Regulation of Bacterial Virulence
Regulation of Bacterial Virulence

EDITED BY

Michael L. Vasil
University of Colorado School of Medicine
Aurora, Colorado

Andrew J. Darwin
New York University School of Medicine
New York, New York

ASM PRESS WASHINGTON, DC
Michael Vasil dedicates this book to the memory of Martin Stonehouse, Ph.D., who relished science and loved life to the fullest. He left his loving wife, Carly, his sons, Ronan and Morgan, his family, and all of us much too soon, 29 October 2011.

Andrew Darwin dedicates this book to his parents, Frank and Pauline. They have never pushed but always supported.
CONTENTS

Contributors • ix
Preface • xv

I. Global Changes during and between Different States of Infections

1. Factors That Impact Pseudomonas aeruginosa Biofilm Structure and Function • 3
Boo Shan Tseng and Matthew R. Parsek

2. Chronic versus Acute Pseudomonas aeruginosa Infection States • 21
Barbara I. Kazmierczak and Thomas S. Murray

3. Quorum Sensing in Burkholderia • 40
Charlotte D. Majerczyk, E. Peter Greenberg, and Josephine R. Chandler

4. Staphylococcus aureus Pathogenesis and Virulence Factor Regulation • 58
Victor J. Torres, Meredith A. Benson, and Jovanka M. Voyich

5. Regulation of Virulence by Iron in Gram-Positive Bacteria • 79
Allison J. Farrand and Eric P. Skaar

6. Iron Regulation and Virulence in Gram-Negative Bacterial Pathogens with Yersinia pestis as a Paradigm • 106
Robert D. Perry and Kathleen A. McDonough

II. Adherence, Colonization, and Surface Factors

7. Uropathogenic Escherichia coli Virulence and Gene Regulation • 135
Drew J. Schwartz and Scott J. Hultgren

8. Phasevarions: an Emerging Paradigm in Epigenetic Gene Regulation in Host-Adapted Mucosal Pathogens • 156
Yogitha N. Srikhanta, Ian R. Peak, and Michael P. Jennings

9. Regulation of Exopolysaccharide Biosynthesis in Pseudomonas aeruginosa • 171
Yuta Okkotsu, Christopher L. Pritchett, and Michael J. Schurr

10. Regulation of Pneumococcal Surface Proteins and Capsule • 190
Abiodun D. Ogunniyi and James C. Paton

11. Regulation of Lipopolysaccharide Modifications and Antimicrobial Peptide Resistance • 209
Erica N. Kintz, Daniel A. Powell, Lauren E. Hittle, Joanna B. Goldberg, and Robert K. Ernst

III. Toxins and Associated Virulence Factor Production

12. Toxin and Virulence Regulation in Vibrio cholerae • 241
Karen Skorupski and Ronald K. Taylor

13. Virulence Gene Regulation in Bacillus anthracis and Other Bacillus cereus Group Species • 262
Jennifer L. Dale and Theresa M. Koehler

14. Regulation of Extracellular Toxin Production in Clostridium perfringens • 281
Jackie K. Cheung, Lee-Yean Low, Thomas J. Hiscox, and Julian I. Rood

15. Regulation of Toxin Production in Clostridium difficile • 295
Glen P. Carter, Kate E. Mackin, Julian I. Rood, and Dena Lyras
16. Anthrax and Iron • 307
Paul E. Carlson, Jr., Shandee D. Dixon, and Philip C. Hanna

IV. Protein Export and Intracellular Life within the Host

17. Regulation of the Expression of Type III Secretion Systems: an Example from Pseudomonas aeruginosa • 317
Audrey Le Gouellec, Benoit Polack, Dakang Shen, and Bertrand Toussaint

18. Regulation of Bacterial Type IV Secretion • 335
Jenny A. Laverde-Gomez, Mayukh Sarkar, and Peter J. Christie

19. PrfA and the Listeria monocytogenes Switch from Environmental Bacterium to Intracellular Pathogen • 363
Bobbi Xayarath and Nancy E. Freitag

20. The SsrAB Virulon of Salmonella enterica • 386
Sandra Billig, Alfonso Felipe-López, and Michael Hensel

21. Francisella tularensis: Regulation of Gene Expression, Intracellular Trafficking, and Subversion of Host Defenses • 402
Narsingh P. Mohapatra, Shipan Dai, and John S. Gunn

V. Stress Response during Infection

22. Regulation of Salmonella Resistance to Oxidative and Nitrosative Stress • 425
Calvin A. Henard and Andrés Vázquez-Torres

23. Regulation of Vesicle Formation • 441
Aimee K. Wessel, Gregory C. Palmer, and Marvin Whiteley

24. Regulation of Envelope Stress Responses by Mycobacterium tuberculosis • 465
Daniel J. Breitl and Thomas C. Zahrt

VI. Emerging Regulatory Mechanisms of Special Significance

25. Regulatory Mechanisms of Special Significance: Role of Small RNAs in Virulence Regulation • 493
Kai Papenfort, Colin P. Corcoran, Sanjay K. Gupta, Masatoshi Miyakoshi, Nadja Heidrich, Yanjie Chao, Kathrin S. Fröhlich, Cynthia M. Sharma, Wilma Ziebuhr, Alex Böhm, and Jörg Vogel

26. Negative Regulation during Bacterial Infection • 528
Andrew M. Stern, Ansel Hsiao, and Jun Zhu

27. Regulation in Response to Host-Derived Signaling Molecules • 545
Charley Gruber and Vanessa Sperandio

28. Regulating the Transition of Vibrio cholerae Out of the Host • 566
EmilyKate McDonough, Evan Bradley, and Andrew Camilli

Index • 587
CONTRIBUTORS

Meredith A. Benson
Department of Microbiology
New York University School of Medicine
New York, NY 10016

Josephine R. Chandler
Department of Microbiology
University of Washington School of Medicine
1705 NE Pacific Street
Seattle, WA 98195

Sandra Billig
Department of Microbiology
University of Osnabrück
D-49076 Osnabrück, Germany

Yanjie Chao
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Alex Böhm
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Jackie K. Cheung
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Evan Bradley
Department of Molecular Biology & Microbiology
Tufts University School of Medicine
136 Harrison Avenue
Boston, MA 02111

Peter J. Christie
Department of Microbiology and Molecular Genetics
University of Texas Medical School at Houston
Houston, TX 77030

Daniel J. Bretl
Department of Microbiology and Molecular Genetics
Center for Infectious Disease Research
Medical College of Wisconsin
Milwaukee, WI 53226

Colin P. Corcoran
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Andrew Camilli
Department of Molecular Biology & Microbiology
Tufts University School of Medicine
136 Harrison Avenue
Boston, MA 02111

Shipan Dai
Center for Microbial Interface Biology
Department of Microbial Infection and Immunity
The Ohio State University
Columbus, OH 43210

Paul E. Carlson, Jr.
Department of Microbiology and Immunology
University of Michigan Medical School, Box 0620
Ann Arbor, MI 48108

Jennifer L. Dale
Department of Microbiology and Molecular Genetics
University of Texas—Houston Medical School
Houston, TX 77030

Glen P. Carter
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Shandee D. Dixon
Department of Microbiology and Immunology
University of Michigan Medical School, Box 0620
Ann Arbor, MI 48108
Robert K. Ernst
Department of Microbial Pathogenesis
University of Maryland, Baltimore
Baltimore, MD 21201

Allison J. Farrand
Department of Pathology
Microbiology and Immunology
Vanderbilt University Medical Center
Nashville, TN 37232

Alfonso Felipe-López
Department of Microbiology
University of Osnabrück
D-49076 Osnabrück, Germany

Nancy E. Freitag
Department of Microbiology and Immunology
University of Illinois at Chicago College of Medicine
Chicago, IL 60612

Kathrin S. Fröhlich
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Joanna B. Goldberg
Department of Microbiology, Immunology, and Cancer Biology
University of Virginia
Charlottesville, VA 22908

E. Peter Greenberg
Department of Microbiology
University of Washington, School of Medicine
1705 NE Pacific Street
Seattle, WA 98195-7242

Charley Gruber
Department of Microbiology
UT Southwestern Medical Center
Dallas, TX 75390

John S. Gunn
Center for Microbial Interface Biology
Department of Microbial Infection and Immunity
The Ohio State University
Columbus, OH 43210

Sanjay K. Gupta
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Philip C. Hanna
Department of Microbiology and Immunology
University of Michigan Medical School, Box 0620
Ann Arbor, MI 48108

Nadja Heidrich
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Calvin A. Henard
Department of Microbiology
University of Colorado Denver
School of Medicine
Aurora, CO 80045

Michael Hensel
Department of Microbiology
University of Osnabrück
D-49076 Osnabrück, Germany

Thomas J. Hiscox
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Lauren E. Hittle
Department of Microbial Pathogenesis
University of Maryland, Baltimore
Baltimore, MD 21201

Ansel Hsiao
Center for Genome Sciences & Systems Biology
Washington University
School of Medicine
St. Louis, MO 63110

Scott J. Hultgren
Department of Molecular Microbiology
Washington University School of Medicine
St. Louis, MO 63110

Michael P. Jennings
The Institute for Glycomics
Griffith University
Gold Coast Campus
Parklands Drive
Southport, QLD 4222, Australia

Barbara I. Kazmierczak
Department of Medicine
Yale University School of Medicine
333 Cedar Street, Box 208022
New Haven, CT 06520-8022
Erica N. Kintz
Department of Microbiology, Immunology, and Cancer Biology
University of Virginia
Charlottesville, VA 22908

Theresa M. Koehler
Department of Microbiology and Molecular Genetics
University of Texas—Houston Medical School
Houston, TX 77030

Jenny A. Laverde-Gomez
Department of Microbiology and Molecular Genetics
University of Texas Medical School at Houston
Houston, TX 77030

Audrey Le Gouellec
TheREx, TIMC-IMAG Laboratory
UMR 5525 CNRS
Université Joseph Fourier
Grenoble, France

Lee-Yean Low
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Dena Lyras
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Kate E. Mackin
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Charlotte D. Majerczyk
Department of Microbiology
University of Washington School of Medicine
1705 NE Pacific Street
Seattle, WA 98195

EmilyKate McDonough
Department of Molecular Biology & Microbiology
Tufts University School of Medicine
136 Harrison Avenue
Boston, MA 02111

Kathleen A. McDonough
Wadsworth Center
New York State Department of Health
Albany, NY 12201-2002

Masatoshi Miyakoshi
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Nrusingh P. Mohapatra
Center for Microbial Interface Biology
Department of Microbial Infection and Immunity
The Ohio State University
Columbus, OH 43210

Thomas S. Murray
Department of Basic Medical Sciences
Quinnipiac University School of Medicine
275 Mt. Carmel Avenue, N1-HSC
Hamden, CT 06518-1908

Abiodun D. Ogunniyi
Research Centre for Infectious Diseases
School of Molecular and Biomedical Science
University of Adelaide
Adelaide, SA 5005, Australia

Yuta Okkotsu
Department of Microbiology
University of Colorado School of Medicine
Aurora, CO 80045

Gregory C. Palmer
Institute for Cellular and Molecular Biology
The University of Texas at Austin
Austin, TX 78712

Kai Papenfort
Department of Molecular Biology
Princeton University
Princeton, NJ 08544

Matthew R. Parsek
Department of Microbiology
University of Washington
Seattle, WA 98195

James C. Paton
Research Centre for Infectious Diseases
School of Molecular and Biomedical Science,
University of Adelaide
Adelaide, SA 5005, Australia

Ian R. Peak
The Institute for Glycomics
Griffith University
Gold Coast Campus
Parklands Drive
Southport, QLD 4222, Australia
Robert D. Perry
Department of Microbiology, Immunology, and Molecular Genetics
University of Kentucky
Lexington, KY 40536-0298

Benoit Polack
TheREx, TIMC-IMAG Laboratory
UMR 5525 CNRS
Université Joseph Fourier
Grenoble, France

