MICROBES AND EVOLUTION
The World That Darwin Never Saw

Edited by

Roberto Kolter
Harvard Medical School, Boston, MA 02115

and

Stanley Maloy
San Diego State University, San Diego, CA 92182-1010

ASM Press
Washington, DC 20036
Contents

Contributors ix

Preface xiii

Introduction Darwin and Microbiology 1
Roberto Kolter and Stanley Maloy

Chapter 1 Evolution in Action: A 50,000-Generation Salute to Charles Darwin 9
Richard E. Lenski

Chapter 2 Minimal Genomes and Reducible Complexity 17
Andrés Moya

Chapter 3 Lady Lumps’s Mouthguard 25
Jessica Green

Chapter 4 Trying To Make Sense of the Microbial Census 31
Mitchell L. Sogin

Chapter 5 The View from Below 37
Margaret Riley and Robert Dorit

Chapter 6 Running Wild with Antibiotics 43
Roberto Kolter

Chapter 7 Antibiotic Resistance 49
Diarmuid Hughes

Chapter 8 Bacteria Battling for Survival 59
Thomas M. Schmidt
Contents

Chapter 9 Phage: An Important Evolutionary Force 65
 Darwin Never Knew
 Forest Rohwer

Chapter 10 The Struggle for Existence: Mutualism 71
 Paul E. Turner

Chapter 11 The Secret Social Lives of Microorganisms 77
 Kevin R. Foster

Chapter 12 Microbes and Microevolution 85
 Evgeni Sokurenko

Chapter 13 Unnecessary Baggage 93
 Stanley Maloy and Guido Mora

Chapter 14 Bacterial Adaptation: Built-In Responses and Random Variations 99
 Josep Casadesús

Chapter 15 The Impact of Differential Regulation on Bacterial Speciation 109
 Eduardo A. Groisman

Chapter 16 An Accidental Evolutionary Biologist: GASP, Long-Term Survival, and Evolution 115
 Steven E. Finkel

Chapter 17 How Bacteria Revealed Darwin’s Mistake (and Got Me To Read On the Origin of Species) 123
 John R. Roth

Chapter 18 The Role of Conjugation in the Evolution of Bacteria 133
 Fernando de la Cruz

Chapter 19 Do Bacteria Have Sex? 139
 Rosemary J. Redfield

Chapter 20 Better than Sex 145
 Harald Brüssow
Contents

Chapter 21 Darwin in My Lab: Mutation, Recombination, and Speciation 151
Miroslav Radman

Chapter 22 Sexual Difficulties 159
Howard Ochman

Chapter 23 Unveiling Prochlorococcus: The Life and Times of the Ocean’s Smallest Photosynthetic Cell 165
Sallie W. Chisholm

Chapter 24 Deciphering the Language of Diplomacy: Give and Take in the Study of the Squid-Vibrio Symbiosis 173
Margaret McFall-Ngai and Ned Ruby

Chapter 25 The Tangled Banks of Ants and Microbes 181
Cameron R. Currie

Chapter 26 Microbial Symbiosis and Evolution 191
Nancy A. Moran

Chapter 27 Coevolution of Helicobacter pylori and Humans 197
Martin J. Blaser

Chapter 28 The Library of Maynard-Smith: My Search for Meaning in the Protein Universe 203
Frances H. Arnold

Chapter 29 In Pursuit of Billion-Year-Old Rosetta Stones 209
Dianne K. Newman

Chapter 30 The Deep History of Life 217
Andrew H. Knoll

Chapter 31 A Glimpse into Microevolution in Nature: Adaptation and Speciation of Bacillus simplex from “Evolution Canyon” 225
Johannes Sikorski
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>On the Origin of Bacterial Pathogenic Species by Means of Natural Selection: A Tale of Coevolution</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Philippe J. Sansonetti</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>The Evolution of Diversity and the Emergence of Rules Governing Phenotypic Evolution</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Paul B. Rainey</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>The Christmas Fungus on Christmas Island</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Anne Pringle</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>A New Age of Naturalists</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Rachel A. Whitaker</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>The Ship That Led to Shape</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Kevin D. Young</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Postphylogenetics</td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>W. Ford Doolittle</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Irreducible Complexity? Not!</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>David F. Blair and Kelly T. Hughes</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Many Challenges to Classifying Microbial Species</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Stephen Giovannoni</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>287</td>
</tr>
</tbody>
</table>
Contributors

Frances H. Arnold
California Institute of Technology, Pasadena, CA 91125

David F. Blair
Department of Biology, University of Utah, Salt Lake City, UT 84112

Martin J. Blaser
Departments of Medicine and Microbiology, NYU School of Medicine, and Medical Service, New York Harbor Department of Veterans Affairs Medical Center, New York, NY 10016

Harald Brüssow
Nestlé Research Centre, BioAnalytical Science Department, CH-1000 Lausanne 26, Switzerland

Josep Casadesús
Departamento de Genética, Universidad de Sevilla, Seville, Spain

Sallie W. Chisholm
Massachusetts Institute of Technology, Cambridge, MA 02139

Cameron R. Currie
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706

Fernando de la Cruz
Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-IDICAN, C. Herrera Oria s/n, 39011 Santander, Spain
Contributors

