To Catch a Virus
To Catch a Virus

John Booss, MD, and Marilyn J. August, PhD
Cover image: Specter of death waiting over Panama (U. J. Keppler, 1904). Cover illustration for Puck, a political satire and humor magazine. (See Figure 1 in chapter 1.) (Courtesy of Beinecke Rare Book and Manuscript Library, Yale University.)

Copyright © 2013 by ASM Press. ASM Press is a registered trademark of the American Society for Microbiology. All rights reserved. No part of this publication may be reproduced or transmitted in whole or in part or reused in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

Disclaimer: To the best of the publisher’s knowledge, this publication provides information concerning the subject matter covered that is accurate as of the date of publication. The publisher is not providing legal, medical, or other professional services. Any reference herein to any specific commercial products, procedures, or services by trade name, trademark, manufacturer, or otherwise does not constitute or imply endorsement, recommendation, or favored status by the American Society for Microbiology (ASM). The views and opinions of the author(s) expressed in this publication do not necessarily state or reflect those of ASM, and they shall not be used to advertise or endorse any product.

Library of Congress Cataloging-in-Publication Data

Booss, John.
To catch a virus / John Booss, Marilyn J. August.
p. ; cm.
Includes bibliographical references and index.
I. August, Marilyn J. II. American Society for Microbiology. III. Title.
616.9'101—dc23

2012035227

eISBN: 978-1-55581-858-6
doi:10.1128/9781555818586

10 9 8 7 6 5 4 3 2 1

All Rights Reserved
Printed in the United States of America

Address editorial correspondence to ASM Press, 1752 N St., N.W., Washington, DC 20036-2904, USA

Send orders to ASM Press, P.O. Box 605, Herndon, VA 20172, USA
Phone: 800-546-2416; 703-661-1593
Fax: 703-661-1501
E-mail: books@asmusa.org
Online: http://estore.asm.org
In tribute to Gueh-Djen (Edith) Hsiung, PhD, who is remembered for her pioneering contributions to the field of diagnostic virology, for training and inspiring generations of diagnostic virologists with her passion for virology, and for her social grace and generosity. (Courtesy of Zhe Zhao.)
CONTENTS

List of Illustrations ix
Acknowledgments xv
Foreword xix
Preface xxi
About the Authors xxvii

Chapter 1 Fear or Terror on Every Countenance: Yellow Fever 1
Chapter 2 Of Mice and Men: Animal Models of Viral Infection 23
Chapter 3 Filling the Churchyard with Corpses: Smallpox and the Immune Response 51
Chapter 4 What Can Be Seen: from Viral Inclusion Bodies to Electron Microscopy 79
Chapter 5 The Turning Point: Cytopathic Effect in Tissue Culture 113
Chapter 6 A Torrent of Viral Isolates: the Early Years of Diagnostic Virology 157
Chapter 7 Imaging Viruses and Tagging Their Antigens 197
Chapter 8 Immunological Memory: Ingenuity and Serendipity 249
Chapter 9 To the Barricades: the Molecular Revolution 293

Appendix: Chapter Timelines 339
Index 353
LIST OF ILLUSTRATIONS

Chapter 1
1 "Waiting." Specter of death waiting over Panama 4
2 van Leeuwenhoek exhibits his microscopes for Catherine of England 5
3 Robert Koch 7
4 Martinus Beijerinck 10
5 Henry Rose Carter 13
6 George Miller Sternberg 14
7 The four members of the Yellow Fever Commission 16

Chapter 2
1 "Mad Dog," caricature of a rabid dog 25
2 Louis Pasteur 26
3 "An inoculation for hydrophobia" 30
4 Karl Landsteiner 34
5 "Coughs and Sneezes Spread Diseases," World War II poster 39
6 "L’influenza à Paris," cover of “Le Petit Parisien" 40

doi:10.1128/9781555818586.illustlist
Chapter 3
1. Lady Mary Wortley Montagu, in a Turkish embellished costume 55
2. Edward Jenner 58
3. “Triomphe de la Petite Verole” (Triumph of Smallpox), caricature 60
4. Elie Metchnikoff 62
5. Jules Bordet 65
6. Complement fixation diagram 67
7. Neutralization assay in tissue culture, diagram 70
8. Hemadsorption in tissue culture 72

Chapter 4
1. Caricature of Rudolf Virchow 82
2. An 1859 advertisement for achromatic microscopes 84
3. “Kill the mad dog,” Indian rabies poster 87
4. Negri bodies in brain 89
5. Varicella-zoster virus inclusions 95
6. Tzanck smear 96
7. Cytomegalovirus inclusions 98
8. Bodo von Borries and Ernst Ruska 101
9. Max Knoll and Ernst Ruska 102
10. Helmut Ruska 104
11. Electron micrograph of poxvirus 106
Chapter 5

1 Ross Granville Harrison 115
2 Thomas Rivers 119
3 Franklin D. Roosevelt; his dog, Fala; and Ruthie Bie at Hill Top Cottage 124
4 “Your gifts did this for me,” polio fundraising poster 125
5 Frederick Robbins 129
6 Cytopathic effect resulting from CMV replication 134
7 Colonel Harry Plotz 137
8 Joseph Edwin Smadel 139
9 Maurice Hilleman 142
10 Edwin Herman Lennette 145

Chapter 6

1 Werner and Gertrude Henle 160
2 G.-D. Hsiung, Yale University 163
3 G.-D. Hsiung with the diagnostic virology class 166
4 Chen Pien Li and Morris Schaeffer 169
5 Walter Dowdle 170
6 Charles Armstrong 172
7 Robert J. Huebner and a prize Angus bull 174
8 Robert J. Huebner and Wallace Rowe 177
9 Robert Chanock and Robert J. Huebner 179
10 Coronavirus 186
Chapter 7