Daniel A. Powell
Department of Microbial Pathogenesis
University of Maryland, Baltimore
Baltimore, MD 21201

Christopher L. Pritchett
East Tennessee State University
Department of Health Sciences
Johnson City, TN 37614

Julian I. Rood
Department of Microbiology
Monash University
Clayton, Victoria 3800, Australia

Mayukh Sarkar
Department of Microbiology and Molecular Genetics
University of Texas Medical School at Houston
Houston, TX 77030

Michael J. Schurr
Department of Microbiology
University of Colorado School of Medicine
Aurora, CO 80045

Drew J. Schwartz
Department of Molecular Microbiology
Washington University School of Medicine
St. Louis, MO 63110

Cynthia M. Sharma
Research Centre of Infectious Diseases
University of Würzburg
Würzburg, Germany

Dakang Shen
School of Cellular and Molecular Medicine
University of Bristol
University Walk
Bristol BS8 1TD, United Kingdom

Eric P. Skaar
Department of Pathology, Microbiology and Immunology
Vanderbilt University Medical Center
Nashville, TN 37232

Karen Skorupski
Department of Microbiology and Immunology
Dartmouth Medical School
Hanover, NH 03755

Vanessa Sperandio
Department of Microbiology
UT Southwestern Medical Center
Dallas, TX 75390

Yogitha N. Srikhanta
Department of Microbiology and Immunology
The University of Melbourne
Royal Parade, Parkville
Melbourne, VIC 3010, Australia

Andrew M. Stern
Department of Microbiology
Perelman School of Medicine
University of Pennsylvania
Philadelphia, PA 19104

Ronald K. Taylor
Department of Microbiology and Immunology
Dartmouth Medical School
Hanover, NH 03755

Victor J. Torres
Department of Microbiology
New York University School of Medicine
New York, NY 10016

Bertrand Toussaint
TheREx, TIMC-IMAG Laboratory
UMR 5525 CNRS
Université Joseph Fourier
Grenoble, France

Boo Shan Tseng
Department of Microbiology
University of Washington
Seattle, WA 98195

Andrés Vázquez-Torres
Department of Microbiology
University of Colorado Denver School of Medicine
Aurora, CO 80045
Jörg Vogel
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany

Jovanka M. Voyich
Department of Immunology and Infectious Diseases
Montana State University
Bozeman, MT 59718

Aimee K. Wessel
Section of Molecular Genetics and Microbiology
The University of Texas at Austin
Austin, TX 78712

Marvin Whiteley
Institute for Cellular and Molecular Biology and Section of Molecular Genetics and Microbiology
The University of Texas at Austin
Austin, TX 78712

Bobbi Xayarath
Department of Microbiology and Immunology
University of Illinois at Chicago College of Medicine
Chicago, IL 60612

Thomas C. Zahrt
Department of Microbiology and Molecular Genetics Center for Infectious Disease Research
Medical College of Wisconsin
Milwaukee, WI 53226

Jun Zhu
Department of Microbiology
Perelman School of Medicine
University of Pennsylvania
Philadelphia, PA 19104

Wilma Ziebuhr
Institute for Molecular Infection Biology
University of Würzburg
Würzburg, Germany
Arguably, the theme of virulence regulation within the field of bacterial pathogenesis began as early as the 1930s, with a relatively straightforward observation about the inhibitory effect of iron on the in vitro production of diphtheria toxin by Corynebacterium diphtheriae. Three independent laboratories reported this important discovery (those of Pappenheimer and Johnson, Locke and Main, and Pope). It was then nearly two decades later before the next major leap of insight into the regulation of diphtheria toxin came about. In 1951, Freeman reported in the Journal of Bacteriology that the conversion of a nontoxigenic (i.e., avirulent) strain of C. diphtheriae to one that expresses diphtheria toxin required exposure of the avirulent strain to lysates containing phage B (β) but not phage A. Ultimately, these two discoveries provided an extraordinary amount of stimulating fodder to generations of other investigators. First, they established a solid foundation for the further understanding of the mechanisms of C. diphtheriae toxin regulation. Second, they offered novel and fascinating paradigms that were clearly worthy of further investigation in the context of the regulation of virulence in a plethora of other animal, as well as plant, bacterial pathogens.

In the time following those key discoveries, there have been thousands of publications directly relating to the topic of this book (>8,000 references found in a PubMed search from 1980, with the query “Regulation of Bacterial Virulence”). Clearly, this field is advancing at a remarkable pace. As a consequence, we felt that it would be worthwhile at this time to assemble a compendium of many of the more fascinating and contemporary insights relating to this topic from outstanding authorities in the field, with the wish to stimulate further research efforts.

Therefore, in this book we have attempted to provide a wide range of topics that represent a balance between the newest information along more established lines of investigation (e.g., iron, chapters 5, 6, and 16), as well as information describing refreshing new paradigms that have been investigated within only the past few years (e.g., vesicle formation and host signaling, chapters 23 and 27). It is true that the book devotes significant focus toward some areas, such as the effects of iron on bacterial virulence. Most likely this is a consequence of both its early discovery in relation to the regulation of bacterial virulence (see above) and the increasing realization that the role of environmental iron levels in virulence is magnificently complex, from the standpoint of both the pathogen and the host. That is, iron has an impact that reaches far beyond simply regulating the expression of virulence determinants. Although iron was subsequently discovered to affect the expression of other major bacterial toxins (e.g., Shiga toxin and Pseudomonas aeruginosa exotoxin A), environmental iron levels have also been shown to have an extraordinary impact on increasingly intricate processes relating to bacterial virulence, including biofilm formation, basic physiological processes, resistance to oxidative stress, and basic intermediary metabolism (see chapters 1, 5, 6, 9, 16, and 22).

Another example of how early observations can establish an important paradigm is provided by the requirement of a bacteriophage in the regulation of bacterial virulence, as described above with the β phage of C. diphtheriae. Decades later came the observations about the requirement of a different type of bacteriophage in the production of cholera toxin. In fact, cholera toxin provides an amazingly complex story about virulence gene regulation, as well as the intricate overlapping control mechanisms of different virulence factors (see chapter 12). For this reason, Vibrio cholerae features prominently in more than one chapter. Even so, it is clear that much still needs to be explored about the regulation of cholera toxin expression and how phage-associated genes affect the virulence of V. cholerae.

We have also provided chapters (see chapters 2, 27, and 28) from outstanding authors who are investigating the regulation of extremely complex behaviors of bacterial pathogens. These include descriptions of how some bacteria (e.g., P. aeruginosa) control gene regulation before, during, and after their transition from an acute infection to a more chronic one. Along similar lines, also included is a chapter (chapter 28) that provides new insights about the regulatory transition of V. cholerae from inside a human host to its more natural environments, such as estuaries, where
it exists in planktonic form as well as in biofilms, and then back into a human host.

Last, but not least, we gratefully acknowledge all the other outstanding chapters we were not able to mention above, due to space constraints of this preface. The omission of any chapter in this book would most certainly diminish its value. As the editors, we offer our sincere thanks to all of the authors for their dedication and hard work toward the production of this book.

It is hoped that the exciting discoveries described by all of the wonderful authors of this book will be as inspirational to both young and more seasoned investigators, as the early observations about the regulation of diphtheria toxin were to scores of scientists for decades. We can only hope that this will most certainly be so.

Michael L. Vasil
Andrew J. Darwin
INDEX

Accessory gene regulator. See Agr
Acetyl-CoA, and type III secretion system regulation, in Pseudomonas aeruginosa, 324
in Yersinia enterocolitica, 324
Acid phosphatases, in Francisella tularensis, 413
Acid tolerance response, 95
Actinomyces, iron-dependent virulence regulation in, 95–96
Actinomyces naeslundii, 95–96
Acyl homoserine lactone receptors, LuxR protein from Vibrio fischeri and, 41
Acyl homoserine lactones, 557–559
encoded by Pseudomonas aeruginosa, 548
in mammalian signaling, 557–559
Proteobacteria and, 40–41
quorum sensing-regulated processes of, in Pseudomonas aeruginosa, 41
to regulate virulence factors, 40, 42
signaling by, 40–42
in Pseudomonas aeruginosa, 43–44
in Vibrio fischeri, 42–43
synthesis and response of, 40–42
Acyltrehaloses, of Mycobacterium tuberculosis, 548
Adenosine, and enteropathogenic Escherichia coli, 554–555
and Pseudomonas aeruginosa, 555
Actinobacteria, 567
Aggregatibacter actinomycetemcomitans, leukotoxin produced by, 452
in outer membrane vesicles, 452
Agr and pathogenesis of Staphylococcus aureus, 68–69
types of, and Agr interference, 67
Agr locus, expression of, regulators and environmental stresses on, 67–68
Agr system, autoinducing peptide of, Staphylococcus aureus and, 62, 64
autoinducing peptides of, 62, 64
interference, types of agr and, 67
of Staphylococcus aureus, 62–63
effector molecule of, as RNAIII, 63–65
two component system, regulatory RNA as main effector of, 63–65
Agrobacterium tumefaciens, 555
as model type IV secretion system, 334
and plasmid R388 type IV secretion system, 348
and transformed plant cell, chemical signaling between, 337
virulence mechanism of, QS system and, 556
Agrobacterium tumefaciens VirA, activation of, 556
Agrobacterium tumefaciens VirB/VirD4, as effector translocator, 336–339
AHQ family, quorum sensing signals and, 326
AlgB, in regulation of alginate production, 177–178
Alginate, 12
in biofilms, 174
biosynthesis of, fructose-6-phosphate for, 172–173
produced by Pseudomonas aeruginosa, 171
production of, AlgR and AlgZ in regulation of, 175–177
DNA-binding proteins regulating, 178–180
histidine kinases in, 178
KinB and AlgB in regulation of, 177–178
posttranscriptional regulators of, 180–183
posttranslational regulatory system for, 181–182
regulation of, 173–178
regulation of, c-di-GMP in, 183
Alginate biosynthetic genes, transcriptional regulation of, 176
Alginate expression, regulators of, and Vfr, links between, 28–29
AlgP, in regulation of alginate production, 179
AlgR, in regulation of alginate production, 175–177
AlgZ, in regulation of alginate production, 175–177
Amino acids, type III secretion systems and, 325
Aminoglycoside antibiotics, cell surface disruption by, 446
outer membrane vesicle formation and, 456
AmrZ, in regulation of alginate production, 179–180
Animals, domestic, Clostridium perfringens as pathogen in, 282
Anthrax disease, Bacillus anthracis and, 262–263
and iron, 307–313
iron acquisition during, 307–310
Anthrax toxin, produced by Bacillus anthracis, 267–268
Antibiotic resistance, influence of core structural modifications on, 221–222
Antibiotics, outer membrane vesicle formation and, 456
Pseudomonas aeruginosa and, 14–15
Staphylococcus aureus resistance to, 58
regulation of, 176
Staphylococcus aureus resistance to, 58
to treat urinary tract infection, 149
Antimicrobial peptide resistance, and lipopolysaccharide modifications, regulation of, 209–238
Antioxidant defenses, regulatory networks coordinating, 428–431
Antivirulence compounds, to treat urinary tract infections, 149
AphA, as regulatory protein, in Vibrio cholerae, 245–246
AphB, and acid survival, in Helicobacter pylori, 247
as regulatory protein, in Vibrio cholerae, 246–247
apo-Fur regulation, 114
ApsS histidine sensor kinase, 554
AtxA, as regulator of Bacillus anthracis, 265–266
Autoinducers, 319
Autoinducing peptides, of Agr system, 62, 64
Bacilli, iron-dependent virulence regulation in, 90–91
Bacillibactin, 309
Bacillibactin biosynthetic machinery, genes encoding, 311
Bacillus, RNA regulators in, 511–512
Bacillus anthracis, 90–91, 262, 270–272, 511
and anthrax disease, 262–263, 458
during anthrax infections, 307
anthrax toxin produced by, 267–268
capsule synthesis by, 272–273
iron acquisition in, mechanisms of, 307–308
regulation of, 310–311
iron research in, future of, 311
membrane vesicles produced by, 458
S-layer protein BslA and, 273
siderophores, 309–310
virulence gene regulation in, 262–280