W. Ford Doolittle
Professor Emeritus, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada

Robert Dorit
Smith College, Northampton, MA 01063

Steven E. Finkel
University of Southern California, Los Angeles, CA 90089-2910

Kevin R. Foster
Harvard University, Cambridge, MA 02115

Stephen Giovannoni
Department of Microbiology, Oregon State University, Corvallis, OR 97331

Jessica Green
University of Oregon, Eugene, OR 97403, and Santa Fe Institute, Santa Fe, NM 87501

Eduardo A. Groisman
Yale School of Medicine, Yale Microbial Diversity Institute, New Haven, CT 06536

Diarmaid Hughes
Department of Medical Biochemistry and Microbiology (IMBIM), Box 582, Biomedical Center, Husargatan 3, 751 23 Uppsala, Sweden

Kelly T. Hughes
Department of Biology, University of Utah, Salt Lake City, UT 84112

Andrew H. Knoll
Harvard University, Cambridge, MA 02115

Roberto Kolter
Harvard Medical School, Boston, MA 02115

Richard E. Lenski
Michigan State University, East Lansing, MI 48824

Stanley Maloy
San Diego State University, San Diego, CA 92182-1010
Contributors

Margaret McFall-Ngai
University of Wisconsin-Madison, Madison, WI 53706

Guido Mora
Universidad Andrés Bello, Santiago, Chile

Nancy A. Moran
Yale University, New Haven, CT 06536

Andrés Moya
Institut Cavanilles de Biodiversitat i Biologia Evolutiva, University of Valencia; Centro Superior de Investigación en Salud Pública (CSISP) and CIBER en Epidemiología y Salud Pública, Spain

Dianne K. Newman
Howard Hughes Medical Institute, Divisions of Biology and Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125

Howard Ochman
Yale University, New Haven, CT 06536

Anne Pringle
Harvard University, Cambridge, MA 02115

Miroslav Radman
Faculté de Médecine, Necker, Université Paris, France

Paul B. Rainey
New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Auckland, New Zealand, and Max Planck Institute for Evolutionary Biology, Plön, Germany

Rosemary J. Redfield
University of British Columbia, Vancouver, BC, Canada

Margaret Riley
University of Massachusetts, Amherst, Amherst, MA 01003

Forest Rohwer
San Diego State University, San Diego, CA 92182
Contributors

John R. Roth
Department of Microbiology, University of California, Davis, Davis, CA 95616

Ned Ruby
University of Wisconsin-Madison, Madison, WI 53706

Philippe J. Sansonetti
“Pathogénie Microbienne Moléculaire” and INSERM Unit 786, Institut Pasteur, Paris, France

Thomas M. Schmidt
Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824

Johannes Sikorski
Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, D-38124 Braunschweig, Germany

Mitchell L. Sogin
Marine Biological Laboratory, Woods Hole, MA 02543

Evgeni Sokurenko
University of Washington, Seattle, WA 98195

Paul E. Turner
Yale University, New Haven, CT 06520

Rachel A. Whitaker
University of Illinois at Urbana-Champaign, Champaign, IL 61820

Kevin D. Young
University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199
Preface

The idea of putting together a collection of essays on the general topic of microbes and evolution began to take shape during an American Academy of Microbiology colloquium in Seattle, WA, in February of 2007. Not that the topic itself was discussed at the colloquium; rather, like so many ideas, this one emerged during informal discussions over drinks and in good company. At the time there were plans afoot worldwide as to how to celebrate, in 2009, the 200th anniversary of Darwin’s birth and 150th anniversary of the publication of On the Origin of Species. We felt that organizing a colloquium on microbial evolution at the Galapagos Islands—which indeed took place in 2009—would be a fitting tribute to the role that microbes have played in our understanding of the evolutionary process.

From the concept of the colloquium, a second idea emerged quite naturally. We should ask fellow scientists to write short, personal essays about their work. The essays would clearly manifest the investigators’ enthusiasm for their work and the impact of microbes on our understanding of evolution. Moreover, because we wanted to reach a broad audience, we insisted that the essays be written in a way that would make them accessible to the general public, lacking the typical scientific jargon that sometimes makes books about science impenetrable to non-experts.

Of course, going from idea to concrete results takes time and great effort from many individuals. We were fortunate that these ideas were first voiced in the presence of Carol Colgan, then Director of the American Academy of Microbiology. Her great excitement for supporting these projects was critical to get them off the ground. Jeff Holtmeier, then Director of ASM Press, helped greatly during the early stages of planning the essay collection. Once we had the essays...
in hand, Michael Goldberg, ASM’s Executive Director, and Patrick Lacey, Editor of ASM’s magazine Microbe, had the idea of publishing some of the chapters in Microbe, a step that was very useful in bringing attention to the forthcoming collection. We are much indebted to Christine Charlip, current Director of ASM Press, and Ellie Tupper, Senior Production Editor, for their invaluable assistance in putting the finishing touches on the project.

Finally and most importantly, we are grateful to our many colleagues who agreed to step off the beaten path of scientific writing and compose these personal perspectives on their work.