1. Sydney Brenner 201
2. Robert Horne 202
3. The first electron micrographs of negatively stained bacteriophages 203
4. Adenovirus, negative stain E.M. 205
5. Tobacco mosaic virus E.M. 207
6. June Almeida 210
7. John Zahorsky 212
8. Norovirus E.M. 214
9. Albert Kapikian 216
10. Ruth Bishop and Thomas Flewett 219
11. Rotavirus in stool E.M. 222
12. Albert Coons 226
13. Clinical specimen diagnosed as RSV, fluorescent-antibody stain 237
14. Phillip Gardner 239

Chapter 8

1. Jaundice 250
2. F. O. MacCallum 252
3. Winston Churchill, Franklin D. Roosevelt, and Joseph Stalin at Yalta, 1945 255
4. Baruch Blumberg 257
5. Rosalyn Yalow and Solomon Berson 260
6. Eva Engvall, Peter Perlmann, Anton Schuurs, and Bauke van Weemen 269
<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Harry Towbin, Julian Gordon, and Gordon's group</td>
<td>273</td>
</tr>
<tr>
<td>8</td>
<td>F. Brown</td>
<td>276</td>
</tr>
<tr>
<td>9</td>
<td>Georges Kohler and Cesar Milstein</td>
<td>280, 281</td>
</tr>
</tbody>
</table>

Chapter 9

<table>
<thead>
<tr>
<th>Illustration</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oswald Avery</td>
<td>295</td>
</tr>
<tr>
<td>2</td>
<td>Erwin Chargaff</td>
<td>299</td>
</tr>
<tr>
<td>3</td>
<td>Rosalind Franklin</td>
<td>301</td>
</tr>
<tr>
<td>4</td>
<td>Linus Pauling</td>
<td>303</td>
</tr>
<tr>
<td>5</td>
<td>Francis Crick and James D. Watson</td>
<td>306</td>
</tr>
<tr>
<td>6</td>
<td>Drawing of a DNA double helix</td>
<td>308</td>
</tr>
<tr>
<td>7</td>
<td>“AIDS doesn’t sleep,” Russian poster</td>
<td>311</td>
</tr>
<tr>
<td>8</td>
<td>Françoise Barré-Sinoussi and Luc Montagnier</td>
<td>314</td>
</tr>
<tr>
<td>9</td>
<td>Harald zur Hausen</td>
<td>318</td>
</tr>
<tr>
<td>10</td>
<td>Kary Mullis</td>
<td>320</td>
</tr>
<tr>
<td>11</td>
<td>Political cartoon, 1919 influenza pandemic</td>
<td>329</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The idea for this book emerged following the memorial service organized by Marie L. Landry in 2006 for Gueh-Djen (Edith) Hsiung at the Historical Library, Yale University School of Medicine. Dr. Landry strongly encouraged the concept of the book and has provided crucial guidance, critiques, and advice throughout. We are greatly in her debt.

The editorial staff at ASM Press has provided insight and creative encouragement throughout the long gestation of the book. Jeff J. Holtmeier, the Editor-in-Chief at the book’s inception, guided the development of the concept and provided patient encouragement. Christine Charlip, his successor, encouraged us to enlarge the audience from one that was primarily technical in orientation to one with broad interests in science and medicine. Thus encouraged, we sought illustrations to complement the text and to provide appeal to a broader readership. John Bell, our production editor, has facilitated that shift by creative suggestions, sound editing, and good humor. We also thank artist Debra Naylor for her creativity in collaborating on the book cover design.

Conversations, face to face, by emails, or by letter, with virologists and others whose work has a bearing on virological infections have played a major role in shaping our understanding of how the field of diagnostic virology evolved. These individuals included Warren Andiman, Jangu Banatvala, Edward A. Beeman, Leonard N. Binn, F. Marilyn Bozeman, Irwin Braverman, Charlie Calisher, Dave Cavanagh, Gustave Davis, Walter Dowdle, Bennett L. Elisberg, Margaret M. Esiri, Durland Fish, Bagher Forghani, Harvey Friedman,

Historians and curators are the guardians of the traces of our past, and several have provided indispensable help. At Yale, Toby Appel, Melissa Grafe, Frank Snowden, and Susan Wheeler were expert and gracious. Elsewhere, Steven Greenberg, Col. Richard C. V. Gunn, Sally Smith Hughes, and Sarah Wilmot provided invaluable guidance.

Because of their associations with virologists, by birth or profession, certain other individuals provided important pieces of information. These included Mary Emma Armstrong, Jean Saperstein Beeman, Kevin Breen, James A. Poupard, James W. Reagan, David R. Scholl, and Kenneth Wertman.

We are not the first to note this, but there must be a special place in heaven for archivists and specialist librarians. Several of the staff at the Yale Medical and Historical Libraries were particularly helpful. Mary Angelotti was exceptionally resourceful in locating documents at Yale and elsewhere and generous in explaining the means of access. Florence Gillich effortlessly facilitated access to the riches of the Historical Library holdings. At other institutions, Barbara Faye Harkins, Leigh Mantle, Barbara J. Niss, Stephen Novak, and Alycia J. Vivona responded to repeated pleas for help, providing answers, documents, and guidance.

Mary Ann Booss and Brigitte Griffith offered expert advice in translating scientific publications in French, while Carolin I. Dohle provided expert translations of scientific publications in German.