Bacillus cereus, 90–91, 511
membrane vesicles produced by, 458

Bacillus cereus G9241, encapsulated, anthrax-like illness
and, 273

Bacillus cereus group species, cholesterol-dependent
cytolsins of, 270
metalloproteases and, 271–272
as pathogens, 262–264
virulence arsenal of, 267–273
virulence gene regulation in, 262–280
virulence plasmid content of, 263–264

Bacillus cereus sensu stricto, 262, 270–271
and diarrheal disease, 263
emetic toxin production by, 270–271
food poisoning caused by, enterotoxins and, 268–270
as opportunist, 263
PlcR as regulon of, 266–267

Bacillus subtilis, 3, 90, 511
catecholamines in, 545
Fur and, 111
membrane vesicles produced by, 458
outer membrane vesicles transfer and, 450

Bacillus subtilis ICEBs1, inducible transfer of, 341–342

Bacillus thuringiensis, 262, 270–272
entomopathogenesis of, 268
food poisoning caused by, enterotoxins and, 268–270
as insect pathogen, 263
as opportunist, 263
vegetative insecticidal protein of, 268

Bacillus thuringiensis, PlcR as regulon of, 266–267

Bacillus weihenstephanensis, emetic toxin production by,
270–271

Bacteria. See Gram-negative bacteria; Gram-positive bacteria

Bacteriophage exchange, natural transformation and,
160–161

Bacterium-derived molecules, sensing of, by host, 557–559

Bacteroidesfragilis, outer membrane vesicle formation
and, 456

Bartonella, coregulation of two type IV secretion
systems, 348–349
type IV secretion system and, 334–335
Bartonella effector proteins, **Bartonella** VirB/VirD4
and, 348–349
Bartonella henselae, 348

Bartonella VirB/VirD4, Bartonella effector proteins
and, 348–349
coregulation by BatR/BatS system, 348–349

Bile, enteric bacteria and, 249
resistance, genes contributing to, PrfA and, 366
Vibrio cholerae and, 249

Bile salts, sensing of, 554

Biofilm, alginate, PsI and Pel in, 174
carbon sources and, 8–10
cell motility and, 5–14
chemotaxis and, 7
description of, 3–4
development and structure of, in **Pseudomonas aeruginosa**, 4–5
development in bacterial infections, 96–97
exopolysaccharides and, 11–12, 13
extracellular DNA and, 14
flagella and, 6–7
flat, formation of, 6
formation of, c-di-GMP and, 15–16
signaling determinants regulating, 15–16
two component systems and, 16
in **Vibrio cholerae**, 244–245, 554, 579–580
iron levels and, 10
matrix structured proteins and, 13–14
microbiology of, 3
mode of growth of, chronic infections and, 3
nutrition and, 8–10
outer membrane vesicles produced in, 456–458
resistant, formation by **Pseudomonas**, 547–548
rhamnolipids and, 7–8
structure of, factors influencing, 5–14
structured, formation of, 6
type IV pili and, 6, 7
Bladder invasion, type 1 pilus-dependent, by
uropathogenic **Escherichia coli**, 140–142
Bladder tissue, reservoirs of uropathogenic
Escherichia coli in, 143

Bordetella, BvgAS two-component system of, 530
RNA regulators of, 506
Bordetella bronchiseptica, 530, 531, 546
Bordetella flagellin, 531
Bordetella parapertussis, 531
Bordetella pertussis, 506, 530, 531, 546
phase variation and, 156
Borrelia, RNA regulators in, 508–509
Borrelia burgdorferi, 110, 508–509, 549
zoonotic cycle of transmission of, 528–529
Brucella, cross-regulation of motility and type IV
secretion, 348–349
type IV secretion system and, 334–335
Brucella melitensis, 50
Brucella VirB, modulation of type IV secretion
system, 344–346
type IV secretion system genes, in phagosome,
344–346
Burkholderia, Bptm group of, quorum sensing in, 45–47
quorum sensing in, 40–57, 45–51
Burkholderia cedalia, 551
Burkholderia mallei
- as bioweapon, 46
- quorum sensing in, 47, 50–51

Burkholderia pseudomallei
- quorum sensing in, 47, 48–49

Burkholderia thailandensis
- quorum sensing in, 47, 49–50

Buruli ulcers
- 458–459

c-di-GMP, in alginates, Pel, and Psl regulation
- 183–184

c-di-GMP signaling, in *Vibrio cholerae*
- 244–245

Caenorhabditis elegans, *Pseudomonas aeruginosa*
- infects, 456–458

cAMP-C-reactive protein, as modulator of virulence in *Vibrio cholerae*
- 251

Campylobacter, cytokine response to
- 550

Campylobacter jejuni
- exposure to norepinephrine, 550

RNA regulators in
- 506–508

Campylobacter jejuni
- food-borne illness and
- 549–550

Capsular polysaccharide vaccines
- 190

Capsular polysaccharides
- antiphagocytic properties of
- 196

Total production of, sugar metabolism and
- 198

Regulation of production of, CpsB, CpsC, and
- 196–198

Modulation of, oxygen availability and
- 197

Biosynthesis of, 196–198

In *Francisella tularensis*
- 415

Regulation of, survival of pneumococcus and
- 196

Regulation of production of, CpsB, CpsC, and CpsD in
- 197

Total production of, sugar metabolism and
- 198

Capsules, synthesis of, by *Bacillus anthracis*
- 272–273

Carbon catabolite control protein A regulatory pathway
- 194–195

Catabolite repression protein, ToxT biostability and
- 572

Catecholamines, in bacteria
- 545

Effect on growth
- 545

Sensing of, by other organisms
- 549–550

CcpA, transcriptional factor, *Bacillus* species and
- 301–302

Clostridium difficile and
- 301–302

And virulence of *Bacillus cereus* group species
- 269

cDNA sequencing, and transcriptome profiles of *Vibrio cholerae* during infection
- 255–256

CdtR, activation of *cdtAB* by
- 303

Clostridium difficile transferase and
- 304

Cell envelope and environmental stresses, regulators of
- *Mycobacterium*
- 471

Cell envelope damage, SigE and SigB mediate transcriptional regulation in
- 470–483

Cell envelope damage response, integration of
- *Mycobacterium tuberculosis*
- 482–483

Cell envelope products, *Mycobacterium tuberculosis*
- Two-component signal transduction systems regulating expression of
- 477

Cell envelope stress, *Escherichia coli* and
- 448

Formation of outer membrane vesicles and
- 448–449

Genes coregulated by transcriptional regulators associated with
- 474–475

Response to
- *Mycobacterium tuberculosis*
- 470

Cell envelope stress response network, of *Mycobacterium tuberculosis*
- 473

Cell-to-cell communication, bacterial. See also

Quorum sensing
- Tryptophan in
- 325–326

Cereulide, produced by *Bacillus cereus* sensu stricto and
- *Bacillus weihenstephanensis*
- 270–271

Chaperone-usher pathway. See CUP

Chitin
- 578–580

Chlamydia, RNA regulators in
- 509–510

Chlamydia pneumoniae
- 509–510

Chlamydia trachomatis
- 509–510

Cholera
- 532, 554, 567, 578, 580–581

Cholera toxin
- 241, 501, 532, 569–570

Cholesterol-dependent cytolysins, of *Bacillus cereus* group species
- 270

Choline-binding proteins, of *Streptococcus pneumoniae*
- 201

ChoP, C-reactive protein and
- 220

Platelet-activating factor and
- 220

ChvG/ChvI regulatory system, transcriptional
- 220

ChoP, C-reactive protein and
- 201

Clostridia, iron-dependent virulence regulation in
- 95

RNA regulators in
- 517

Clostridium botulinum
- 303, 517

Clostridium difficile, alternative sigma factor
- *TcdR* of
- 297

Anti-sigma factor *TsdC* of
- 297–298

As cause of antibiotic-associated diarrhea
- 295

Global regulator *Spo0A* and
- 299–300

Global transcriptional regulator *CodY* and
- 300–301

Pathogenicity locus of
- 296–297

SigH alternative sigma factor and
- 300

Toxin A and toxin B in
- 298–299

Toxic production by, environmental influences on
- 296–297

Molecular mechanisms controlling
- 296–304

Toxic production in, bacteriophage-mediated regulation of
- 302–303

Binary, regulation of
- 303–304

Regulation of
- 295–306

Transcriptional regulator *CcpA* and
- 301–302

Clostridium difficile-associated disease
- 295

Clostridium difficile infections
- 295

As toxin-mediated disease
- 295–296

Clostridium difficile transferase
- 303

Clostridium perfringens
- 303, 517

Diseases caused by
- 281–282

Extracellular toxin production in, regulation of
- 281–294

Food poisoning, CPE and
- 290

As global VirSR two-component signal transduction system
- 282–285

As pathogen in domestic animals
- 282

Regulation by sRNA molecules
- 285–287

Regulation of toxic production by, alternative mechanisms for
- 289–290

Cell density and quorum sensing in
- 288–289

Host cell contact and
- 289

TcdR protein and
- 297

Type B, and lamb dysentery
- 282

Chaperone-usher pathway. See CUP

Quorum sensing
- TcdR protein and
- 297

C-di-GMP signaling, in *Vibrio cholerae*
- 244–245

Campylobacter
- Cytokine response to
- 550

RNA regulators in
- 506–508

Capsules, synthesis of, by *Bacillus anthracis*
- 272–273

Capsular polysaccharides
- Antiphagocytic properties of
- 196

Total production of, sugar metabolism and
- 198

Regulation of production of, CpsB, CpsC, and CpsD in
- 197

Regulation of survival of pneumococcus and
- 196

Biosynthesis of, regulation of
- 196–198

In *Francisella tularensis*
- 415

Modulation of, oxygen availability and
- 197

Phase variation and
- 196

RNA regulators in
- 506–508

Capsular polysaccharide vaccines
- 190

Capsular polysaccharides
- Antiphagocytic properties of
- 196

Regulation of production of, CpsB, CpsC, and CpsD in
- 197

Total production of, sugar metabolism and
- 198

Capsules, synthesis of, by *Bacillus anthracis*
- 272–273

Carbon catabolite control protein A regulatory pathway
- 194–195

Catabolite repression protein, ToxT biostability and
- 572

Catecholamines, in bacteria
- 545

Effect on growth
- 545

Sensing of, by other organisms
- 549–550

CcpA, transcriptional factor, *Bacillus* species and
- 301–302

Clostridium difficile and
- 301–302

And virulence of *Bacillus cereus* group species
- 269

cDNA sequencing, and transcriptome profiles of *Vibrio cholerae* during infection
- 255–256

CdtR, activation of *cdtAB* by
- 303

Clostridium difficile transferase and
- 304

Cell envelope and environmental stresses, regulators of
- *Mycobacterium*
- 471

Cell envelope damage, SigE and SigB mediate transcriptional regulation in
- 470–483

Cell envelope damage response, integration of
- *Mycobacterium tuberculosis*
- 482–483

Cell envelope products, *Mycobacterium tuberculosis*
- Two-component signal transduction systems regulating expression of
- 477