Roberto Kolter and Stanley Maloy
April 2012
INDEX

A
Actinobacteria, 74, 184, 189
Adaptability
 horizontal gene transfer and, 88
 human analogy, 87–88
 mutations and, 88–91
Adaptation
 of Bacillus simplex from
 “Evolution Canyon,” 225–231
 bacterial shape and, 265
 preadaptation, 100, 102
Adaptive immune system, 259–260
Adaptive radiations, 242–245
Addiction modules, 134
Agrobacterium, megaplasmids of, 137
Agrobacterium tumefaciens, 136
Altruism, 78, 80–81, 83
Amanita muscaria, 251–254
Amigoni, David, 263–264
Amino acids
 essential, 194
 produced by Buchnera, 194–195
Amplifications, 127, 128
Animal-microbe associations, 173–180
Antibiotic resistance, 49–58
 β-lactamases, 54
 biofilms and, 79
 current state of, 57–58
 drug-focused mechanisms, 54–55
 drug efflux, 55
 drug inactivation, 54
 drug influx, 55
 fitness increase in resistant bacteria, 52
 genetic pathways for evolution of, 51
 horizontal gene transfer and, 51, 52, 54–57
 in methicillin-resistant Staphylococcus aureus (MRSA), 44, 49, 54
 natural, 51
 to polymyxin B, 111–112
 rapid evolution of, 45–47
 “Red Queen effect,” 45
 selection for, 52–53
 spread by transmissible plasmids, 133
 in Streptococcus pneumoniae, 49, 53
 target-focused mechanisms, 53–54
 drastic alteration of target, 53
 mutation of target, 53
 protection of target, 53–54
 replacement of target, 54

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Sat, 17 Aug 2019 06:42:42
Antibiotics
altruism-inhibiting, 82–83
annual production of, 46
broad-spectrum, 40–41
described, 50
ecological role of, 47
history of, 44, 46
mechanism of action, 50
produced by Pseudonocardia,
184, 185, 187
rate of discovery of new, 46–47
role as transcription modulators, 41
spectrum of activity, 51
Antivirulence genes, 237, 238
Ants, symbiosis and, 73–74, 182–189
Aphids, 20, 110, 194–196
Aquiflex aeolicus, 19
Archaea, 6, 33, 61, 256, 257, 270
Aristotle, 263
Arsenic, 210–211, 212
Arsenic trisulfide, 210–211
Artificial breeding, within-species variations and, 85–86
The Art of Scientific Investigation (Beveridge), 71
Asexual reproduction, 140, 159–160
Aurora, Rajeev, 285
Avery, Oswald, 234
Avidians, 15
aas locus, 246–248
Azam, Farooq, 65

B
Bacillus anthracis, 82
Bacillus simplex, 227–231
Bacteria; see also specific species
ability to spread, 87
generation time, 160
genome plasticity, 103–104
life cycle phases, 115–116
mutualism, 74–76
phage-driven evolution of microbial hosts, 69
phage-encoded toxin genes, 68
robustness of, 99–102
shapes, 264–267
size of, 160
Bacterial adaptation, 99–106
Bacterial populations, heterogeneity in, 102–103
Bacteriophage, 65–69
chimeras, 66
of Corynebacterium diphtheriae, 234
cyanophage, 68
global virome, 66–69
infection of bacterial starter cultures in milk fermentation, 148
integration into host chromosome, 148
metagenomics, 67, 68, 69
number per milliliter of seawater, 65
phage-driven evolution of microbial hosts, 69, 148–149
prophage content of pathogens, 148–149
of Shigella, 237–238
toxin genes, 67–68, 234
transduction and, 162
Bacteriocins, 38–40
Banded iron formations, 221
Barghoorn, Elso, 219
Base substitutions, 127
Bass-Becking, Lourens, 26, 87
Baumann, Paul, 178
β-Lactamases, 54, 82
β-Lactams, 54
Beveridge, W.I.B., 71
Binary fission, 13, 119, 148
Binominal system, 283
Biodiversity
biogeography of microbial life, 25–30
map of, 6, 7
microbial census, 31–36
Biofilms, 79–81
Biogeochemical cycles, 31
Biogeography
of *Amanita muscaria*, 252–253
Darwin and, 26, 241–242, 252, 255
dispersal and, 252–253, 258
of microbial life, 25–30, 257–259
Bioluminescent bacteria, 175–179
Biomarkers, 213–214
Biosignature, 212
Biotechnology, 211
Bistability, 102–103
BLAST, 285
Bonen, Linda, 270
Borges, Jorge Luis, 203
Botstein, David, 66
Breitbart, Mya, 68
Buchnera, 20–23, 110, 194–196, 239