A number of individuals provided help above and beyond the call of duty to secure especially difficult-to-find figures or provided critical help in developing the manuscript. Zhe Zhao, Dr. Hsiung’s grandniece, was kind enough to provide the portrait used with the dedication. Special thanks are extended to Paul Theerman and Ginny A. Roth at the National Library of Medicine for providing many high-resolution images from the library collection. Others included Joyce Almeida, Debbie Beauvais, Claire Booss, Robert B. Daroff, John and Donna Jean Donaldson, Will Fleeson, Emma
Acknowledgments

It seemed particularly important to gain an understanding of the first diagnostic virology and rickettsiology labs established anywhere. The first was established in January 1941 at the Walter Reed Army Medical Center. In investigating the establishment and operation of that laboratory, we had exceptional support from committed and knowledgeable personnel. We extend special thanks to Michael P. Fiedler, research librarian, Andrew H. Rogalsky, archivist, and Leonard N. Binn, whose career in virology at Walter Reed spans over five decades. The first diagnostic virology and rickettsial lab in the U.S. civilian sector was at the State of California Public Health Labs. We are grateful to Bagher Forghani for generously and graciously providing a full understanding of that very important lab and its leaders.

Finally, the book could not have been written without the support of J.B.’s family. Months turned into years, and stacks of books and reprints turned into multiple file cases. Yet patience and encouragement were constant. Mary Ann offered insights from her public health work, Dave recurrently provided much-needed computer support, and Christine provided a West Coast haven when the research moved west. J.B. is humbled and grateful for their support. M.J.A. was continually cheered by her dear father, Ralph August, by friends near and far away, and by her Let’s Look at Art docent colleagues at the San Jose Museum of Art.
FOREWORD

This book traces the growth of diagnostic virology from its beginnings over a century ago to the present: the scientific discoveries, the blind alleys, the missteps, the epidemics that gave urgency to the quest, the technological advances, and the unique individuals whose commitment and hard work were the keys to progress.

The idea for this book first arose at a memorial service for Dr. Gueh-Djen (Edith) Hsiung, a leader in clinical and diagnostic virology who died in 2006 and in whose laboratory the authors and I had all trained. To us, Edith Hsiung embodied the enthusiasm, dedication, and perseverance of an older generation who, sadly, had died or were dying and whose stories were being lost. John Booss, to his great credit, has been the driving force behind this project, traveling the country to research historical archives and interview key people. He was fortunate to enlist Marilyn August, a diagnostic expert and science writer who is a key contributor to this important endeavor. Although a diagnostic virologist myself, I knew little of the history of the field and thus have learned a tremendous amount reading the material they have unearthed and presented in this fascinating book.

When I first entered Dr. Hsiung’s laboratory in 1979, virus isolation involved inoculating litters of newborn mice or embryo-nated hens’ eggs, or preparing cell cultures by harvesting rabbit kidneys and chicken and guinea pig embryos—i.e., working with a virtual menagerie—as well as recovering discarded human foreskins from the obstetrics ward. Time to result was slow, and it was often said that the patient was dead or better by the time the result was received. Over the intervening years, diagnostic advances have
transformed the field by allowing accurate results in a clinically useful time frame. Today, with molecular methods and rapid diagnostic tests, most results are reported within minutes to hours to 1 to 2 days. Providing sophisticated molecular tests that require minimal skill is now a reality.

With these advances have come new challenges. As tests become more sensitive, low levels of clinically irrelevant or nonviable viruses may be detected and can be misleading to clinicians. Similarly, interpreting the clinical relevance of multiple viral pathogens in the same sample is problematic. Furthermore, with numerous commercial virus detection kits now becoming available, laboratories can find it hard to decide which technologies to invest in. As diagnostic virology enters a new phase in the clinical mainstream, it is highly fitting and fortunate that this book is available to mark the first century of progress and to recount the many stories and contributions that have led us to where we are today.

Marie Louise Landry, MD
Yale University School of Medicine
PREFACE

With a nod to *To Catch a Thief*, Alfred Hitchcock’s 1955 classic mystery film, this book tells the story of the ways in which viruses are captured and identified. It is a chronicle of discovery and diagnosis, a history of diagnostic virology. It begins with yellow fever, the first human disease shown to be viral in nature. That happened in Cuba at the turn of the 20th century, when Walter Reed and the Yellow Fever Commission demonstrated that the disease was transmitted by mosquitoes. They then showed that the agent passed through a filter designed to hold back bacteria, a defining characteristic of viruses. The chronicle has continued through more than a century of historical developments, epidemics, and discoveries, coming into the 21st century with AIDS and human immunodeficiency virus (HIV) and looking into the future.

Diagnostic virology sits astride the confluence of dynamic developments in science, public health struggles with epidemics and emerging diseases, and the intensive medical care of individual patients. Virology as a science was built on the emergence of germ theory and on the developments of cell technology. Most recently, it has made unprecedented advances based on the dizzying progress of molecular biology. During the time covered by this book, terrifying epidemics have made their appearance. The influenza epidemic of 1918 to 1919 is estimated to have killed 25 to 50 million people worldwide, more than all the military casualties of World War I combined. Yet it was not until 1933 that the influenza virus was finally captured and identified in an unusual host, the ferret. The global pandemic of AIDS, which revealed itself in 1981, had by 2008 killed over 25 million
people. It became the driver of molecular diagnostic techniques. In so doing, it dramatically amplified the paradigm of diagnostic virology from making a diagnosis, often after the fact, to prompt diagnosis and active disease management of individual patients.