Cell envelope stress, *Escherichia coli* and
- 448

Formation of outer membrane vesicles and
- 448–449

Genes coregulated by transcriptional regulators associated with
- 474–475

Response to
- *Mycobacterium tuberculosis*
- 470

Cell envelope stress response network, of *Mycobacterium tuberculosis*
- 473
type D, enterotoxemia of sheep and, 282
VR-RNA in, 286–287, 290
Clostridium perfringens gas gangrene strain 13, 289
Clostridium perfringens genome, VirR boxes in, 284–285
Clostridium sputroforme, 303
Clostridium tetani, 517
CO₂/bicarbonate, AtxA activity and, 265–266
Clostridium perfringens, 303
Genome, VirR boxes in, 284–285
Clostridium perfringens gas gangrene strain 13, 289
Diarrhea, antibiotic-associated, Clostridium difficile and, 300–301
Colony opacity phase variation, 195
Comamonadaceae, outer membrane vesicles-secreting organelle and, 450
Consumption, 465–466
Core structure, modifications of, influence on antibiotic resistance, 221–222
Corynebacterium, iron-dependent virulence regulation in, 86–88
Corynebacterium diphtheriae, 111, 86–87
Corynebacterium pseudotuberculosis, 87–88
CPE, and Clostridium perfringens food poisoning, 290
Crc, deletion of, in Pseudomonas aeruginosa CPE, and Clostridium perfringens food poisoning, 290
Effector translocator systems, regulation of, 344–349
Effector translocator, Agrobacterium tumefaciens VirB/VirD4 as, 336–339
Effector translocator systems, regulation of, 344–349
EIA⁺, and virulence of Salmonella, 395–396
Emissive toxin, produced by Bacillus cereus sensu stricto and Bacillus weihenstephanensis, 270–271
Endocarditis, 91–92
Endotoxin, biosynthesis of, 209–215, 216
biosynthetic enzymes of, 210–213
constitutively active, 210–213
regulated, 213–215
modification of, enzymes responsible for, 209, 211
synthesis and attachment of Kdo to, 216–217
terminal residues of, modifications of, 210, 212
Enterococcus faecalis pCF10, Ti plasmid transfer, 339
transfer of, pheromone-inducible regulation of, 339–341
Enterococcus faecalis pFC10/pAD1, as model plasmid transfer system, 334
Enterotoxemia of sheep, Clostridium perfringens type D and, 282
Enterotoxins, and food poisoning caused by Bacillus cereus sensu stricto and Bacillus thuringiensis, 268–270
Entomopathogenic toxins, of Bacillus thuringiensis, 268–270
Envelope stress responses, regulation of, by Mycobacterium tuberculosis to, 467–470
Envelope stress responses, regulation of, by Mycobacterium tuberculosis, 465–489
Environment, effects on outer membrane vesicles, 454–458
Epinephrine, 545–546
in enterohemorrhagic Escherichia coli, sensing of, 546–547
Escherichia coli, 546, 552
cell envelope stress response and, 448
discovery of RyhB in, 115–116
DNA in outer membrane vesicles of, 453
enterohemorrhagic, 567
interkingdom regulation of, 547–548
quorum sensing in, 547
sensing of epinephrine and norepinephrine in, 546–547
enteropathogenic, 554–555
and adenosine, 554–555
ftnA, direct transcriptional activation of, by Fur, 112–113
Fur, 109–111
Fur locus, genetic organization of, 111
H-NS global repressor protein in, 536
iron limitation in, biofilm formation and, 96
outer membrane of, 441, 442
overexpression of Mycobacterium tuberculosis pknA or pknB in, 480
pathogenic, 551
RNA regulators in, 510–511
pathogens, classifications of, 135–136
phase variation and, 156
RNA regulators in, 495–500
RyhB as regulator in, 115–116
RyhB promotion of iron acquisition in, 126
synthesis of, genes in, 219–220
in treated effluent of wastewater facilities, 566
treatment with nitrogen, 435
uropathogenic, dissemination to kidneys, 144–145
host and bacterial responses triggered by, 140–142
intracellular bacterial community formation and, 140, 142
pilus cross-regulation, 146, 148–149
type 1 pili, cross-regulation between, 146, 148
regulation of, 145–148
and type 1 pilus-dependent bladder invasion, 140–142
urinary tract infection, 136
pathogenesis of, 140–141
population dynamics governing, 140
virulence and gene regulation, 135–155
virulence of, 139–140
QseBC and, 547
use of virulence factors, 34
Escherichia coli F, as model plasmid transfer system, 334
Escherichia coli F plasmid factor, transfer of, 342, 343
Eukaryotic cells, interaction of outer membranes cells with, 441–442
Exopolysaccharides, and biofilms, 11–12, 13
biosynthesis of, in Pseudomonas aeruginosa, regulation of, 171–189
produced by Pseudomonas aeruginosa, 171, 172–174
PSI and PEI, 12–13
ExsA, as key regulator of type III secretion systems, 320–321
ExsA regulation, 321–322
Extracytoplasmic function sigma factors, 471
F plasmid transfer, regulation of, 342–344
Fenton reaction, 109
Ferric dicitrate, 97
Ferric uptake regulator, sensing of nitrogen by, 435
FevR/PigR, in Francisella, 411–412
FimL protein, 28
and Vfr-cAMP regulon, links between, 28
Firmicutes, 517
Flagella, repression of, to evade immune recognition, 529–532
type IV secretion systems and, 349
Flagellar motility, of Vibrio cholerae, 253–255
Flagellin, 530
Flavobacterium psychrophilum, vesiculating cells and, 456
Food-borne illness, Campylobacter jejuni and, 549–550
Food poisoning, caused by Bacillus thuringiensis, 268–270
human bacterial, caused by Clostridium perfringens, 281
Francisella, in complement resistance, 407–408
infection of macrophages, and macrophage proinflammatory response, 409
intracellular trafficking and replication, 406–407
live virus strain, 403
LPS in outer membrane of, modification of, 415
MigR/CiaC regulator of, 412–413
in modulation of host immune responses, 407–408
RNA polymerase, 411–412
RNA regulators of, 413, 506
transcription regulatory factors and, 410–411
type B, 403
virulence factors in, 413–415
and regulation of virulence genes in, 413, 414
virulence regulation and, 410–412, 506
Francisella capsular polysaccharides, 415
Francisella-containing phagosomes, 407
Franciscella novicida, 403, 407–408, 409
identification of genes in regulation and, 411–412
Franciscella pathogenicity island, phagocytosis, intracellular trafficking, and host immune responses during, 408–410
virulence genes in, 408–410
Francisella tularensis, acid phosphatases in, 413
environmental stimuli of, 404–405
in Francisella-containing phagosomes, 407
Hfq mutation in, 413
and intracellular components in bacterial virulence, 406
and iron, 404–405
lack of two-component regulatory systems in, 412–413
live virus strain, capsule-like complex in, 415
pathogenesis of, and vaccine development, monkeys in studies of, 403
in regulation of gene expression, intracellular trafficking, and subversion of host defenses, 402–421
response to temperature changes, 404
responses to oxidative, pH, and nutrient stresses, 405–406
studies of, in Drosophila melanogaster, 403–404
subspecies of, 402
and tularemia, 402–403
Francisella tularensis infection, animal models for, 403–404
environmental stimuli of, 404–405
| Gene expression, intracellular trafficking, and host immune responses during, 408 |
|---------------------------------|---------------------------------|
| type A, 403 | type B, 403 |
| **Francisella tularensis** live vaccine strain, 409 |
| FrhA, as modulator of virulence in **Vibrio cholerae**, 253 |
| Fructose-6-phosphate, for alginate biosynthesis, 172–173 |
| Fumarate/nitrate reduction, 428, 429 |
| sensing of nitrogen by, 434–435 |
| sensing of oxygen and superoxide anion by, 431 |
| Fur, amino acid sequences, alignment of, 109–111 |
| box motifs, and Fe-Fur transcriptional repression, 109 |
| direct activation by, 112–113 |
| direct transcriptional activation of **Escherichia coli** ftmA by, 112–113 |
| discovery of, and naming of, 108–109 |
| and transcriptional repression by Fe-Fur, 98–99 |
| **Escherichia coli**, 109–111 |
| indirect inhibition of translation by RyhB, 117–118 |
| and iron, regulation of oxidative stress defenses, 123 |
| iron-free, regulation of, 86 |
| properties of, 109–111 |
| and regulatory mechanisms of, 108–114 |
| as regulator of iron homeostasis, 511 |
| and RyhB, 119 |
| as global regulators, 119–120 |
| transcriptional repression by, 112 |
| in **Yersinia pestis**, 112 |
| Fur family, 111 |
| Fur/iron regulation, and enhancement of expression of adhesins and invasins, 95 |
| Fur locus(i), **Escherichia coli**, genetic organization of, 111 |
| and their regulation, 111–112 |
| Fur regulation, and RhB regulation, 115 |
| **GacA**, in **Pseudomonas aeruginosa**, direct targets of, 30–32 |
| GacS/A, interaction of RetS and LadS with, 32–33 |
| two component system, genes associated with acute infection by, 30–31, 32 |
| Gamma-aminobutyric acid, 556–557 |
| Gas gangrene, caused by **Clostridium perfringens**, 281 |
| Gastric cancer, 550 |
| Gastrin, 550 |
| Gastritis, 506 |
| Gastroenteritis, bacterial foodborne, 508 |
| GbpA, as modulator of virulence in **Vibrio cholerae**, 252–253 |
| Gene expression, intracellular trafficking, and subversion of host defenses, **Francisella tularensis** in, 402–421 |
| Gene regulation, and DNA methylation, in bacterial pathogens, 159, 160 |
| iron-dependent, in gram-positive bacteria, 111–186 |
| by phase variable restriction-modification systems, 166 |
| phase-variable type III systems and, 161–162 |
| through methylation of DNA sequences, 162 |
| Gene repression, to establish intracellular niche, 534–535 |
| of horizontally acquired virulence genes, 535–537 |
| to maintain commensality, 537–539 |
| to mediate transitions from environment to host and back, 532–534 |
| Genetic exchange, natural transformation and, 160–161 |
| Gentamicin, 446–447, 456 |
| Gingipains, 452 |
| Glanders, 46 |
| Glycogen storage, in **Vibrio cholerae**, 577 |
| Glycopeptidolipids, hyperglycosylated, and **Mycobacterium tuberculosis** SigB, 472 |
| Gram-negative bacteria, interaction of outer membranes cells with, 441–442 |
| sensing of host signals by, 554–555 |
| Gram-negative pathogens, RNA regulators of, 495–511 |
| Gram-positive bacteria, interaction of outer membrane cells with, 441–442 |
| iron-dependent gene regulation in, 111–186 |
| iron-dependent metalloregulators in, virulence determinants and, 107, 109 |
| iron-dependent regulators in, consensus sequences and, 86 |
| regulation of virulence by iron in, 107–105 |
| Gram-positive membrane vesicles, 458–459 |
| Gram-positive pathogens, RNA regulators of, 511–517 |
| toxin production by, 122–123 |
| H-NS, as modulator of virulence in **Vibrio cholerae**, 250 |
| H-NS global repressor protein, 535 |
| in mediated repression of transcription of foreign DNA, 535, 536 |
| in pathogenic **Escherichia coli**, 536 |
| in **Shigella**, 536 |
| in **Yersinia**, 536 |
| **Haemophilus influenzae**, lipooligosaccharide, ChoP modification of, 220–221 |
| outer membrane vesicles and, 455 |
| as phasevarion, 156, 162, 163 |
| Heat, induction of outer membrane vesicles and, 448 |
| **Helicobacter**, RNA regulators in, 506–508 |
| **Helicobacter pylori**, 550, 567 |
| AphB and, 247 |
| cis-encoded antisense RNAs in, 507 |
| outer membrane vesicles of, 453, 455 |
| as phasevarion, 156, 165 |
| type II restriction-modification system in, 166 |
| **Helicobacter pylori** Cag, type IV secretion system, 351, 352 |
| Heme, tetrahyrrole, as iron source of **Staphylococcus aureus**, 88 |
| Heme-iron acquisition, during anthrax infection, 307–310 |
| Hfq-binding small RNAs, 494, 501 |
| Hfq mutation, in **Francisella tularensis**, 413 |
| Histidine kinase PhoQ, 552–553 |
| Histidine kinases, in alginate production, 178 |
| Histidine sensor kinase ApsS, 554 |
| Histidines, 200–201 |
| Histone-like proteins, regulating alginate production, 176, 178–179, 180 |
| Hormones, host-derived, sensing of, 545–551 |
| peptide, sensing of, 550–551 |
Host, outer membrane vesicle formation and, 456–458
regulating transition of *Vibrio cholerae* out of, 566–585
Host defenses, subversion of, gene expression, and
intracellular trafficking, *Francisella tularensis* in, 402–421
Host signals, sensing of, by *gram-negative bacteria*, 554–555
Hydrogen peroxide, sensing of, by oxidative stress
response, 430–431
Immune system, sensing of, 551–554
Infection, bacterial, negative regulation during, 528–544
gene repression to establish intracellular niche, 534–535
gene repression to maintain commensality, 537–539
gene repression to mediate transitions, 532–534
to promote vector-host zoonotic transmission, 528–529
to repress flagella and pili, 529–532
repression of horizontally acquired virulence genes, 535–537
chronic, biofilm mode of growth and, 3
intracellular, *Brucella* VirB modulation of type IV
secretion system during, 344–346
late stage of, in *Vibrio cholerae*, 573–577
Insect pathogen, *Bacillus thuringiensis* as, 263
Integration host factor, as modulator of virulence in
Vibrio cholerae, 250
Integrative and conjugative elements, on bacterial
chromosomes, 341–342
Interkingdom signaling systems, 558
Intracellular and extracellular pathogens, iron-regulated
genes in, 98
preferred iron sources of, 98
Intracellular bacterial community, formation,
uropathogenic *Escherichia coli* and, 140, 142
genetic regulation within, 142–143
Intracellular trafficking, gene expression, and subversion
of host defenses, *Francisella tularensis* in, 402–421
Iron, acquisition, during anthrax, 307–310
acquisition mechanisms, in *Bacillus anthracis*,
regulation of, 310–311
anthrax and, 307–313
availability in environment, 107
in bacterial cell, regulating transcription of
bacteria, 91–92
in biological processes, 107
cellular damage by, 107
Francisella tularensis and, 404–405
and Fur, regulation of oxidative stress defenses, 123
regulation of, and virulence, 90–97
regulation of metabolism by, 97–98
regulation of virulence by, in gram-positive bacteria,
107–155
and *Staphylococcus aureus* infections, 88–89
Iron- and manganese-dependent metalloregulator, in
control of iron uptake genes in *Streptococcus pyogenes*, 92–93
Iron-free Fur regulation, 86
Iron homeostasis, RyhB in, 125–126
Iron or Fur, in regulation of transcriptional regulators, 119
Iron-regulated genes, in intracellular and extracellular
pathogens, 126
Iron regulation, and virulence, in *Yersinia pestis*, Gram-
negative bacterial pathogens with, 107–110
Iron research, in *Bacillus anthracis*, future of, 311
Iron transport systems, 120–122
Iron uptake regulation protein. See Fur
iscRSUA, selective degradation of mRNA, 118
Ixodes, 528–529