C
cadA gene, 238
Cadaverine, 238
Cairns, John, 105, 125–127, 129–130
Calyptogena okutanii, 20
Cambrian period, 218, 242, 245
“Candidatus Korarchaeum cryptofilum,” 19–20
“Candidatus Pelagibacter ubique,” 19
“Candidatus Phytoplasma asteris,” 19–20
Casas, Veronica, 68
Castenholz, Richard, 281, 286
Cell, minimal, 17, 18
Cell cycle, bacterial, 101–102
Cell division
binary fission, 119
natural selection favoring, 80
Cell morphology, bacterial, 264–267
Chisholm, Sallie, 68
Chlorophyll b, 167
Chloroplasts, ancestry of, 167, 192–193, 270
Christian beliefs, 225–226
Christmas Island, 252–254
Ciprofloxacin, 54
Citrate, metabolism by *E. coli*, 15–16
Classification, 281–296
Coevolution
cheaters and, 200
Darwin’s tangled bank and, 188
described, 188
Helicobacter pylori and humans, 197–202
pathogenic species, 233–240
COINS (conjugation inhibitors), 137
Collector curves, 34, 35
Colony
bacterial, 62
“morphotypes,” 117–118, 243, 244
Communities, competition and cooperation in bacterial, 38–41
Community assembly, spatial theory of, 29
Competition, 243
Competitive-Exclusion Principle, 74
Complexity, reducible, 17–23
Comte, Auguste, 78
Conjugation, 56, 133–138, 160–161, 283
conjugative plasmids, 133–134
efficiency and promiscuity of, 136
inhibitors of, 137
interkingdom, 136
in *Shigella*, 236–237
“shoot and pump” model, 135
steps in, 135
Copy number
of genes, 127, 128
plasmid, 134
Corynebacterium diphtheriae, 234
Coupling protein, 135
CRISPRs, 69
Cross-feeding, 74–75
Crossover, 152
Cyanobacteria, 220, 221
biomarkers of, 213–214
chloroplast origin and, 270
Cystic fibrosis, 90
D
Dairy microbiology, 148
Dallinger, Rev. William, 10
Darwin, Charles
 on ants and aphids, 73
 on barriers between populations, 257
 biogeography and, 26, 241–242, 252, 255
 on descent with modification, 267
 on disuse, 93
 on divergence, 255
 diversity of life and, 241–242
 endemism and, 242
 fossils and, 218
 Galapagos Islands and, 1, 2, 242
 natural selection, 10, 94, 123–125, 242
 natural variation and, 123
 ongoing nature of evolution, 9–10
 On the Origin of Species by Means of Natural Selection, 9, 10, 26, 72, 73, 78, 93, 123–124, 145–147, 181, 218, 233, 255, 263
 spatial scaling of evolutionary diversity, 28
 on species interaction, 182
 stress-induced mutation, 124–125, 126–127, 130
 “tangled bank,” 181, 188, 189
 trade-offs, 62–63
 tree of organisms, 146, 152
 The Voyage of the Beagle, 1, 263–264
 on worker sterility, 78
 Yale Center for British Art 2009 exhibit, 72
Darwin Awards, 205
Darwin’s Dangerous Idea: Evolution and the Meaning of Life (Dennett), 203
Davies, Julian, 136
Dehalococcoides sp., 19
Delbrück, Max, 11, 12
Dennett, Dan, 203
Descent with modification, 72, 267
Deubiquitinases, 239, 240
De Varigny, Henri, 10
Differential regulation, impact on barriers between populations, 257
biogeography and, 26, 241–242, 252, 255
on descent with modification, 267
Diversity
 by adaptive radiations, 242–245
 ecological opportunity and, 243
Divinyl chlorophyll, 167
DNA
 as food, 141–143
 methylation, 152–153
 mismatch repair, MutHLS-mediated, 105, 154–155
selfish, 285
DNA damage
 from bile salts, 101
 SOS regulon and, 100, 101
DNA polymerases
 alternative, 104–105
 error-prone, 101, 104–105
DNA replication
 blockage by fluoroquinolones, 104
 errors during, 119
 flexibility in, 101–102
DNA sequencing, next generation, 35
DNA topoisomerases, 54, 104
DNA transfer, 141, 153; see also specific mechanisms
 as bacterial sex, 160–162
 effect on phylogenetic classification attempts, 162–163
DNA uptake, 141–143
by Helicobacter pylori, 199
Dobzhansky, Theodosius, 45, 225, 233
Dogs, within-species variations in, 85
Domains of life, 61, 256
Dominguez Bello, Maria Gloria, 199
Drug efflux, 55
Drug inactivation, 54
Drug influx, 55
Duplications, 127, 128

