

PapD, 39, 70–75, Color Plates 20–23

PapE, 39, 70, 73, Color Plates 20, 23

PapF, 39, 70, Color Plate 20

PapG, 39, 42–45, 70, 75, Color Plates 12–13, 18, 20

PapH, 39

PapK, 39, 70, 72–73, Color Plates 20, 22–23

Pathogen avirulence factors, 248–249

Pathogen-associated molecular patterns (PAMPs), 241, 261

Pathogenesis, two-component systems and, 27–28

Pathogenicity islands

cag, 180, 182–183

LEE, 50, 52, 64

Pattern-recognition receptors (PRRs), 241

Pelle protein, 244–245, 258–261, Color Plate 50

Pellino protein, 259

Penicillin resistance, 28

Penicillin-binding proteins, 28, 115

Peptidoglycan

perforation by VirB1-like glycosylases, 190

recognition by TLR2-(TLR1 or TLR6), 246–247

Perfringolysin (PFO), 225

crystal structure and cytolytic mechanism, 225–226, Color Plates 47–48

membrane recognition, 226–227, Color Plate 48

pore formation, 228–230

Periplasmic stress response, regulation, 5–7, Color Plate 3

Persephone protein, 245

Pertactin, 132–133, 141–142

Pertussis toxin liberation system, see Ptl system

PEST sequence, 225

PFO, see Perfringolysin

Phagosomes, 184, 186, 235

Phospholipase C, 235

Phosphotransferase pathways, two-component signaling systems, 18, Color Plate 5

Phosphotyrosine recognition, 162–163

Pil proteins

PilA, 28, Color Plate 24

PilB, 28, 95

PilC, 81

PilD, 95

PilE, Color Plate 24

PilQ, 93–94

PilR, 28

PilS, 28

PilT, 81–82, 95–96

PilU, 95–96

PilV, 81, 95

PilX10, 197

Pili, see also specific types of pili

assembly, 37–39, 190–192

structural subunits in type IV system, 190–192

Pilin(s), 69–79, 190–192

monomer sequences, 82–83

type IV, see Type IV pilin

Pilin precursor proteins, 190

Pilin-like proteins, 95

Pilus fiber assembly, chaperone-usher pathway, 69–79, Color Plates 20–23

chaperone and donor strand complementation, 71–72, Color Plates 21–22

donor strand exchange, 72–74, Color Plate 23

donor strand exchange at usher, 74–76, Color Plate 23

Plant disease resistance proteins, 241, 248–249

TIR domains, 253–256

Plasmid, conjugative, 180–181, 188–189

Plasmid pAtC58, 182
Index

Plasmid pRi, 182
Plasmid pXF51, 188
P-loop, 162
Pneumolysin, 224
Poly(I-C), recognition by TLR3, 247
Pore formation, cholesterol-dependent cytolysins, 227–230, Color Plate 48
Pore-forming proteins, 154
Porins, 132
Prepore complex, 228–230, Color Plate 48
Prostaglandin E2, 231
Protein A, *S. aureus*, 102–105
Protein display, cell wall, 101–102
Protein sorting
 history, 103–105
 overview, 105
Protein tyrosine phosphatase (PTP) domain, 159, 161–162, Color Plate 38
PRRs, see Pattern-recognition receptors
Pseudomonas aeruginosa
 alginate production, 30
 extracytoplasmic σ factors, 5
 K12-4 pilin, 83, 88–89, Color Plate 24
 PAK pilin, 83, 87–91, Color Plate 24
type IV pilin, 81
Pseudopilus, 95
Ptl system
 B. pertussis, 180, 186–187, 203
 PtIA, 192
PTP domain, see Protein tyrosine phosphatase domain
Pyolysin, 225
Quorum sensing, 28, 31
R-848, recognition by TLR7 and TLR8, 247–248, Color Plate 50
Rac1 GTPase, 158–161, 168, Color Plates 37, 41
Radicocol, 31
RapF protein, 184
Ralstonia solanacearum, type IV secretion components, 188
Relaxase, 181–182, 201–202, Color Plate 45
 conjugative, 203–206, Color Plate 45
 relaxase-DNA interactions, 204–206, Color Plate 45
Relaxosome, 197, 201–202
Response regulators, 18–22, Color Plate 5
 antimicrobial drug targets, 26–28
 effector domains, 20–22, Color Plate 9
 functions, 18
 oligomerization, 22
 regulatory domains, 20–22, Color Plates 8–9
 structural characterization, 20–22, Color Plates 5, 8–9
Rho GTPases, 157–161, 165, 168–169, Color Plate 36
RickA protein, 64
Rickettsia, type IV secretion components, 187
RNA, double-stranded viral, recognition by TLR3, 247
RNA polymerase, 1–5, Color Plates 1–4
anti-σ factors, 1–16
holoenzyme, 1, Color Plate 1
Rop protein, 60–61
rpo genes, 6
Rsd protein, 9
rse genes, 6
RseA protein, 5–7, 9–10, Color Plate 3