Kdo, biosynthesis of, regulation of, 217–219
synthesis and attachment of, to lipid A, 216–217
Kidneys, uropathogenic *Escherichia coli* dissemination to,
144–145
KinB, in regulation of *Escherichia coli* dissemination to,
144–145

Koch’s postulates, 465

L-DOPA, 545
Lactoferrin, 546
and transferrin, sequestration of iron by, 93
Lamb dysentery, *Clostridium perfringens* type B and, 282
Legionella, in aquatic environment, 566–567
RNA regulators in, 508
Legionella-containing vacuoles, 346–347
expression of genes in, signals regulating, 346, 347
Legionella pneumophila replication in, 346
Legionella pneumophila, 567
cross-regulation of motility and type IV secretion,
348, 349
replication in *Legionella*-containing vacuoles, 346
type IV secretion system and, 334–335
Legionella pneumophila Dot/Icm, 346–347
Lipid A, biosynthesis of, 209–215, 216
biosynthetic enzymes of, 210–215
constitutively active, 210–213
regulated, 213–215
modification of, enzymes responsible for, 209, 211
synthesis and attachment of Kdo to, 216–217
terminal residues of, modifications of, 210, 212
Lipids, bacterial vesiculation and, 441
of outer membranes, interaction with small molecules
in environment, 454
Lipoarabinomannan, of *Mycobacterium*, 467
Lipoobox motif, 198
Lipomannan, of *Mycobacterium*, 467
Lipooligosaccharide, 215
of *Neisseria*, ChoP modification of, 221
phosphorylcholine modification of, by phase variation,
regulation of, 220–221
regulation of, by PhoP/PhoQ in *Yersinia pestis*, 221
Lipopolysaccharide, anionic charge repulsion of, and outer
leaflet expansion, 446–447
core biosynthesis, regulation of, 217
core of, genetic organization and transport genes of,
217–219
structures of, 217, 218
core oligosaccharide, 215
inner core, biosynthesis of, 215
regulation of, 219–220
modifications of, and antimicrobial peptide resistance, regulation of, 209–238
outer core, biosynthesis of, 216–217
regulation of, 219–220
packing of, *Pseudomonas* quinolone signal and, 447
phospholipids of outer membrane vesicles and, 453–454
production by *Pseudomonas aeruginosa*, 446
structural domains of, 209
structure and visualization of, 222, 223
structure of, bacterial vesiculation and, 441
Pseudomonas aeruginosa outer membrane vesicles and, 446
transport of, 230–231
LptA assistance in, 230, 231
regulation of, 231
Lipoproteins, 198–200
diverse functions of, 198
Listeria, iron-dependent virulence regulation in, 94–95
RNA regulators in, 512–513
Listeria flagellin, 531–532
Listeria innocua, 513
Listeria ivanovii, 513
Listeria monocytogenes, 94–95, 512, 531–532
bacterial survival and replication promotion by, 363–364
gene products of, promoting bacterial infection, 364–365
pathogenesis of, and PrfA activation, 376–380
PrfA as key to, 365–366
protein secretion by, PrfA activation and, 374
repression of flagellar synthesis in, 532
switch from environmental bacterium to intracellular pathogen, PrfA and, 363–385
transition from environmental bacterium to intracellular pathogen, 364, 365
transition from outside environment to inside of host, PrfA regulation during, 376, 377
viability of, PrsA2 and, 374, 375
wide distribution of, 363–364
Listeria monocytogenes infection, in healthy individuals, 363–364
route of, 364
Listeriosis, 94, 512
Long-chain fatty acids, type III secretion systems and, 325
LptA, in lipopolysaccharide transport, 230–231
LpxR, 214
LuxO transcription factor, 501–503
LuxR homologs, synthesis of, plant-derived opines inducing, 338
Lyme disease, 110, 528, 549
Lyseobacter, outer membrane vesicles formation and, 450
Mannose-sensitive hemagglutinin, type IV, 531
repression of, 531
Mannosides, to treat urinary tract infections, 149
Melioidosis, 46, 551
Membrane vesicles, factors affecting, 441
gram-positive, 458–459
production of, 441
Meningitis, 91
Metabolites, host-derived, sensing of, 554–555
Metal ion-dependent gene regulation systems, 193–194
Metalloproteases, *Bacillus cereus* group species and, 271–272
Metalloregulators, Fur- and DtxR-like, DNA binding sites of, 86
gram-positive, structural characteristics of, 113
transcriptional regulation mechanisms, 85–86
iron-dependent, in gram-positive bacteria, virulence determinants and, 107, 109
Methicillin-resistant *Staphylococcus aureus* (MRSA), 58
Methylation, differential, P type 1 pilus regulation and, 148
MglA, as virulence regulator, in *Francisella tularensis*, 410–411
MglA-Spa, in *Francisella*, 411–412
MgtE magnesium transporter, in *Pseudomonas aeruginosa*, 325
Mycobacteria, iron-dependent virulence regulation in, 96–97
Mycobacterial cell envelope, 466, 468–469
Mycobacterium, iron-dependent virulence regulation in, 96–97
Microbial pathogens, waterborne, importance of, 566
MigR/CiaC regulator, of *Francisella*, 412–413
Misfolded proteins, in periplasm, outer membrane and, 445–446
Mn-Fur, repression of iron/Fur-regulated promoters of *Escherichia coli* by, 113–114
mRNA, selective degradation by *iscRDA*, 90
MucA, as anti-sigma factor, 181, 182
Mucosal escape response, 532
Mucosal pathogens, host-adapted, epigenetic gene regulation in, 156–170
MucR, as regulator of alginate production, 183
Mycobacterial cell envelope, 466, 468–469
Mycobacterium, outer membrane of, mannosylated constituents of, 467
RNA regulators of, 516–517
Mycobacterium bovis, 516
overexpression of *Mycobacterium tuberculosis* pknA or pknB in, 480
Mycobacterium leprae, 471
Mycobacterium marinum, transport of *Mycobacterium tuberculosis* and, 466
Mycobacterium smegmatis, overexpression of *Mycobacterium tuberculosis* pknA or pknB in, 480
sensitivity to SDS, 476
Mycobacterium tuberculosis, 96–97, 516–517
cell envelope, 469
cell envelope stress response network of, 473
characteristics of, 465
exposure to envelope stress, 467–470
exposure to environmental stressors, 467–469
integration of cell envelope damage response in, 482–483
internalization into phagosome, 470
life cycle of, 466–467
as member of actinomycete family, 465
PknA and PknB as essential serine-threonine protein kinases in, 477–481
replication of, 466
during infection, 474, 475
response to cell envelope in, 470
sensitivity to SDS, 476
serine-threonine protein kinases, 477–482
in regulation of AG synthesis, 481
in regulation of mycolic acid synthesis, 481–482
spread of, 466
two-component signal transduction systems, regulating expression of cell envelope products, 477
Mycobacterium tuberculosis complex, 465
Mycobacterium tuberculosis genome, 467
Mycobacterium tuberculosis SigB, 472–474
and hyperglycosylated glycopeptidolipids, 472
Mycobacterium tuberculosis SigE, 471–472
binding to cognate anti-sigma factor RseA, 472
gene regulation in, 472
Mycobacterium ulcerans, membrane vesicles produced by, 458
Myonecrosis, clostridial, caused by *Clostridium perfringens*, 281
NADPH phagocyte oxidase, oxyradicals generated by, 426
reactive oxygen species produced by, 426
resistance to salmonellosis, 425
Salmonella evasion of, by *Salmonella* pathogenicity island 2, 431
Nanopods, outer membrane vesicle secretion and, 441–442
Outer membrane proteins, interaction with small
Oligosaccharide, core, of lipopolysaccharide, 215
Natriuretic peptides, and osmoregulation of blood, 551
Natriuretic peptides, and osmoregulation of blood, 551
Neisseria, ChoP modification of lipooligosaccharide of, 221
RNA regulators in, 509
Neisseria gonorrhoeae, as phasevarion, 156, 162–165
plasmid DNA in, 453
type IV pilus and type IV secretion system coregulation in, 348, 350
Neisseria meningitidis, infection caused by, 509
phase variation and, 156, 158, 162–165
Neutrophils, interaction of *Staphylococcus aureus* with, 69–72
SacR/S and, 69–70
Nitric oxide, expression of SsrAB virulon and, 397–398
Nitrogen, production in gastrointestinal tract, host defense against *Salmonella* and, 432
sensing of, dedicated, 433
by ferric uptake regulator, 435
by fumarate/nitrate reduction, 434–435
by oxidative stress response, 434
by superoxide response, 434
Nitrogen sensors, dedicated, 433
indirect, 434–435
sensors of, 428–429
Norepinephrine, in bacteria, 545
in body, 546
in enterohemorrhagic *Escherichia coli*, sensing of, 546–547
exposure of *Campylobacter* to, 550
host hormone, *Pseudomonas* *senses*, 548
sensing of, by *Pseudomonas*, 547–549
NorR, nitrosylated, 433–434
sensing of nitrogen by, 433–434
NsR, as dedicated nitrogen sensor, 433–434
direct sensing of nitrogen by, 433–434
Nucleic acids, outer membrane vesicle transfer and, 453
Nucleoid-associated proteins, in control of SsrAB expression, 396–397
Nutrient and metabolic state systems, 194–195
Nutrient stresses, *Francisella tularensis* response to, 405–406
Nutrients, outer membrane vesicle formation and, 455
Nutritional immunity, limitation of iron availability, 108–110
response of bacterial pathogens to, 110–111
O antigen, biosynthesis genes, regulation of, 225–226
biosynthesis of, 222–230
chain length of, regulation by Wzz proteins, 228–230
general structure of, 222–223
loci containing genes of, 223–224
loci from different gram-negative bacteria, 224
locus, regulation of, 226–227
modification genes, regulation of, 227–228
serotype, conversion from one to another, 227–228
cide chains of, generation of, 224–225
gram-negative bacteria attachment to, 222–223
syntehesis of, ABC transporter-dependent pathway for, 225
synthesis and transfer of, Wzy-dependent pathway for, 224, 225
Wzy-dependent pathway of, Wzz chain length regulators and, 227–228
Oligosaccharide, core, of lipopolysaccharide, 215
OmpR/EnvZ two-component system, in regulatory control of SsrAB expression, 393–395
Opioids, sensing of, 550
Outer leaflet, expansion of, anionic charge repulsion of lipopolysaccharide, 446–447
Outer membrane, anchored to peptoglycan, 443–445
of *Escherichia coli*, 441, 442
and misfolded proteins in periplasm, 445–446
of *Mycobacterium*, 467
of *Vibrio cholerae*, 441, 442
Outer membrane proteins, interaction with small molecules in environment, 454
protein banding patterns of, 451–453
Outer membrane vesicle-inducing molecules, 446–447
Outer membrane vesicles, 441–442
bacteria producing, 441
components of, 453
formation of, cell envelope stress and, 448–449
environmental effects on, 454–458
heat and, 448
molecular mechanism of, 442–447
proteins in regulation of, 449
Pseudomonas putida and, 449
quinolone signal and, 450–451
regulation of, 447–451
sRNA molecules and, 450
of Helicobacter pylori, 453
interaction with eukaryotic cells and gram-negative and
Gram-positive bacteria, 441–442
phospholipid and fatty acid content of, in Pseudomonas aeruginosa, 454
phospholipids of, lipopolysaccharides and, 453–454
produced in biofilms, 456–458
protein banding patterns of, 451–453
proteins and lipids packaged in, 451–454
of Pseudomonas aeruginosa, lipopolysaccharide structure and, 446
substrates packaged by, 454
toxins in, 452
virulence factors in, 452
Outer membrane vesicles-secreting organelle,
Comamonadaceae and, 450
Outer membranes, lipids and proteins of, interaction with
small molecules in environment, 454
Outer surface protein A, in tick movement of Borrelia burgdorferi, 529
Outer surface protein C, in tick movement of Borrelia burgdorferi, 529
Oxidative stress, endogenous sources of, 425–426
and intracellular survival, 95
Salmonella resistance to, 425–440
sensors of, 428, 429
Oxidative stress response, 428, 429
sensing of hydrogen peroxide by, 430–431
sensing of nitrogen by, 434
Oxidative stresses, Francisella tularensis response to,
405–406
Oxygen, and superoxide anion, sensing by fumarate/nitrate reduction, 431
PagL, 214
PagP, 214
PAO578, affecting mucoid phenotype, 183
Pathogen-associated molecular patterns, 530
PbpA, of Mycobacterium tuberculosis, 480
Pel, in biofilms, 174
polysaccharide synthesis of, 172
regulation of, c-di-GMP in, 183, 184
in virulence control, 514
PepO, as virulence regulator, in Francisella tularensis, 411
Peptide hormones, sensing of, 550–551
Peptides, antimicrobial, sensing of, by gram-negative bacteria, 552–553
by gram-positive bacteria, 553–554
autoinducing, of Agr system, 62, 64
Peptidoglycan, bacterial vesiculation and, 441
outer membrane anchored to, 443–445
Periplasm, misfolded proteins in, outer membrane and, 445–446
Periplasmic thio/disulfide oxidoreductase, gene dshA and, 325
PerR, as iron- and manganese-dependent repressor, 89
Petrobactin, 309–310
pH, environmental, Francisella tularensis response to,
405–406
Phagocytes, response of virulence factors of
Staphylococcus aureus to, 69–72
Phagocytosis, during Francisella tularensis infection, 407–408
Phase variation, 156, 195–196
differences in properties of contingency genes, 157, 158
DNA sequence and/or DNA structure, 156
homopolymeric tracts and, 195–196
mechanisms of, 157
in slipped-strand mispairing, 157, 158
via simple tandem repeats, 157–158
Phasevarions, 156–170
common features of, 165–166
in epigenetic gene regulation in host-adapted mucosal pathogens, 156–170
examples of, 162–165
mechanism of action of, 166
PhoB, as modulator of virulence in Vibrio cholerae,
251–252
PhoP/PhoQ-regulated lipid A biosynthesis, 213–215
PhoPQ two-component system, as globulatory regulatory system, 395, 534
PhoQ, 552–553
PhoR/PhoB-regulated lipid A biosynthesis, 213
Phosphatidyly-myo-inositol mannosides, of
Mycobacterium, 467
Phosphoenolpyruvate-phosphotransferase system,
378–379
Phospholipases, secreted by Bacillus cereus group
species, 271
Phospholipids, of outer membrane vesicles,
lipopolysaccharides and, 453–454
Phosphorylcholine modification, of lipooligosaccharide by
phase variation, regulation of, 220–221
Phosphotransferase system, 379
Pilicides, to treat urinary tract infections, 149
Pilus(i), repression of, to evade immune recognition,
529–532
toxin-coregulated, 569
type IV, and type IV secretion systems, coregulation of,
348, 349–350
PknA, and PknB phosphorylate proteins in biosynthesis
and maintenance of Mycobacterium tuberculosis cell envelope, 478–479
PknB, and PknA phosphorylate proteins in biosynthesis
and maintenance of Mycobacterium tuberculosis cell envelope, 478–479
Plague, Yersinia pestis and, 107
Plants, sensing of host-derived signals in, 555–557
index 597