E
Earth, age of, 218
Ecological opportunity, 243
Efficiency and power, trade-off between, 63
Efflux systems, 55
Ehrlich, Paul, 234
Endemism, 242
Endosymbionts
 Buchnera, 20–23, 110, 194–196, 239
 mitochondria and chloroplasts, 191–193
 reduced genomes of, 18, 20, 193–194, 239
Enteric bacteria, 109–112
Enterobacteriaceae, 109–110
Epigenetic switching, 102
Epigenetic variation, 102
 preadaptation of bacterial populations by, 102
Epithelia, colonization by microbes of, 173–174
Escherichia coli
 cell attachment protein, 90
 colony morphotypes, 117–118
 cross-feeding in, 75
 differences from Salmonella, 110
 flagella, 275
 genome size, 118
 mobilome of, 133
 in Muta-Flor capsules, 87
 mutations in, 11–16, 152–153
 “pathovars,” 236
 polymorphic populations in selection experiments, 74, 75
 recombination, rate of, 153
 recombination with Salmonella genome, 155
reproductive accuracy, 119
reproductive rate of, 116
shape mutants, 266
spontaneous mutation, rate of, 153
strain differences in genomes, 153
urinary tract infections, 90
variability in ability to cause disease, 86–87
Escovopsis, 184, 185, 187–188
Euprymna scolopes, 175–179
“Everything is everywhere” hypothesis, 26, 27
Evolution
 in action, 9–16
 directed, 207
 macroevolution, 86
 microevolution, 85–91, 225–231
 modular, 66
 mosaic, 66
 in nonbiological systems, 150
 phage-driven evolution of microbial hosts, 69, 148–149
 repeatability of, 245–246
 “replaying the tape,” 121, 245
 trade-offs, 62–63
Evolutionary diversity, metrics for quantifying, 28–29
“Evolution Canyon,” 227–231
Exb proteins, 278
Experimental Evolution (de Varigny), 10
Extinction, 200, 259
Extremophiles, 257

F
Falkow, Stanley, 235
Fatty acid analysis of cell membranes, 229–230
Finches, Galapagos, 2–3, 62–63, 242
Fisher, R.A., 284
Fission; see Binary fission
“Fitness” in microbial world, 62, 63
Flagella
 of Buchnera aphidicola, 20–23
 complexity of, 275–280
 motility by, 79
 in pathogenic species, 238
Fluoroquinolones, 104
Food, DNA as, 141–143
Formal, Sam, 236
Fossil record, 13, 218
Fossils, 217–222
 age estimation by radioactive decay, 218
 Darwin and, 218
 microscopic, 218–219
 molecular, 213, 214, 219
 morphological, 212
 stromatolites, 220
 trilobites, 218
Fox, G.E., 33
Fuhlrott, Johann, 145, 146
Fungi
 Amanita muscaria, 251–254
 symbiosis with ants, 73–74, 182–189
G
Galapagos Islands, 1, 2, 63, 242
GASP (growth advantage in stationary phase), 115–121
Gastric cancer, 197
Gause, Georgii, 74
Gause’s Law, 74
Gedankenexperiment, 245
Gene-inactivation experiments, 18
Gene mixing, 139–1144
Gene networks, 100, 101
Generation time, 160
Gene reduction, in pathogens, 237, 238, 239
Genes
 copy number changes, 127, 128
 essential, 18, 20
 number in mitochondria, 193, 195–196
 pseudogenes, 94–97, 238
 selfish, 66, 67
Genetic architecture, influence on evolution of, 246, 248–249
Genetic barriers, 153–154, 257
Gene transfer; see DNA transfer
Genome
 minimal, 17–23
 phage, 66
 plasticity of bacteria, 103–104
 reduction in endosymbionts, 18, 20, 193–194, 239
 size of symbionts, 195–196
Genomic islands, 136–137
Geobiology, 209–214
Goldenfeld, Nigel, 260
Gould, Steven Jay, 121, 245
Grinsted, John, 135
Growth advantage in stationary phase (GASP), 115–121
Guilds, 38, 39, 41
Gut bacteria, mutualism in, 75
H
Hacker, Jörg, 235
Haeckel, Ernst, 3
Haemophilus influenzae, DNA uptake by, 143
Haldane, J.B.S., 282
Hallucinogenic fungus, 252
Haloarchaea, 270
Hardin, Garrett, 80
Hatful, Graham, 66
Hawaiian bobtail squid (Euprymna scolopes), 175–179
Helicase II, 154–155
Helicobacter pylori, 197–202
Hendrix, Roger, 66
Henson, Jim, 49–53
Heterogeneity in bacterial populations, 102–103
History of life, 217–223
Horizontal gene transfer, 162, 272; see also Conjugation;
 Transduction;
 Transformation
 antibiotic resistance, 51, 52, 54–57
 bacterial adaptability and, 88
gene acquisition by, 95, 110–113
as mechanism for species formation, 136
of plasmids, 136
rate of, 103
regulation of genes acquired by, 112–113
virulence and, 235
Hornets, 77
Host range, effect of pseudogenes on, 95–97
“Host specificity” genes, 95
Hugenholtz, Phil, 69
Humans coevolution of Helicobacter pylori and humans, 197–202
population growth, 80
Huxley, Julian, 11
Hybridization, 179–180; see also Symbiosis
Hybrids, interspecies, 154–155
Hypermutable bacterial lineages, 104

I
Ig nicoccus hospitalis, 19
Immunity, 234
Immunity protein, 39
Infectious Multiple Drug Resistance (Falkow), 235
Injectisome, 279, 280
Innate immune defense mechanisms, 238
Insects, social, 77–78
Intelligent design, 23
Introns, 285
Iron formations, banded, 221
Irreducible complexity, 23, 275, 278, 280

J
Jacob, François, 240
Japanese pinecone fish, 177
Joyce, Gerald, 65
“Junk” DNA, 113–114