RteA-RteB proteins, 28
RWJ-49815, 29
Salmonella enterica serovar Typhimurium, extracytoplasmic σ factors, 5
ScC protein, 102
Sec system, 130, 135, 186, 190, 223–224
S. pyogenes injectosomes, 230–234
Secretin
 outer membrane, 93–94
 PilQ, 93–94
Secretion, see specific types of secretion
SeIC protein, 136
Serine kinase, SpoIIAB, 3–4, 9–10
Serine protease, SA clan, 133–134
Sex pilus, 194
Shl proteins
 ShlA, 137
 ShlB, 136
SicP protein, 154–155, Color Plate 35
SigE protein, 54, 155
Sigma (σ) appropriators, 9
Sigma (σ) factors, 1–16, Color Plate 1
 alternative, 2
 extracytoplasmic function, 5–7, 9, Color Plate 3
 FliA, 7–8, 10, Color Plate 4
 group 1, 1–2
 group 3, 7–8
 σ2, 5–7, Color Plate 3
 σ7, 3–5, 9, Color Plate 2
 structural domains, 2, 8–9
Signal peptide, 130
Signal sequence, 136
Signal transduction, host cell, modulation by type III secretion system, 165–166
Signaling systems, two-component, see Two-component signaling systems
Sip proteins
 SipA, 164–165, Color Plate 39
 SipC, 154, 164
β-Sitosterol-3-O-glucopyranoside, 121–122
S-layer proteins, 102
SLO, see Streptolysin O
Sop proteins
 SopB, 165–166
 SopE, 158–159, 163, 169, Color Plates 36–37, 41
Sortase(s)
 enzyme structure, 107–112
 gene clusters, 121
 inhibitors, 121–123
 medical importance, 103
 nonredundant, 117
 phylogenetic distribution, 115–121
 relationship to other transpeptidases in cell wall, 115
 SrtA subfamily, 118–120
 subfamilies, 117–119
 subfamily 3, 120
 subfamily 4, 120
 subfamily 5, 120
 transpeptidation reaction, 107–115
 active site, 114
 chemical mechanism, 112–115
 kinetics, 113–114
 Sortase pathway, see also Sortase(s)
 components of sorting reaction
 cell wall, 106–109
 cell wall-sorting signal, 105–106
 gram-positive bacteria, 101–127
 Spa15 protein, 156
 SPATEs, 134
 Spätzle protein, 244–245
 SPN, see NAD glycohydrolase
 Spo proteins
 Spo0A, 21
 Spo0B, 19, Color Plate 7
 Spo0F, 29
 SpoIIA, 3–5, 10
 SpoIIB, 3–5, Color Plate 2
 Sporulation, Bacillus, 3–5, Color Plate 2
 SpIP protein, 154–155, 159–163, 168, Color Plates 35–38, 41
 SpvB protein, 164
 Srt proteins
 S. aureus, 104–127
 SntA, 104–127
 SntB, 106, 110, 112, 114, 117, 120
 Staphylococcus aureus
 protein A, 102–105
 Srt proteins, 104–127
 Streptococcus pneumoniae, pneumolysin, 224
 Streptococcus pyogenes
 injectosomes, 230–234
 keratinocytes and streptococcal disease, 231
 NAD glycohydrolase, 223, 231–232
 Streptolysin O (SLO), 223, 225, 227, 229–230
 S. pyogenes injectosomes, 230–234
 unique structural features, 234
 Stress response, periplasmic, 5–7, Color Plate 3
 Subtilisin, 133
 Sugar recognition, 37–48, Color Plates 11–18
 SxxK acetyltransferases, 115
 Syc proteins
 SycE, 54, 154–156, Color Plate 35
 SycH, 162–163
 T pilus, 192, 194
 T4CP protein, 197, 200–203, Color Plate 44
 TAK1 kinase, 261
 Talin, 60, 63
 TCP, see Toxin-coregulated pilus
 TcpA protein, 83, 89, 92–93, Color Plate 24
 T-DNA, 180–182, 189–206
 Teichoic acid, 101–102
 Teichuronic acid, 101–102
 Tetanolysin, 227
 Tetracycline resistance, 28
 Ti plasmid, 180–182, 188
 Tiam-1 protein, 169, Color Plate 41
 Tir (translocated intimin receptor), 49–68, Color Plate 19
 actin cytoskeleton reorganization, 62–64
 delivery into host, 50–55
 dimerization, 59–61
 Tir-based actin signaling, 64–65
 Tir-intimin interactions, 55–58, 60–62, Color Plate 19
 Tir-membrane topology, 59–61
 TIR domain, see Toll/IL-1 receptor domain
 TIRAP/MAL, 257, 260
 TLR, see Toll-like receptors
 TMH, see Transmembrane β-hairpin
 TNF superfamily, see Tumor necrosis factor superfamily
 TolC protein, 132
 Tol receptors, Drosophila Toll and its homologs, 244–245
 Toll/IL-1 receptor (TIR) domain, 243–244, 249, 253–256, 260–261
 BB loop, 255, Color Plate 52
 covalent modifications, 255–256
 functions, 254, Color Plate 51
 sequence conservation, 253, Color Plate 51
 structure, 254–255, Color Plate 52
 Tollip protein, 259–260
272 Index