Plasmid transfer, inducible, 339–341
PrrA, as regulon of Bacillus cereus sensu stricto and Bacillus thuringiensis, 266–267
Pleiotropic control systems, for virulence gene expression, 264–267
PmrA/PmrB-regulated lipid A biosynthesis, 215
Pneumococcal disease, management of, 190
Pneumococcal gene expression patterns, 190–191
Pneumococcal morphology, iron restriction and, 91
Pneumococcal regulatory systems, 191–196
metal ion-dependent gene regulation, 193–194
nutrient and metabolic state systems, 194–195
phase variation, 195–196
quorum sensing, 191–192
two-component signal transduction systems, 192–193
Pneumococcal surface proteins, regulation of, 190–208
Pneumonia, 91, 509
Polyhistidine triad proteins, 200–201
Porphyromonas gingivalis, in outer membrane vesicles, 452, 453
PrfA, activation of, impact of Listeria monocytogenes protein secretion, 371–376
and Listeria monocytogenes inside and outside of host, 371
and Listeria monocytogenes pathogenesis, 376–380
expression of, posttranscriptional control of, 367, 368
transcriptional control of, 366, 367
gene products directly or indirectly regulated by, 371, 372–373
as key to Listeria monocytogenes pathogenesis, 365–366
and Listeria monocytogenes, switch from environmental bacterium to intracellular pathogen, 363–385
and protein secretion by Listeria monocytogenes, 374
putative cofactor binding pocket, model of, 370
regulation of, during Listeria monocytogenes transition from outside environment to inside of host, 376, 377
posttranslational control of, 368–369
in regulation of expression of genes contributing to bile resistance, 366
as transcriptional activator, 363
PrfA-dependent virulence gene expression, carbon transport and metabolism and, 378, 379
PrfA* mutations, isolation and characterization of, 369–371
location in amino acid substitutions, 370
Protein exportation, role in human infection, 317
Proteins, activity of, RNA regulators of, 495
choline-binding, 201
DNA-binding, in regulation of alginate production, 178–180
histone-like, regulating alginate production, 178–179, 180
matrix structures, CdrA, 13–14
misfolded, in periplasm, outer membrane and, 445–446
nucleoid-associated, in control of SsrAB expression, 396–397
outer membrane, 451–453
interaction with small molecules in environment, 454
protein banding patterns of, 451–453
pneumococcal surface, regulation of, 190–208
regulatory circuits impacting expression of, 199, 200
polyhistidine triad, 200–201
production of, bacterial vesiculation and, 441
in regulation of outer membrane vesicle formation, 449
sortase-dependent surface, 201–202
virulence cascade activator, 245–249
Proteobacteria, and acylated homoserine lactones, 40
bacterial communication by, 40
PrsA2, Listeria monocytogenes viability and, 374, 375
Pseudomonas, 551
acyl homoserine lactones, 557
formation of resistant biofilms by, 547–548
quinolone signaling molecule produced by, 548
repression of virulence factors by, 549
RNA regulators of, 503–505
sensing of norepinephrine by, 547–549
Pseudomonas aeruginosa, 3, 21, 503–504, 547–549, 567
acylated homoserine lactone quorum sensing processes in, 42
acylated homoserine lactone signaling in, 43–44
adaptation during cystic fibrosis, 327
adenosine and, 555
alginate produced by, 171
anaerobiosis sensing in, 324
biofilm development and structure in, 4–5
biofilm structure of, and antibiotic tolerance of, 14–15
factors influencing, 5–14
and function of, factors that impact, 3–20
biofilm formation in, signaling determinants regulating, 15–16
as causative agent of infections, 171
cystic fibrosis and, 21, 23, 24, 25
DNA in outer membrane vesicles of, 453
encoding of acyl homoserine lactone systems, 548
encoding of virulence factors by, 547–549
exopolysaccharide biosynthesis in, regulation of, 171–189
exopolysaccharides produced by, 171, 172–174
flat biofilms in, 4–5
GalA in, direct targets of, 30–32
host reaction sensing and, 327
infests Caenorhabditis elegans, 456–458
iron levels in, and biofilm development, 96–97
Las and Rhl QS systems in, 10–11
lipopolysaccharide production by, 446
magnesium transporter MgtE, 325
matrix components of, 11–14
nutrition of, 8–10
outer membrane vesicle formation and, 455
outer membrane vesicles, lipopolysaccharide structure and, 446
PAI-1 pathogenicity island, 348, 350
persistence of, in cystic fibrosis, 171, 180–181
phospholipid and fatty acid content of outer membrane vesicles in, 454
regulation of expression of, 317–333
response to host stress, 550
sensing of cytokine, 552
structured biofilms in, 4
transduction pathways of, cyclic AMP and, 324
two-component regulatory systems and small RNAs in, 322–323
type III secretion systems in, 319–327
aspects of regulation of, 320
biostability of, 322
ExsD and ExsA in, 321–322
transcriptional and posttranscriptional regulation of, 320
use of virulence factors, 34
Vfr regulatory pathway and, 324
virulence factor expression, 21–22
regulators implicated in, 35
Pseudomonas aeruginosa infection, chronic versus acute, 21–39
strains causing, 22–25
virulence factor expression in, regulatory “switches” for, 26–36
Pseudomonas fluorescens, 505
Pseudomonas fragi, outer membrane vesicles and, 455
Pseudomonas putida, outer membrane vesicle formation and, 449
Pseudomonas quinolone signal, 548
interacting with lipopolysaccharide packing, 447
Pseudomonas syringae, 557
Pseudouridinase enzyme, gene *truA* and, 325
PsI, in biofilm formation, 174
in biofilms, 174
polysaccharide synthesis of, 172
regulation of, c-di-GMP in, 183, 184
Pulpy kidney disease, *Clostridium perfringens* type D and, 282
Pyoverdine, in *Pseudomonas aeruginosa*, 10
Quinolone signal, outer membrane vesicles formation and, 450–451
studies of, *Pseudomonas aeruginosa* and, 450–451
Quorum sensing, 191–192
in *Burkholderia*, 40–57, 45–51
in *Burkholderia mallei*, 47, 50–51
in *Burkholderia pseudomallei*, 47, 48–49
in *Burkholderia thailandensis*, 47, 49–50
common themes in, 44–45
in enterohemorrhagic *Escherichia coli*, 547
in *Pseudomonas aeruginosa*, 504
in regulation of toxin production by *Clostridium perfringens*, 288–289
in regulation of virulence factors, 548
in *Shigella flexneri*, 319
type III secretion systems and, 319
in *Vibrio cholerae*, 242, 244, 570, 571
virulence gene expression and, 244
in *Yersinia enterocolitica*, 319
Reactive nitrogen species, enzymatic production of, 431–432
exposure of *Salmonella* to, 431–432
molecular targets of, 432, 435
in anti-*Salmonella* activity, 427
nonenzymatic production of, in stomach, 431–432
reaction with redox active sulfhydryls, 432
redox sensors, of *Salmonella*, 425
sensing by *Salmonella* pathogenicity island 2 response regulator, 434
Reactive oxygen intermediates, internalization of *Mycobacterium* and, 470
Reactive oxygen species, exposure of *Salmonella* to, 425–426
molecular targets of, 435
in anti-*Salmonella* activity, 426–428
produced by NADPH phagocyte oxidase, 426
redox sensors, of *Salmonella*, 425
Regulation, negative, during bacterial infection. See Infection, bacterial, negative regulation during
Restriction-modification systems, 156
phase-variable, 160–162
gene regulation by, 166
methylation of genome and, 161–162
mod switching and, 161–162
type III, 162
Rhamnolipids, 547–548
biofilms and, 7–8
Rhizobium, 557
Riboswitches, 493–494
thermosensitive, 494
Rice water stool, 569, 576, 577
RipA, as mitogen-activated protein kinase, 407
RNA polymerase, in *Francisella*, 411–412
RNA regulators, bacterial, regulatory mechanisms employed by, 502
RNA thermometers, 494
RNAIII, and *AgrA* regulation of gene expression, 66–67
amplification of *Agr* signal and, 66
as effecter molecule of *Staphylococcus aureus*, 63–65
as regulatory RNA molecule, 515
structure and mechanism of action of, 66
RNAs, antisense-encoded, 494
CRISPR, 494–495
small, in *Bacillus*, 511–512
in bacterial pathogens, 495–500
in *Bordetella*, 506
in *Borreia*, 508–509
in *Campylobacter*, 506–508
in *Chlamydia*, 509–510
in *Escherichia coli*, 495–500
expansion of model organisms in, 517–518
in *Francisella*, 413, 506
in Gram-negative pathogens, 495–511
in Gram-positive and Gram-negative pathogens, and virulence control, 493
in Gram-positive pathogens, 511–517
in *Helicobacter*, 506–508
Hfq-dependent, 494, 501
in *Legionella*, 508
in *Listeria*, 512–513
molecules of, and outer membrane vesicles formation, 430
in *Mycobacterium*, 516–517
in *Neisseria*, 509
in pathogenic *Escherichia coli*, 510–511
in *Pseudomonas*, 503–505
as regulators of protein activity, 495
role in virulence regulation, regulatory mechanisms and, 493–527
in *Salmonella*, 495–501
SacR/S, and
Staphylococcus aureus, two component
S-layer protein BslA, and, 273
Bacillus anthracis RyhB regulation, and Fur regulation, 115
RyhB properties, and regulatory mechanisms, 115–118
RsmA, posttranscriptional control by, and virulence of
Pseudomonas aeruginosa RseA cognate anti-sigma factor, binding of SigE to, 472
RsmA, posttranscriptional control by, and virulence of
Pseudomonas aeruginosa regulation of type III secretion system gene expression by, 322–323
RyhB, description of, 108, 115
direct negative regulation of *sodB* by, 116–117