K
Karl, Dave, 178
kcp locus, 237
Kimura, M., 284
Kingdoms, 3, 4, 256
Kirschner, Denise, 198, 200
Klebsiella, 188
Kolter, Roberto, 116
Kropotkin, Prince Piotr Alexeyevich, 78–79

L
lac duplication, 129–130
Lake Louise, 217
Last Universal Common Ancestor (LUCA), 272
Lateral gene transfer, 272; see also Horizontal gene transfer
Lawrence, Jeff, 66
Lazar, Sara, 117
Leaf-cutter ants, 183, 185
Lenski, Richard, 155–157
Leprosy, 235–236
Leucine, 196
Lewis, I.M., 11
LexA repressor, 100
Library analogy, 203–207
Life, minimum requirements for, 17–18
Life cycle phases, bacterial, 115–116
Lipids, 213, 214, 219
Listeria monocytogenes, 90
Long-term stationary phase, 115–116
Low-abundance taxa, 34–35
Lowenthal, David, 214
Luria, Salvador, 11, 12
Lynch, Michael, 285

M
MacLeod, Colin, 234
Macroevolution, 86
Macrophages, 149
survival of bacteria within, 90
Malthus, Reverend Thomas, 72
Mann, Nick, 68
Margulis, Lynn, 270
Mar regulon, 101
Marshall, Barry, 197
Maurelli, Tony, 237
Maynard Smith, John, 273
Maynard-Smith library, 203–207
McCarty, Maclyn, 234
Mendel, Gregor, 145, 146
Messenger RNA (mRNA), 4, 60, 100
Metabolic diversity, 212
Metabolism, microbial, 210–214
Metagenomics, 272, 282
Meth/chnikof, Elie, 234
Methanococcus aeolicus, 19
Methanococcus jannaschii, 285
Methicillin-resistant *Staphylococcus aureus* (MRSA), 44, 49, 54
Methylation of DNA, 152–153
Meyer, Ernst, 153
Microbes
 - age of origin of, 212–213
 - numbers of, 31, 32
 - Microbial census, 31–36
 - Microbial diversity, 26–29
 - enormity of, 36, 256
 - environmental samples, 33–35
 - geographic barriers and, 257
 - natural distribution of, 256
 - rare biosphere, 35, 36
 - The Microbial World, 269
Microevolution, 85–91, 225–231
 - adaptive mutations, 88–91
 - described, 86
 - horizontal gene transfer and, 88
Mismatch repair, MutHLS-mediated, 105, 154–155
Mitochondria, 191–193
Mobilome, 133, 138
Modular evolution, 66
Molecular phylogenetics, 33
Monera, 3, 6
Monod, Jacques, 91
Morin, James, 176
Morphotypes, 117–118, 243, 244, 282
Mosaic evolution, 66
MotA/MotB proteins, 278
mRNA (messenger RNA), 4, 60, 100
MRSA (methicillin-resistant *Staphylococcus aureus*), 44, 49, 54
Mueller’s ratchet, 97
Muta-Flor, 87
Mutation
 - adaptive, 88–91
 - amplifications, 127, 128
 - of antibiotic target, 53
 - by Avidians, 15
 - beneficial, 119–120, 124
 - biodiversity and, 32
 - deleterious, 119
 - from DNA replication error, 119
 - duplications, 127, 128
 - effect on protein, 206
 - fluorescent monitoring of, 151–152
 - GASP (growth advantage in stationary phase), 118–120
 - hypermutable bacterial lineages, 104
 - large-effect, 126, 130
 - in mitochondrial genes, 193
 - neutral, 94
 - origins of, 124
 - pathoadaptive, 89
 - pseudogenes, 94–97
 - random, 94, 125, 126
 - reading frame changes, 127
 - in rRNA-encoding gene, 60
 - small-effect, 127–131
 - spontaneous, 94
 - transitions, 127
 - variation in mutation rates, 104–105
Mutation rate, 159
 - in *Escherichia coli*, 153
 - selection effect on, 124, 125, 128–129
 - for small-effect mutations, 127–128
 - variation in mutation rates, 104–105
 - *mut* deficient strains, 156
MutL, MutS, and MutH, 105, 153–154
Mutualism, 71–76, 182–189; see also Symbiosis
“descent with modification” quote, 267
“disuse” quote, 267
ongoing nature of evolution, 9–10
“tangled bank” quote, 181
opportunistic pathogens, 73
Origin of transfer (oriT), 134, 135
Orpiment, 210–211
Overlap, bacterial robustness and, 101
Oxygen
ancient Earth and, 221–222
from photosynthesis, 211, 213–214
Parasites
of ant-tended fungus gardens, 184–189
obligate, 99
Parasitism, 72–73
Partition systems, 134
Pathogenicity islands, 235, 237
Pathogens
adaptive mutations, 88–91
differences between Salmonella and E. coli, 110
horizontal gene transfer and, 88
host range of, 95–97
opportunistic, 73
origin of species by means of natural selection, 233–240
phage-encoded toxin genes, 68
prophage content of, 148–149
trait acquisition by conjugation, 138
PCR for DNA amplification from environmental samples, 33, 35
Penicillin binding proteins (PBPs), 53