Toll-like receptors (TLR), 241–263, Color Plates 50–52
keratinocytes, 231
mammalian, 245–248
recognition of host proteins, 248
signaling pathways, 243, 259–261, Color Plate 52
TIR domains, 253–256
TLR2-(TLR1 or TLR6), 246–247, 260
TLR3, 247
TLR4, 245–246, 260
TLR5, 247
TLR7, 247–248, Color Plate 50
TLR8, 247–248, Color Plate 50
TLR9, 248
Toxin-coregulated pili (TCP), 81, 89, 92–93
TPS, see Two-partner secretion pathway
Tps proteins
TpsA, 135–138
TpsB, 135–138
Tra proteins
TraA, 190–191
TraC, 194, Color Plate 42
TraD, 201–202
TraF, 197
TraG, 200–201
TraI, Color Plate 45
DNA-binding site and relaxase-DNA interactions, 204–205, Color Plate 45
relaxase domain, 204, Color Plate 45
TraM, 202
Tra system, 182–183
TRAF6, 261
Transcription, anti-σ factors, 1–16
Transformation, pilus-mediated, 91–92
Translocon, type III secretion system, 153–154
Transmembrane β-hairpin (TMH)
TMH1, 228–230, Color Plate 48
TMH2, 228–230, Color Plate 48
Transpeptidation, sortase, 107–115
Trb proteins
TrbB, 197
TrbC, 191–193
TrbE, 193
TrbH protein, 197
TriC protein, 192
TRIF/TICAM, 257–258, 260
Trw proteins, 185–186
TrwB, 202, Color Plate 44
TrwBΔN70, 202–203, Color Plate 44
TrwC, Color Plate 45
DNA-binding site and relaxase-DNA interactions, 204–205, Color Plate 45
relaxase domain, 204, Color Plate 45
TrwD, 197–198
TrwE, 197
Tsr protein, 24
Tube protein, 244–245, 258, 260, Color Plate 50
Tumor necrosis factor α, 247
Tumor necrosis factor (TNF) superfamily, 142
Two-component signaling systems, 17–36, Color Plates 5–10
antimicrobial drug targets, 17, 26–28
chemotaxis, 22–25, Color Plate 10
in drug resistance, 28
essential genes, 27
histidine kinases, 18–22, Color Plate 5
inhibitors
chemical library screening, 29–30
rational inhibitor design, 30–31
response regulators, 18–22, Color Plate 5
in virulence, 27–28
Two-partner secretion (TPS) pathway, 135–138, Color Plate 31
Type 1 pili, assembly, 38–39, 69–79, Color Plate 20
Type III secretion system, 50, 149–177, Color Plates 35–41
actin cytoskeleton modulation, 157–165, Color Plate 39
chaperones, 154–156, Color Plate 35
effectors, 52
enteropathogenic E. coli, 50–55
filamentous structures associated with, 153
machinery in bacterial cytoplasm, 154–156
modulation of host signal transduction, 165–166
needle complex, 150–153, 155–156
translocon, 153–154
Type IV pili
assembly proteins
assembly and retraction ATPases, 95–96
outer membrane secretin, 93–94
pilin-like proteins, 95
functions, 81–82
pilus filament models, 90–93, Color Plate 27
structure and assembly, 81–100, Color Plates 24–27
type IVa, 90–92, Color Plate 27
type IVb, 92–93
Type IV pilin
antigenic variation, 85
K122-4, 83, 88–89, Color Plate 24
MS11, 83–88, 90, Color Plates 24–25
PAK, 83, 87–91, Color Plate 24
pilus filament models, 90–93, Color Plate 27
structural biology, 82–84
subunit structures, 84–90, Color Plates 24–27
TcpA, 83, 89, Color Plate 24
type IVa, 82
type IVb, 82, 89, Color Plate 24
Type IV secretion system, 179–221, Color Plates 43–46
bacterial conjugation systems, 180–181
Bartonella, 180, 185–186
cag pathogenicity island of *H. pylori*, 180, 182–183
Dot-Icm of *L. pneumophila* and *C. burnetii*, 180, 184–185
genetics, 188–189
mechanism
 bridge over periplasm, 196
 connecting inner and outer membrane proteins, 196–197
 cytoplasmic NTPase fueling secretion machinery, 197–200
 lipoprotein connecting pilus to core complex, 195–196
 modulation of secretion channel, 195
 motor, 192–194
 outer membrane anchor of core complex, 196
 outer membrane component, 192
 perforation of peptidoglycan cell wall, 190
 pilus mediating cell adhesion, 194–195
 structural subunit of pili, 190–192
model view, 206–207, Color Plate 46
occurrence, 180–188
Ptl system of *B. pertussis*, 180, 186–187
structure and function of components, 189–203
substrates, 203–206
 conjugative relaxases, 203–206, Color Plate 45
 T-DNA, 206
T-DNA transfer in *A. tumefaciens*, 180–182, 189–203, 206, Color Plate 46
type IVb system, 185, 189
 VirB of *Brucella*, 180, 186
 VirB of *C. jejuni*, 180, 183
Type V secretion system, *H. influenzae*, 129–148, Color Plates 28–34
Ubiquitin-like proteins, 165
Uroplakins, 44
Usher, see Chaperone-usher pathway