direct positive regulation of *shIA*, 118
discovery of, in *Escherichia coli*, 87–88
and Fur, as global regulators, 119–120
Fur and, 119
indirect inhibition of translation of Fur, 117–118
in iron homeostasis, 97–98
promotion of iron acquisition in *Escherichia coli*, 98
as regulator in *Escherichia coli*, 87–88
regulatory mechanisms of, 88, 89
Shigella species and, 91–92
in various species, 88
in *Vibrio* species, 88
RyhB properties, and regulatory mechanisms, 115–118
RyhB regulation, and Fur regulation, 115
S-layer protein BslA, Bacillus anthracis and, 273
SacR/S, and *Staphylococcus aureus*, two component
system, 70–72
and *Staphylococcus aureus* neutrophil interaction, 69–70
two component system, relationship to *Staphylococcus aureus* regulatory systems, 71–72
Salicylic acid, 97
Salmonella, 552
adaptation to superoxide anion and water, 428–429
antioxidant defenses of, 426
evasion of NADPH phagocyte oxidase by *Salmonella*
pathogenicity island 2, 431
exposure to reactive nitrogen species, 431–432
exposure to reactive oxygen species, 425–426
functions of PhoPQ in, 395
general host sensing in, 318
host defense against, nitrogen production in gastrointestinal tract and, 432
as invasive facultative intracellular pathogen, 386
redox sensors of reactive nitrogen species and, 425
redox sensors of reactive oxygen species and, 425
regulatory networks of, and defenses against reactive
nitrogen species, 432–433
resistance to oxidative and nitrosative stress, 425–440
RNA regulators of, 495–501
sensors of oxidative stress and, 428–431
SlyA regulator and, 395
in treated effluent of wastewater facilities, 566
treatment with nitrogen, 435
type III secretion system, *RsmA* and, 322–323
virulence of, EIIAN* and, 395–396
SsrAB in, 388
Salmonella-containing vacuole, 386
Salmonella enterica, 546
Fur and, 83
gene regulation in, H-NS in, 535–536
gene repression in, 534
infections by, pathogenesis of, 386–401
SsrAB virulon of, 386–401
two-component system *SsrAB*, 387, 398
virulence genes activation and, 535
Salmonella enterica serovar, Typhimurium, 552
activation of, 552–553
Salmonella infections, as common food-borne
diseases, 386
control of, burst of phagocytes in, 426
Salmonella pathogenicity island 1, during *Salmonella*
invasion, 534
Salmonella pathogenicity island 2, 387–388
regulators of expression of, nucleoid-associated
proteins and, 396
Salmonella evasion of NADPH phagocyte oxidase
by, 431
sensing of reactive nitrogen species by, 434
SsrAB target genes outside, 389
SsrAB target genes within, 388
sensing of reactive nitrogen species by, 431
Salmonella in *Vibrio* species, 88
Salmonella in *Shigella* species and, 91–92
Salmonella intracellular vacuole, 386
Salmonella virulence genes activation and, 535
regulatory networks of, and defenses against reactive
redox sensors of reactive nitrogen species and, 425
redox sensors of reactive oxygen species and, 425
regulatory networks of, and defenses against reactive
nitrogen species, 432–433
Salmonella enterica serovar, Typhimurium, 552
virulence of, EIIAN* and, 395–396
SsrAB in, 388
Salmonella-containing vacuole, 386
Salmonella enterica, 546
Fur and, 83
gene regulation in, H-NS in, 535–536
gene repression in, 534
infections by, pathogenesis of, 386–401
SsrAB virulon of, 386–401
two-component system *SsrAB*, 387, 388
virulence genes activation and, 535
Salmonella enterica serovar, Typhimurium, 552
activation of, 552–553
Salmonella infections, as common food-borne
diseases, 386
control of, burst of phagocytes in, 426
Salmonella pathogenicity island 1, during *Salmonella*
invasion, 534
Salmonella pathogenicity island 2, 387–388
regulators of expression of, nucleoid-associated
proteins and, 396
Salmonella evasion of NADPH phagocyte oxidase
by, 431
sensing of reactive nitrogen species by, 434
SsrAB target genes outside, 389
SsrAB target genes within, 388
Salmonella pathogenicity islands, 386–387
Salmonellosis, NADPH phagocyte oxidase resistance
to, 425
Salt, outer membrane vesicle formation and, 455–456
SDS, *Mycobacterium tuberculosis* and *Mycobacterium smegmatis* sensitivity to, 476
Secretion systems, type III. See Type III secretion systems
type IV. See Type IV secretion systems
Self-DNA degradation, autolytic, for uptake by cells, 161
Sensor kinase LaDS (PA3974), 29–30
Sensor kinase RetS, 29
Sensor kinase RetS/GacS/LadS, signals regulating, 33–34
Sensor kinases GacS/RetS/LadS and sRNA, in mediated
regulation of virulence factor expression, 29–34
Septicemia, 91
in regulation of AG synthesis, 481
in regulation of mycolic acid synthesis, 481–482
Mycobacterium tuberculosis and, 465
posttranslation modification of anti-sigma factors
by, 482
Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Wed, 14 Aug 2019 18:00:00
Serratia marcescens, catecholamines in, 545
Serrum, transferrin in, 546
shiA, direct positive regulation by RyhB, 118
Shigella, 552
general host sensing in, 318
H-NS global repressor protein in, 536
RNA regulators in, 510–511
in treated effluent of wastewater facilities, 566
third secretion system regulation in, 319
Shigella flexneri, 552
quorum sensing in, 319
Shigella species, as direct targets of RyhB, 120
Shigella typhimurium, general host sensing in, 318
Sideromycins, 98
Sporulation-associated *sigma factors*, 471–472
small RNAs and, 511–512
Sporulation, in *Bacillus* species and, 299
Spo0A global regulator, 409
Spermine, 406
Streptococcus sodB, direct negative regulation by RyhB, 116–117
SlyA, as MarR-type regulator, 395
Signal *molecule(s)*, host-derived, regulation in response to, 545–565
produced by *Pseudomonas*, 548
SlyA, as MarR-type regulator, 395
and survival of *Salmonella*, 395
sodB, direct negative regulation by RyhB, 116–117
Sortase-dependent surface proteins, of *Streptococcus pneumoniae*, 201–202
Spermidine, as inducer for type III secretion systems, 325
Spermine, 406
Spo0A global regulator, *Bacillus* species and, 299
Clostridium difficile and, 299–300
Clostridium perfringens and, 299
Sporulation, in *Bacillus*, small RNAs and, 511–512
Sporulation-associated *sigma factors*, 471
sRNA molecules, regulation of *Clostridium perfringens* by, 285–287
Sspa, as virulence regulator, in *Francisella tularensis*, 411
SSrA, sensor kinase, 390
and *SsrB*, domain organization of, 390–391
structure and function of, 390–392
as two-component sensor gene, 390–392
SSrAB, activation of, potential signals for, 398–399
expression of, control of, nucleoid-associated proteins and, 396–397
core genome-encoded regulators of, 392–393, 394
regulation of, and binding specificity of *SsrB*, 392, 393
regulatory control of, 392–397
host factors acting on, 397–398
regulation of horizontally acquired regulators, 397
in *Salmonella* virulence, 388
SsrAB operon, autoregulation of, 392, 393
SsrAB-regulated genes, 389
expression levels of, 389–390
as *SsrAB* virulon, 388
SsrAB regulatory system, 388
SsrAB target genes, outside *Salmonella* pathogenicity island 2, 389
within *Salmonella* pathogenicity island 2, 388–389
SsrAB virulon, expression of, nitric oxide and, 397–398
gene products of, and intracellular lifestyle of *Salmonella*, 399
regulation of, *OmpR/EnvZ* two-component system and, 393–395
PhoPQ two-component system and, 395
regulatory circuits of, 392–393, 394
of *Salmonella enterica*, 386–401
SsrB, binding specificity of, and regulation of *ssrAB* expression, 392–393
promoter specificity of, 392
as response regulator, 391–392
and *SsrA*, domain organization of, 390, 391
structure and function of, 390–392
Staphylococci, iron-dependent virulence regulation in, 88–89
sensing of host signals by, 555
Staphylococcus, RNA regulators in, 514–516
Staphylococcus aureus, 552–553
Agr system of, 62–63, 64
autoinducing peptide and, 62, 64
autoinducing peptide produced by, 515
description of, 58, 514–515
Fur and, 83
interaction with neutrophils, 69–72
iron and, 88–89
iron-dependent virulence gene in, 88–89
methicillin-resistant (MURSA), 58
pathogenesis of, Agr and, 68–69
and virulence factor regulation, 58–78
resistance to antibiotics, 58
response to host-derived molecules, 555
and SacR/S, neutrophil interaction, 69–70
SacR/S and, two component systems of, 70–72
strains and growth conditions, microarray analysis of, 59, 60
two-component systems of, 61
virulence factors, 59–61
growth phase-dependent expression of, 62
in response to phagocytes, 69–72
virulence of, SacR/S two component system and, 70–72
virulence regulation of, 555
virulon, regulation of, 61–69
Staphylococcus aureus infections, treatment of, inhibitors to target regulatory networks for, 72
Staphylococcus epidermidis, 89, 552, 553
Stomach, nonenzymatic production of reactive nitrogen species in, 431–432
Streptococcus, group A, invasive mutants in, 537, 538
RNA regulators in, 513–514
Streptococcus agalactiae, 93
Streptococcus group A, 92–93, 513, 514
Streptococcus mutans, 93
Streptococcus pneumoniae, 91–92, 190, 513–514
CodY regulon of, 195
Streptococcus pyogenes, 92–93, 513, 514, 537, 538
Streptococcus suis, 93
Substrate-T4CP, docking reactions of, regulation of, 350–352
Superoxide anion, and oxygen, sensing by fumarate/nitrate reduction, 431