History and commerce have had a critical hand in the advances in virological diagnosis. The first agent identified as a virus, tobacco mosaic virus, was investigated because of the threat to a commercial crop. The date of that discovery, 1892, is usually identified as the start of virology. The second virus was identified in 1899, foot-and-mouth disease virus. Similar to tobacco mosaic virus, it was examined because of a commercial threat to farm animals and cattle. Wars, too, have driven developments in virology. The demonstration of yellow fever virus had been initiated by the need of the Army to protect soldiers in Cuba in the aftermath of the Spanish-American War. Another first, the establishment of the first viral and rickettsial diagnostic lab, was a response to the incipient World War II (WWII). The Army established the lab at the Walter Reed Army Medical Center in January 1941 in Washington, DC. That is the date on which independent diagnostic virology labs, in contrast to labs devoted primarily to research, can be said to have begun.

The president during WWII, Franklin Delano Roosevelt (FDR), whose ringing words in declaring war stirred the nation, had fought both a personal and national battle against polio. It was his National Foundation for Infantile Paralysis, with Basil O’Connor, that underwrote the development of the Salk polio vaccine. In doing so, John Enders, Thomas Weller, and Frederick Robbins developed tissue culture to grow, isolate, and enumerate viruses. It gave the means to capture and identify viruses directly without having to resort to assays in animals or embryonated hens’ eggs. This was the turning point, after which discoveries in human virology and the development of diagnostic virology simply exploded. These events and other crucial developments are recounted, along with vignettes of the personalities who propelled the capacity to catch and identify viruses.

Most chapters are built around specific viral diseases, such as yellow fever in the first chapter, to demonstrate the development of a technology. In the second chapter, polio, rabies, and influenza are described to show the use of animals and embryonated chicken eggs to isolate and identify viruses. Smallpox is described in the third chapter to demonstrate that the body’s immune system, like
the brain, has memory. Immunological memory provides protection from reinfection and allows the measurement of antibodies to identify a virus. Jennerian vaccination, inducing immunity, was the basis of the remarkable smallpox global eradication project. Some viral infections, like smallpox virus, rabies virus, and the herpes family of viruses, leave footprints called inclusion bodies. The detective work to recognize those footprints, the development of Rudolf Ludwig Virchow’s concepts of cellular pathology, and the beginnings of electron microscopy (EM) are unraveled in chapter 4.

Chapter 5 details the events leading up to the development of tissue culture, including FDR’s polio. Chapter 6 describes the virtual torrent of viruses captured and identified by the development of tissue culture for virus isolation and identification. At the National Institutes of Health in Bethesda, MD, the Laboratory of Infectious Diseases was a hotbed of viral discovery and disease investigation. Led by Robert J. Huebner, investigators such as Wallace Rowe, Robert Chanock, and Albert Kapikian made discovery after discovery linking viruses to illness or, conversely, showing them to be non-pathogenic passengers. The role of diagnostic virology labs at the state level, at the Communicable Diseases Center, and in university hospitals exploded from the latter 1950s onward. These laboratories defined individual patients’ illnesses, often after the acute phase had passed. They also alerted the country to the appearance of epidemics such as influenza.

The final three chapters trace developments which brought diagnostic virology into active patient management. Chapter 7 describes the clinical application of EM and of fluorescent-antibody staining. EM came into its own with several advances, notably negative staining developed by Sydney Brenner and Robert Horne, allowing the detailed description of virus architecture. Viral gastroenteritis is used as the exemplar of disease in which EM played a defining role. Fluorescent-antibody staining, developed though the imagination and tenacity of Albert Hewlett Coons, allowed “taillights” to be put on molecules. That is, the technique would allow the identification of an offending virus. This methodology was applied by Phillip S. Gardner and Joyce McQuillin in pioneering efforts at Newcastle-upon-Tyne in the United Kingdom. They aimed to provide clinicians with a “rapid viral diagnosis,” particularly of acute respiratory disease in infants and children, within 24 hours.
Chapter 8 describes the evolution of our understanding of viral hepatitis and how innovative immunological techniques, developed by both serendipity and ingenuity, led to the identification of some of the culprits. In the case of radioimmunoassay (RIA), Rosalyn Yalow and Solomon Berson originally developed the highly sensitive and accurate technique to measure human insulin and other endocrine molecules. When applied to viral diseases, it allowed the screening of the blood supply for hepatitis viruses. Less complicated and non-radioactive assays, such as the enzyme-linked immunosorbent assay (ELISA) and the enzyme immunoassay (EIA), soon followed. They transformed many aspects of biology, including the diagnostic process in virology.

The final chapter, chapter 9, examines where we are today in diagnosing and managing viral diseases, and where we are going. It tracks HIV, AIDS, and the application of molecular methods for discovery and control. The syndrome first appeared in 1981 as a virtually inevitable death sentence, but that characterization was transformed by the use of an antiviral “cocktail,” including a protease inhibitor, in 1996. Its current status is as a managed chronic disease in those individuals fortunate to have access to molecular viral diagnostic assays and a wide spectrum of specifically targeted antiviral drugs. Tragically, that fortunate group represents only a small portion of the global population infected with HIV.