Vaccine, adhesin, 45
VanS-VanR system, 28
Vancomycin resistance, 28
VASP protein, 63
Vibrio cholerae
 extracytoplasmic σ factors, 5
 TcpA, 83, 89, 92–93, Color Plate 24
Vinyl sulfone, 122–123
Vir proteins
 VirB, 180–181, 183, 185
 VirD2, 182
 VirD4, 181, 185, 189, 200–203
 VirE2, 182, 201
 VirE3, 182
 VirF, 182
 VirB-like components
 VirB1, 190, 196–197
 VirB1*, 190
 VirB2, 190–192, 197
 VirB3, 192, 195, 197
 VirB4, 181, 192–194
 VirB5, 194–195
 VirB6, 192, 194–195
 VirB7, 195–197
 VirB8, 196
 VirB9, 195–197
 VirB10, 196–197, 201
 VirB11, 195, 197–200
 similarity to AAA proteins, 199–200
 VirD4, 200–203, Color Plate 44
 VirB-like systems, 188–189
 Virulence
 two-component systems and, 27–28
 virulence proteins, 149, Color Plates 35–36
 Virus, double-stranded RNA recognition by TLR3, 247
 Walker A motif, 192–193, 200
 Walker B motif, 200
 WASP protein, 60, 63–64
 Wolbachia, type IV secretion components, 180, 187
 Xanthomonas, type IV secretion components, 188
 XerD protein, 202
 Xylella fastidiosa, type IV secretion components, 188
 YadA protein, 139–140, 142, Color Plate 34
 YaeL protein, 7
 Yersinia pestis, F1 antigen, 70
 Yop proteins
 YopE, 154–155, 159–161, 163, Color Plate 35
 YopH, 161–162, 167, Color Plate 38
 dual-function amino-terminal domain, 162–163
 PTP domain, 161–162
 YopJ, 165, 167
 YopM, 166–167, Color Plate 40
 YopO, 167
 YopT, 165, 167
 Ypd1 protein, 19, Color Plate 7
 YpkA protein, 161, 167
 YycF-YycG system, 27
 Zymosan, yeast, recognition by TLR2-(TLR1 or TLR6), 246–247