sensing of, by superoxide response, 428, 429–430
Superoxide response, 428, 429
sensing of nitrogen by, 434
TcdC, anti-sigma factor, of Clostridium difficile, 297–298
TcdR protein, and Clostridium difficile, 281–294
TcpP, as transcriptional activator, in Vibrio cholerae, 247–248
Temperature, outer membrane vesicle formation and, 455
Temperature changes, Francisella tularensis response to, 404–405
Tetrapyrrole heme, as iron source of Staphylococcus, response to, 477
Temperature, outer membrane vesicle formation and, 455
Tobramycin, Pseudomonas aeruginosa
Ti plasmid Trb/Tra type IV secretion system, Tra and AAI
Tetrapyrrole heme, as iron source of Staphylococcus, response to, 477
Temperature, outer membrane vesicle formation and, 455
Tobramycin, Pseudomonas aeruginosa
Ti plasmid Trb/Tra type IV secretion system, Tra and AAI
Tetrapyrrole heme, as iron source of Staphylococcus, response to, 477
Temperature, outer membrane vesicle formation and, 455
Tobramycin, Pseudomonas aeruginosa
Ti plasmid Trb/Tra type IV secretion system, Tra and AAI
Type III secretion systems, of animal pathogens, regulatory characteristics of, 318
bacterial metabolic/stress status sensing and, 324–325
cell contact and secretion/activation coupling in, 319
ExsA-dependent secretion/activation coupling and, 320–321
general host sensing of, 318–319
host environment sensing and, 322–323
linkage to metabolic status of bacterium, 319
long-chain fatty acids and, 325
in Pseudomonas aeruginosa, 319–327
quorum sensing and, 319
regulation of, common aspects of, among pathogenic bacteria, 317–319
regulation of expression of, 317–333
spermidine as inducer for, 325
stress and metabolic signals in, 319
Type IV secretion systems, adaptation by mammalian pathogens, 344–349
architectures of, in Gram-negative and -positive bacteria, 335
Bartonella coregulation of, 348–349
biogenesis or function of, posttranscriptional control of, 350–352
Brucella VirB modulation of, 344–346
contact-mediated suppression or activation of, 351, 352
coordinated regulation of, 348–349
and surface organelles, 349–350
and Flagella, 349
function of, 336
Helicobacter pylori Cag, 351–352
regulation of, 334–362
structure of, 335–336
and type IV pili, coregulation of, 348–350
Tyrosine, 545
Urinary tract infections, 135–136
antivirulence compounds to treat, 149
immune response during, predisposes to chronic cystitis, 143–144
uropathogenic Escherichia coli, 136, 140, 141
pathogenesis of, 140, 141
Valinomycin, 270
Vancomycin, 553
VarS/A two-component system, Vibrio and, 503
Vegetative insecticidal protein, of Bacillus thuringiensis, 268
Tryptophan, in bacterial cell-to-cell communication, 325–326
TsrA, as modulator of virulence in Vibrio cholerae, 252
Tuberculosis, 465–466
Tularemia, Francisella tularensis and, 402–403
pathogenesis of, 409
Tumor necrosis factor α, 552
Two-component signal transduction systems, 192–193
Clostridia perfringens, 517
Mycobacterium tuberculosis, 465
regulating expression of cell envelope products, 477
Tyrosine, 545
Urinary tract infections, 135–136
antivirulence compounds to treat, 149
immune response during, predisposes to chronic cystitis, 143–144
uropathogenic Escherichia coli, 136, 140, 141
pathogenesis of, 140, 141
Valinomycin, 270
Vancomycin, 553
VarS/A two-component system, Vibrio and, 503
Vegetative insecticidal protein, of Bacillus thuringiensis, 268
Vesicles, formation of, regulation of, 441–464
membrane, production of, 441
outer membrane. See Outer membrane vesicles
Vfr-cAMP, as global regulator of virulence factors, 29
regulation dependence of virulence factor expression, 26–27
in regulation of alginate production, 180
Vibrio, RNA regulators of, 501–503
TarA and TarB, 503
Vibrio cholerae, 531, 532–534
biofilm formation by, 554, 579–580
bistable switch of, 582
c-di-GMP concentration during infection, 575–576
c-di-GMP signaling and biofilms in, 244–245
carbon sources for, 578–579
cells in vomitus, 575
cholera and, 241, 501
disease-causing biotypes of, virulence cascade and, 247
dissemination of, 577–578
fates of, in environment, 577–582
flagellar breakage in, and virulence gene expression, 533
flagellar motility of, 253–255
glycogen storage in, 577
H-NS in mediation of virulence gene repression, 536
hyperinfectious, 581
infectivity of, chemotaxis and, 254–255
late genes, 575–577
late stage of infection and, 573–577
as model waterborne pathogen, 567–569
O1 serogroup of, 567–569
O139 serogroup of, 569
outer membrane of, 441, 442
quorum sensing in, 242, 244, 570, 571
regulating transition of, out of host, 566–585
RpoS- and HapR-mediated transition of cells from,
573–575
serogroups of, cholera and, 241
shed bacteria of, 582
toxigenic, life cycle of, 568, 569
toxin and virulence regulation in, 241–261, 570–573
transcriptional changes of, during infection, 573–574
transmission to new host, 580–581
two-component in, regulation of, 576–577
viable but nonculturable state of, 578–579, 580
virulence cascade, 241–243
activator proteins in, 245–249
virulence factors in, in late infection, bistable expression
of, 570–573
virulence gene expression in, in late infection, bistable expression
of, 243–244
flagellar influence on, 254
during infection, 255–256
virulence in, modulators of, 250–255
regulation of, 570
Vibrio cholerae CTnDOT, inducible transfer of, 341–342
Vibrio cholerae SXT, inducible transfer of, 341–342
Vibrio cholerae Tn916, inducible transfer of, 341–342
Vibrio fischeri, acylated homoserine lactone signaling
in, 42–43
Vibrio parahaemolyticus, 567
Vibrio pathogenicity island, 241
Vibrio species, RyhB in, 116
Vibrio vulnificus, 91
VieSAB, as modulator of virulence in Vibrio cholerae, 251
VirA/VirG regulatory system, transcriptional activation
of, 337–338
VirAG two-component system, 555–556
VirSR regulon, two groups of genes in, 284–285
VirSR two-component signal transduction system, Clostridium perfringens as, 282–285
gene expression by, regulation of, 283
Virulence, factors influencing, 135
iron-dependent, regulation in Actinomyces, 95–96
regulation in Bacilli, 90–91
regulation in Clostridium, 95
regulation in Corynebacterium, 86–88
regulation in Listeria, 94–95
regulation in mycobacteria, 96–97
regulation in staphylococci, 88–89
regulation in streptococci, 91–94
iron regulation and, in Gram-positive bacteria,
107–155
in Yersinia pestis, gram-negative bacterial pathogens
with, 107–132
modulators of, in Vibrio cholerae, 250–255
regulation of, role of small RNAs in, regulatory
mechanisms and, 493–527
of uropathogenic Escherichia coli, 139–140
Virulence-associated genes, regulators of, 36
Virulence-associated plasmids, Bacillus cereus group
species and, 263–264
Virulence cascade activator proteins, 245–249
Virulence factor expression, GacS/RetS/LadS and
sRNA- mediated regulation of, 29–34
metabolic signals influencing, 33–34
in Pseudomonas aeruginosa infection, 26–36
Vfr-cAMP dependent regulation of, 26–27
Virulence factor regulation, and Staphylococcus aureus
pathogenesis, 58–78
Virulence factor regulator, 26–29
and FimL protein, links between, 28
mutations in, in cystic fibrosis, 24, 28
and regulators of alginate expression, links between,
28–29
regulatory pathway, and Pseudomonas aeruginosa, 324
and type IV pilus, links between, 27–28
Virulence factors, acylated homoserine lactones in
regulation of, 40, 42
encoded by Pseudomonas aeruginosa, 547–549
in Francisella, 413–415
in outer membrane vesicles, 452
repressed by Pseudomonas, 549
Staphylococcal, secreted, 61
surface, 59–61
Staphylococcus aureus, growth phase-dependent
expression of, 62
in response to phagocytes, 69–72
SacR/S two component system and, 70–72
Virulence gene expression, AtxA and PlcR control of, 264–267
environmental factors influencing, 243–244
pleiotropic control systems for, 264–267
quorum sensing systems and, 244
during *Vibrio cholerae* infection, 255–256
Virulence gene regulation, in *Bacillus anthracis* and *Bacillus cereus* group species, 262–280
in *Vibrio cholerae*, 570–573
Virulence genes, horizontally acquired, repression of, as foreign DNA, 535–537
primary, and their regulation, 569–570
Virulence program, 569–573
VR-RNA, in *Clostridium perfringens*, 286, 287, 290
Waterborne *Clostridium* perfringens, importance of, 566
Waterborne pathogens, aquatic reservoir in transmission of, 566–567
Whooping cough, 506, 530, 546
Wzz proteins, formation of homo-oligomers by, 229
overexpression in *Yersinia enterocolitica*, 229–230
regulation of O-antigen chain length by, 228–230
Yersinia, general host sensing in, 318
H-NS global repressor protein in, 536
RNA regulators of, 505–506
Yersinia enterocolitica, 505, 546, 567
overexpression of Wzz proteins in, 229–230
quorum sensing in, 319
Yersinia pestis, 505, 551–552
Fur in, 112
iron deprivation and, 97
iron regulation and virulence in gram-negative bacterial pathogens with, 107–132
iron transport systems of, 92–93
PhoP/PhoQ in, regulation of lipooligosaccharide by, 221
plague and, 107
promoter regions of, Fur boxes of, 113–115
virulence of, bubonic plague and, 94
Yersinia pseudotuberculosis, 505–506
iron starvation and, 92
Zoonotic transmission, vector-host, negative regulation to promote, 528–29