The molecular foundation for these developments started with the demonstration of DNA as the basis of heredity by Oswald Avery in the 1940s. The demonstration of the double helix by James D. Watson and Francis Crick, using X-ray crystallographic data of Rosalind Franklin, allowed the cracking of the genetic code and the molecular biological revolution which followed. Another key development was the demonstration of the enzyme reverse transcriptase, which transmits genetic information from RNA to DNA and facilitated the discovery of HIV. In another crucial development, exquisitely sensitive detection and quantitation assays were produced. They are based on nucleic acid amplification principles developed for PCR by Kary Mullis. PCR and other molecular techniques such as nucleic acid sequencing allow the measurement of the amount of HIV in plasma, i.e., “viral load,” and the determination of mutations of the virus, facilitating management of antiviral therapy.
The final section of chapter 9 takes a look into the future of viral diagnosis, which even now is becoming highly transformed. Molecular diagnostics have been streamlined so that the many individual steps of nucleic acid extraction, amplification, measurement, and reporting are done in closed systems in “real time.” Hence, the highly trained diagnostic virology specialists of the tissue culture era are being replaced by computer-savvy technologists. In the opinion of a number of experienced diagnostic virologists, the diagnostic virology lab as we have known it is becoming a thing of the past. Many of its functions are being and will be transferred to “point-of-care” locations such as clinics and other medical and public health locations. The process of viral discovery will make use of high-throughput nucleic acid sequencing and information comparisons in large databases. These will be fundamentally important to identifying new viruses or old viruses in “new clothes” that will emerge to attack, frighten, and baffle.

We have sought illustrations from the general social context to illustrate perceptions of viral infections. Several other types of figures have also been chosen to support the text. In addition to photographic portraits of key historical figures, diagrams of diagnostic procedures and micrographs of virus-infected cells have been selected as examples of the kinds of work that diagnostic virologists have performed.

We hope that the book will appeal to a large audience, one concerned about the broader issues that our society faces. This audience includes the many types of professionals whose scientific interests have led them to work with viral diseases. There have always been a fascination, curiosity, and fear of viral epidemics that threaten the lives of individuals and the fabric of society. This was true for the yellow fever outbreak in 1793 in Philadelphia, as it was in the 1980s when AIDS first made its mysterious entrance, and as it is in the constant fear of a newly lethal influenza pandemic. Those emotions find some release in many popular films and books. It is to this broad audience that the book is directed, to demonstrate how science and technology have advanced to confront the virological threats to our well-being.

John Booss
Marilyn J. August
ABOUT THE AUTHORS

John Booss is Professor Emeritus of Neurology and Laboratory Medicine at the Yale University School of Medicine. For twelve years he was the National Program Director of Neurology for the U.S. Department of Veterans Affairs. Following residency in neurology, he trained in virology with G.-D. Hsiung, to whom this book is dedicated, and subsequently worked with E. F. Wheelock in viral immunology. He studied experimental models of viral infection of the brain, modulation of immune functions by murine cytomegalovirus, and T cells in multiple sclerosis with Margaret M. Esiri in Oxford and studied the host response to xenogenic brain cell transplantation with C. Jacque in Paris. Dr. Booss’ clinical interests have focused on viral encephalitis, multiple sclerosis, and the neurology of HIV/AIDS. He and Professor Esiri are coauthors of *Viral Encephalitis in Humans*, published by the ASM Press in 2003. (Republised with permission from the American Academy of Neurology Institute.)

Marilyn J. August was trained as a clinical virologist and microbiologist, completing her undergraduate work in microbiology at the University of Massachusetts, Amherst, and her PhD in virology with an emphasis on electron microscopy at Columbia University, College of Physicians and Surgeons. With training in both microbiology and virology, she became a postdoctoral fellow with G.-D. Hsiung at Yale University School of Medicine, which launched her career in clinical, diagnostic virology. Her professional activities progressed with positions as director of hospital and clinical diagnostic virology, microbiology, and infectious serology laboratories in southern California. Accepting a new challenge and returning to her roots in virology, Dr. August moved to the biotechnology industry in northern California and joined Aviron (now MedImmune/AstraZeneca) as director of the clinical testing laboratory, overseeing clinical trials testing to support pivotal studies that contributed to the approval of a live, intranasal influenza vaccine that was first licensed in 2003. Dr. August’s recent professional activities include consulting as a scientist and freelance medical writer-editor between wonderful trips, hiking adventures, and activities as a Let’s Look at Art docent for the San Jose Museum of Art. (Photo by Laurie Naiman.)
INDEX

A
Aach, R. D., 265
Abbe, Ernst, 85, 103
Aber, Werner, 316–317
Abercrombie, Michael, 116
Achromatic microscopes, 83, 84
Ackerknecht, E. H., 81
Acquired immunodeficiency syndrome (AIDS), 296
Acquired immunodeficiency syndrome epidemic, 293, 311–316
Adenoidal-pharyngeal-conjunctival viruses, 178
Adenovirus, 218
negative stain of, 204, 205
Adenovirus group, 178
Aerophobias, 27
Agar gel diffusion, 259–260, 265
Agramonte, Aristides, 12, 15, 16
AIDS, 293, 296, 311–316, 328
Alexine (complement), 66, 67, 265
Almeida, June, 185, 208–211, 217
Alter, H. J., 258
Anderson, T. F., 92, 105, 208
Andiman, Warren, 317
Andrewes, C. H., 42, 43
Antibodies, measurement of, 51, 52
Antiretroviral therapy, 315
Antiviral neutralization, 68–73
Antiviral protection, 68–73
Arboviral studies, 188
Arbovirus, 37
Armstrong, Charles, 171–173, 175
Arthropod-borne diseases, 35–45
Aujeszky’s disease, 88
Australia antigen, 258–260, 263–265
Avery, Oswald, 294–298, 300
Avrameas, Stratis, 268