N
Nash, John, 200
Nash equilibrium, 200–201
Naturalist (Wilson), 1–2
Naturalists, 255–261
Natural selection
cheaters, 200
Darwin and, 10, 94, 123–125, 242
library analogy, 204–205
mutations and, 123–125
pathogenic species origin by means of, 233–240
sexual reproduction and, 140
Nealson, Ken, 177
Negative hypothesis, 278
Neutral mutation, 94
Neutral variation, 285
Nevo, Eviatar, 227
Next generation DNA sequencing technology, 35
Niche specificity, 243
Noise, molecular, 102
Nostoc, 286

O
Ochman, Howard, 110
ompT gene, 237
On the Origin of Species by Means of Natural Selection (Darwin), 72–73, 123–124, 145–147, 233, 263
on ant-aphid interaction, 73
on artificial selection, 10
on biogeography, 26, 255
Closing passage, 9

P
Pace, Norman, 6, 33, 256, 270–271, 272
Parasites
of ant-tended fungus gardens, 184–189
obligate, 99
Parasitism, 72–73
Partition systems, 134
The Past Is a Foreign Country (Lowenthal), 214
Pathogenicity islands, 235, 237
Pathogens
adaptive mutations, 88–91
differences between Salmonella and E. coli, 110
horizontal gene transfer and, 88
host range of, 95–97
opportunistic, 73
origin of species by means of natural selection, 233–240
phage-encoded toxin genes, 68
prophage content of, 148–149
trait acquisition by conjugation, 138
PCR for DNA amplification from environmental samples, 33, 35
Penicillin binding proteins (PBPs), 53
Index

Penicillins, 54
Peptic ulcer disease, 197
Perfection, 285
Phage; see Bacteriophage
Photobacterium leiognathi, 176
Photosynthesis
 appreciation of, 165–166
 oxygenic, 211, 213–214
Phylogenetics, 269–273
Phylogenetic trees
 Darwin’s tree of organisms, 146, 152
 Tree of Life, 27, 146, 150, 256, 269, 271–272
Phylogeny, described, 33
Phylotypes, 34, 35
Phylotyping, 271, 273
Phytoplankton
 cell size, 166
 photosynthesis by, 166
 triggering blooms of, 171
Picrophilus torridus, 19
Pigeons, 191
Pilus, 161
Plaque, 79
Plasmids, 56, 271
 chromosome integrated, 136
 conjugative, 133–138
 copy number, 134
 mobilizable, 134
 origin of transfer (oriT), 134
 R388, 135–137
 role in adaptation, 103
 size of, 134
 stability determinants, 134
 transmissible, 133–134
 virulence, 236–237, 239
Plasticity, bacteria genome, 103–104
Polymerase chain reaction (PCR),
 for DNA amplification
 from environmental samples, 33, 35
Polyorphic populations in
 selection experiments, 74, 75
Polymyxin B, 111–112
Polyunsaturated fatty acids, as
 inhibitors of conjugation, 137
Population genetics, 226, 272
Power and efficiency, trade-off
 between, 63
Preadaptation, 100, 102
Privileged niches, 199
Prochlorococcus, 165–171
 discovery of, 166–167
 diversity of strains, 168, 169, 170
 “ecotypes,” 168
 genome sequence, 168–169
 number of genes, 169
 number of organisms, 166
 P. marinus, 19
 pan genome, 169–170
 psbA genes, 68
Prophage, 148–149
Proteins
 directed evolution, 207
 Maynard-Smith library analogy, 204–207
 psbA genes, 68
Pseudogenes, 94–97, 238
Pseudomonas aeruginosa, 82, 89–90
Pseudomonas fluorescens, 243–248
Pseudonocardia, 184–187, 189
Q
 Quinolone antibiotics, 54
Quorum sensing, 81
R
 Radioactive decay, fossil age
 estimation by, 218
 Radioisotopes, 270
 Random chance, role in evolution, 93–94
 “Rare biosphere,” 35, 36
 Raymond, Percy, 218
Reading frame changes, 127
RecA recombinase, 154–155
Recombination, 141, 272, 273
 fluorescent monitoring of,
 151–152
 inter-“species,” 273
 interstrain, 273
meiotic, 284
prevention of interspecies, 154
rate in *Escherichia coli*, 153
sex as, 283
“Red Queen effect,” 45
Reducible complexity, 17–23
Redundancy, bacterial robustness and, 101
Regulator proteins, 111–113
Regulatory circuits, 100, 111–112
Regulatory RNAs, 114
Reichelt, John, 178
Relative abundance, 34
Relaxase, 135
Reproductive isolation, 153–154
Resistance; see also Antibiotic resistance to bacteriocins, 39–40
Restriction endonucleases, strain-specific, 199
Rhizobium, megaplasmids of, 137
Ribosomal oligonucleotide cataloging, 269
Ribosomal RNA (rRNA), 4–5, 60; see also rRNA gene sequences
Ribosomes, 4–5, 60, 63
Rifampin, 53
RNA messenger RNA (mRNA), 4, 60, 100
regulatory RNAs, 114
ribosomal RNA (rRNA), 4–5, 60
RNA polymerase gene, mutation in, 53
Roller derby, 25, 29–30
Rose, George, 285
Roseophage SIO1, 66
Roux, Emile, 234
RpoS-dependent stress response, 104–105
rRNA gene sequences, 270
of environmental samples, 33–35, 270–271
evolutionary comparisons from, 60–61
expense of sequencing, 34
molecular phylogenetics, 33
next generation DNA sequencing technology, 35
sequence alignment, 5
Ruby, Ned, 176
Saccharomyces cerevisiae, 155
Saccharomyces paradoxus, 155
Salmonella enterica, 82
differences from *E.coli*, 110
DNA repair in, 101
flagella, 275, 277
Mar regulon, 101
recombination with *Escherichia* genome, 155
serovar Typhi, 94–97
serovar Typhimurium, 94–97, 277
SAR11, 284
Sedimentary rocks, 217, 219–221
Segall, Anca, 66
Selection effect on mutation rate, 124, 125, 128–129
nonlethal selection regime, 126
SeqA protein, 152
Sequence alignment, of ribosomal RNA (rRNA) genes, 5
Serotypes, evolution of, 238
Sex, bacterial, 133, 139–144, 146–147, 159–163
Sexual reproduction, 139–144, 283
as motor for genetic diversity in a population, 147
Shapes, bacterial, 264–267
Shigella, 87, 236–239
Siderophores, 38
Silencing, 113
Small-effect mutations, 127–131
Smith, John Maynard, 200
Social insects, 77–78
Sociality in microbes, 78–83
Sogin, Mitchell, 271
SOS regulon/response, 100, 101, 104
SoxRS regulon, 101
Spatial distribution of genome size of symbionts, biodiversity, 25–26, 28–29
Spatial theory of community assembly, 29
Speciation, 151–157, 284
of Bacillus simplex from “Evolution Canyon,”
horizontal gene transfer and, 136
impact of differential regulation on, 109–114
Species
biological definition, 147, 283
challenges to classifying microbial, 281–286
diversity with bacterial, 147
terspecies reproductive barriers, 153–154
nature of bacterial, 55–56, 57
number of named bacterial, 147
Species-area relationship, 27
Species concept, sexuality linked to, 147
Species richness, 27–28
Spencer, Herbert, 78
Spiegelman, Sol, 269
Squid-Vibrio symbiosis, 175–179
Stars, 31
Stewart, William, 44
Streptococcus pneumoniae, 49, 53
Streptococcus pyogenes, 148–149
Streptococcus thermophilus, 148
Stress-induced mutation, 124–125, 126–127, 130–131
Stress response, RpoS-dependent, 104–105
Stromatolites, 220
Sulfolobus, 257–260
Sulfur, 213, 220, 221, 222
Sullivan, Matt, 68
Symbiosis, 173–180
of Amanita muscaria, 252
ant-microbe, 182–189
aphid-Buchnera, 20, 110, 194–196
evolution and, 191–196
as evolutionary innovation, 189
gene loss and, 193–194
genome size of symbionts, 195–196
mitochondria and chloroplasts, 191–193
squid-Vibrio, 175–179
Synechococcus, 166, 167
Systematics, 270