B
Bacteriology, milestones in golden age of, 8
Baehr, George, 136
Baltimore, David, 310
Barker, R. F., 199
Barnes, G. L., 220
Barré-Sinoussi, Françoise, 313, 314
Bauer, Johannes H., 36
Bauman, Arthur, 262
Bedson, S. P., 254
Beem, M., 234
Beeman, Edward, 175
Beeson, Paul, 251, 255
Beeuwkes, Henry, 36–37
Behring, Emil, 63
Beijerinck, Martinus, 3, 9, 10
Bell, Joseph, 173
Berkfeld filter, 11, 18, 31, 35, 36
Berson, Solomon, 260–264
Bidwell, D. E., 271
Biegeleisen, J. Z., 231
Bishop, Ruth, 219–221, 223
Blake, J. B., 56
Blumberg, Baruch, 249, 256–258
Böhmer, F., 85
Bordet, Jules, 64–68
Boylston, Zabdiel, 56
Bracegirdle, B., 85
Brenner, Sydney, 105, 200, 201, 204, 206, 207, 309–310
Brill, Nathan, 136
Brock, T. D., 63–64
Bronchiolitis, 180, 182
Brown, F., 275, 276
Brown, Robert, 81
Buckley, Sonja M., 188
Buist, John, 92
Bulloch, William, 63
Burkitt’s lymphoma, 158
Burnet, F. M., 44, 46, 71
Burnette, W. N., 274
Burrows, Montrose, 116, 117
Busch, Hans, 102
Bynoe, M. L., 185

C
C. fasciatus, 17
California Department of Health, 143, 144, 146–148, 158, 232, 236, 277
Canine distemper, in ferrets, 42–43, 86
Carrel, Alexis, 116–117
Carroll, James, 12, 15–19, 68
Carter, Henry Rose, 12, 13
Casals, Jordi, 188, 278
Catt, K., 269
Caverly, Charles Solomon, 32
Cell culture methods, refinements in, 184–187
Cell theory, 81
Cellular pathology, Rudolf Virchow and, 81–83
Central nervous system, viral infection of, 322
Chanock, Robert, 173, 180–184, 216, 217, 234
Chargaff, Erwin, 297–300
Chargaff’s rules, 297, 299, 300
Chase, M., 298
Chicken pox, distinguished from smallpox, 90–91
intranuclear inclusions and multinucleated cells, 92–94
Children’s Hospital of Philadelphia, 158
Chorioallantoic membrane, 45, 105, 121, 130
Chou, S., 318–319
Churchill, Winston, 254, 255
Clark, E. R., 45
Clarke, D. H., 278
CMV, 165, 177, 178, 183, 187, 312, 315, 318, 323, 325
CMV AD 169, 178
Cockayne, E. A., 251
Common cold, 185
Communicable Disease Center (Centers for Disease Control and Prevention), diagnostic virology at, 165–171, 233
Complement, 65–67, 229, 265
Complement fixation antibody, 224
Complement fixation assay, 64, 66–67, 223–224, 259
Conjunctivitis, 188
Coons, Albert Hewlett, 225–229, 233, 267
Corey, Robert, 305
Coronaviruses, 185–186
Cortez, Hernando, 53
Cotton, Richard, 281
Councilman, W. T., 91, 93
Counterimmunoelectrophoresis, 263–264
Cowan, K. M., 275
Cowdry, E. V., 86
Cowpox, 59
Coxsackie A virus, 189
and herpangina, 183, 188
Index 355

Coxsackie B virus, 189
CPE, 113, 114, 120, 129, 132, 133,
135, 157, 177, 178, 181, 184,
187, 188
Creech, Hugh, 227
Crick, Francis, 204, 206, 296, 300,
301, 304–310
Crosby, Alfred W., 38, 47
Croup, 180
Croup-associated viruses, 181,
182
Curie, Marie, 261
Cytomegalic inclusion disease of
newborn, 94–100
Cytomegalovirus, 80, 178, 187, 312
transplacental transmission of,
164–165
Cytomegalovirus inclusions, 97, 98
Cytomegalovirus infection, 99,
100
Cytopathic effect, 132, 134–135
in tissue culture, 113–157
Cytopathogenic effect, 113–114

D
Dalldorf, Gilbert, 150, 158, 175
Dane, D. S., 259
Dane particle of serum hepatitis,
259
Daphnia, fungal disease of, 62–63
David, Dorland, 173
de Broglie, Louis, 103
Debré, Patrice, 28
Delbruck, Max, 304
Diagnostic laboratories,
standardization of reagents
for, 73–74
Dingle, John, 213
Disease causation, question of,
187–189
DNA, 296–311
DNA double helix, 307, 308
DNA restriction enzyme, 316–319
Dochez, A. R., 298
Doerr, R., 253
Dogs, rabies in, 24–31

Donné, Alfred François, 86, 92
Donohue, Jerry, 306
Double helix, 296–311
Douglas, S. R., 64
Dowdle, Walter, 169, 170
Downie, A. W., 92
Dubos, René J., 28, 298
Duboué, Henri, 28
Dulbecco, Renato, 184, 310
Dunitz, J. D., 301, 306–307
Dunkin, S. W., 42, 43

E
Eaton, Monroe, 148
Eaton agent, 183
ECHO, 187, 189
Eggs, embryonated, 45–46
Ehrlich, Paul, 52, 64, 86
EIA, 250, 266–270, 272, 274, 278
Eichmann, Klaus, 282
Electron microscope, 105–107
Electron microscopy, 79–111, 249
and virological studies, 100–107,
198–199
early diagnostic, 199
negative staining and, 200–207
refinements in, 80, 199–224
shadow casting and, 200
thin sectioning techniques and,
199
Electron photomicrographs, 200
Elementary bodies, 90–92
ELISA (enzyme-linked
immunosorbent assay), 250,
266–271, 274, 278
Embryonated eggs, 45–46
Encephalitides, epidemic, 35–45
Encephalitis, 171
Enders, John, 94, 113, 119–120,
122, 126–133, 136, 176, 225,
227
Engvall, Eva, 269–271
Enteric cytopathogenic human
orphan viruses, 187–189
Enzyme immunoassays (EIA),
250, 266–272, 278
Enzyme-linked immunosorbent assays (ELISA), 250, 266–272, 278
Epstein-Barr virus, 158, 317
Escherichia coli, 218, 316

F
FA, 211, 224–226, 228–233, 236–239
Faber, K., 63
Farber, S., 99
Feinstone, Stephen, 217
Feller, Alto E., 127, 130
Fermi, Enrico, 261
Ferrets, 23, 37, 41–44, 46, 231
influenza in, 37–45
Fetterman, G. H., 99–100
Fieser, Louis, 227–228
Finlay, Carlos, 12, 15
Finlay, G. Marshall, 154, 253
First diagnostic virology laboratory, Walter Reed Army Medical School, 135
First U.S. civilian diagnostic virology laboratory, 143
Fite, G. L., 37
Flewett, Thomas, 221, 223
Flexner, Simon, 33, 35, 44–45, 69
Fluorescence microscopy, 199, 249
Fluorescent-antibody studies, development of, 224–225
Fluorescent-antibody studies, 211
Fluorescent-antibody technique, development of, 225–230
indirect, 229
influenza diagnosis using, 231–232
rabies virus infection diagnosis using, 232
respiratory syncytial virus diagnosis using, 236
viral diagnostic studies with, 230–233
Fodor, Andrew, 169
Fong, C. K. Y., 165
Foot-and-mouth disease, 11, 23, 24, 35, 79, 275, 278

Fracastoro (Fracastorius), Girolamo, 3–5
Francis, T., 44, 73
Franklin, Rosalind, 296, 300–302, 305–307
Friedman, Harvey, 161
Frosch, Paul, 11

G
Gabor, D., 102
Gajdusek, D. Carleton, 140–141
Galfre, Giovanni, 282
Gallo, Robert, 312
Galtier, M., 27–28
Gamel, J. A., 91
Gardner, Phillip S., 198, 211, 233–236, 238–240
Garrison, Fielding, 81–83
Gastroenteritis, 219
acute nonviral, 214–215
nonbacterial, 197, 222
Gaylord, W. H., 164
Geison, Gerald L., 28
Genetic code, 201, 207, 296, 297
Gengou, Octave, 66–68
Germ theory, 3–8, 81
Gey, George Otto, 130, 185, 187, 188
Gieson, G. L., 29–30
Gleaves, C. A., 187
Global eradication program, smallpox, 61, 230
Gocke, D. J., 259, 265
Goldwasser, R. A., 168, 229
Golgi, Camillo, 86, 88
Goodpasture, Ernest William, 45–46
Gordon, Julian, 272–274
Gordon, Mervyn Henry, 91, 92
Gorgas, William Crawford, 18, 35
Gosling, R. G., 302, 307
Grafflin, Allan, 228
Graves, J. H., 275
Green, Robert H., 92, 105, 162–164
Griffith, B. P., 323
Griffith, Fred, 297
Griffiths, William, 68
Index

Grist, V. R., 254
Guarnieri, Giuseppe, 80, 90
Guarnieri bodies, 90–94
Guillain-Barré syndrome, 123
Guinea pig antiserum, 265

H
HA viruses, 182
Habel, Karl, 168, 173, 176
Haemophilus influenzae suis, 42, 44
Hall, Cecil E., 199, 200, 202
Hallauer, C., 132, 253
Hammon, W. M., 130
Harding, Harry, 149
Hare, R., 46, 71
Harrison, Ross Granville, 114–118
Hart, C., 322
Hartley, Janet, 173, 178–179
Hartmann, J. F., 199
HAV, 256, 259, 278
HBV, 249, 256, 257, 259, 264, 266, 272, 294, 323, 325
HCV, 294, 323, 325
Heberden, W., 90
Heidelberger, Michael, 297
HeLa cells, 178, 185, 188
Hemadsorption, 71–73, 181
Hemagglutination-inhibition, 71, 73, 74, 159, 181, 231, 271, 275, 278
Henderson, J. R., 164–165
Henle, Gertrude, 158–160
Henle, Werner, 158–160
Henle, Jacob, 6, 158–159
Hepanostika, 272
Hepatitis, 197, 198, 253
acute viral, 258
in catarrhal jaundice, 250–256
in homologous serum jaundice, 250–256
infectious, virus of, 259
posttransfusion, 259
serum, 254
viral, rapid diagnosis of, 240
Hepatitis A, 216, 217, 249, 256
Hepatitis A virus, 256, 294
Hepatitis-associated antigen, 264
Hepatitis B, 249, 272, 294
Hepatitis B virus, 249–250, 256, 294
Hepatitis B virus surface antigen, 264
Herpangina, coxsackie A syndrome of, 176, 183, 188
Herpes febrilis, 99
Herpes simplex virus, 231
Hershey, A. D., 298
Hilleman, Maurice, 140, 142, 143, 177–178
Hirst, George, 46, 71
HIV risk groups, 313, 314
Ho, D. D., 316
Hodgkin, Thomas, 85
Hollinger, F. B., 265
Hooke, Robert, 5, 83
Hoorn, B., 185
Hopkins, Donald R., 53, 59
Horne, Robert W., 105, 202–207
Horsfall, Frank, 159
Horstmann, Dorothy, 162
Host defense, mechanisms of, 64
Howe, C., 265
Howitt, Beatrice, 168
Hsiung, Gueh-Djen (Edith), 161–167, 184, 189
HSV, 312, 317, 322, 323, 325
Huang, C. H., 132
Hudson, N. Paul, 36
Huebner, Robert J., 158, 173–177, 179, 183–184, 187, 217
Hughes, Tom, 169
Human immunodeficiency virus (HIV), 293, 313–316, 323–325
Human papillomavirus, 317, 319
Hummeler, Klaus, 160
Humoral immunity, 61–68
Huxley, H. E., 200, 202
Hydrophobia, 27
I
Immune response, smallpox and, 51–77
Immunoblotting, 272–274, 291
Immunoelectron microscopy, 207–211, 223
Immunoglobulin classes, 274–278
Immunological memory, 249–292
Immunology, science of, 61–68
Immunoelectron microscopy, 199, 207, 208, 217, 259, 287
Immunofluorescence, for diagnosis of respiratory syncytial virus, 236, 237
Infantile diarrhea, acute, 218–224
Infectious bronchitis virus, 161
Infectious bulbar paralysis, 88
Infectious disease, epidemic, 328, 329
Infectious mononucleosis, 158
Influenza, fluorescent-antibody technique to diagnose, 231–232
in ferrets, 37–45
pandemic of, 38–40
Influenza virus, 200
Innis, B. L., 278
Insulin transporting antibody, 262
Intracellular inclusions, and multinucleated cells, 92–94
Ivanowski, Dmitri, 3, 9, 69