T
Taylor, John, 257
Thiothrix, 283–294
Thymidylate synthase gene, 285
Tol proteins, 278
Toxin, phage-encoded, 68
Toxin-antitoxin systems, 134
Trade-offs, 62–63
“Tragedy of the commons,” 80
Transcription factors, 111–113
Transduction, 56, 162, 283
Transformation, 56, 162, 283
Transitions, 127
Translation, 63
Tree of Life, 27, 146, 150, 256, 269, 271–272
Trilobites, 218
Tryptophan, 195, 196
Tuberculosis, 53, 90
Tyler, Stanley, 219
Type III secretion system, 237–240
Type IV secretion system, 135, 137
Typhoid fever, 94, 235

U
Universal tree of life, 5
Ureaplasma urealyticum, 20
UvrD, 154–155

V
vacA gene, 199
Vancomycin, 54
Variation, heritable, 152
Vibrio cholerae, 82
chromosome 2 of, 137
Vibrio fischeri, 175–179
Virchow, Rudolf, 146
“Virome,” 66–69
Virulence genes, 110
Virulence plasmids, 236–237, 239
Viruses; see also Phage
 absence from tree of life, 150
 global virome, 66–69
 infecting Prochlorococcus, 170
 infection of bacterial starter cultures in milk fermentation, 148
 metagenomics, 67, 68, 69
 number in biosphere, 73
 as obligate parasites, 73
 of Sulfolobus, 259–260
 uncultured, 67
von Behring, Emil, 234
The Voyage of the Beagle (Darwin), 1, 263–264

W
 Wallace’s line, 253
 Warren, Robin, 197
 Wilson, Edward O., Naturalist, 1–2
 Woese, Carl, 3–5, 6, 12, 32, 33, 60–61, 165, 256, 260, 269–271
 wsp locus, 246–248

Y
 Yeast, interspecies hybrids, 155
 Yersin, Alexandre, 234
 Young, Dick, 176, 178