J
Jacob, François, 309–310
Japanese B encephalitis, 143
Jaundice, catarrhal, hepatitis in, 250–256
homologous serum, hepatitis in, 250–256
Javits, Jacob, 167, 168
Jefferson, Thomas, 59–61
Jenner, Edward, 9, 56–61
Jerne, Niels, 283
Jesioneck, A, 97
Johnson, Harald N., 86–88, 168
Jones, Norman, 227

K
Kalter, Seymour, 169
Kaplan, Melvin, 229
Kaposi’s sarcoma, 312
Kavey, N. B., 259
Kawamura, R., 37
Kihara, H. K., 274
Kilbourne, Ed, 216
Kingsland, Larry, 130
Kiolemenoglou, B., 97
Kissling, R. E., 168
Kitasato, Shibasaburo, 63–64
Klug, Aaron, 306
Knoll, Max, 101, 102
Koch, Robert, 3, 6–8
Koen, J. S., 42
Kohler, Georges, 279, 280, 282, 283
Koprowski, Hilary, 146
Kornberg, Arthur, 319, 321–322
Krugman, S., 258
Kuno, H., 274
Kyasanur Forest disease, 171

L
Laboratory of Infectious Diseases, at National Institute of Health, 171, 182, 183
Lacks, Henrietta, 185
Lafferty, K. J., 208
Laidlaw, Patrick Playfair, 41–43
Lambert, R. A., 118, 119
Lander, J. J., 266
Landry, M. L., 165
Landsteiner, Karl, 32–34
Langmuir, Alexander, 167
Laryngotracheobronchitis, acute, 180
Index

Latta, H., 199
Laver, W. G., 283
Lazear, Jesse W., 12, 15–17
Leach, Charles, 168
Lederberg, Joshua, 319–322
Lennette, Edwin Herman, 74, 143–149, 158, 171
Leptospiral illness, 251
Lequin, R. M., 270
Leukemia virus, Rauscher mouse, 310
Levaditi, Constantin, 45, 69, 120–121
Lewis, Paul A., 33, 35, 41, 44–45, 69
Li, Chen Pien, 168–169
Light microscopy, advances in, 83–85
Ling, C. M., 266
Lipschutz, B., 99
Lister, Joseph Jackson, 85
Liu, Ch’ien, 230, 231
Lloyd, W., 70–71
Loeffler, Friedrich, 11, 63
Loeffler flagellum stain, 92
Long, Esmond Ray, 85
Louse-borne relapsing fever, 251
Lovett, R. W., 122
Luria, Salvador E., 305
Lwoff, André, 205, 309
Lymphocytic choriomeningitis virus, 171, 176
Lymphogranuloma venereum, 254
M
MAC ELISA, 278
MacArthur, W., 251
Macaulay, Thomas Babington, 53, 57
MacCallum, F. O., 251–254, 256
MacQuarrie, M. B., 266
Magetdien, F., 27
Maitland, Hugh Bethune, 121
Maitland, Mary Cowan, 121
Malaria, 271
Mandel, B., 275
Marrack, John, 227
Marton, Ladislaus, 103
Mather, Cotton, 56
Mayer, Adolf, 9
Mayer, Manfred, 149
Mayumi, M., 265
McCarty, Maclyn, 297
McClelland, L., 46, 71
McDermott, Walsh, 216–217
McDevitt, Hugh, 225–227
McFadyean, John, 31
McIntosh, Kenneth, 185–186, 239
McNeill, William, 53–54
McQuillin, Joyce, 233–240, 283
Measles virus, 136
Meister, Joseph, 29, 30, 86
Melchers, Fritz, 282
Mellors, J. W., 316
Melnick, Joseph L., 161, 162, 218
Meningitis, syndrome of aseptic, 171
Mercer, R. D., 99–100
Merigan, T. C., 318–319
Merret, Joseph, 59
Meselson, Matthew, 310
Metchnikoff, Elie, 52, 61–64
Mice, arthropod-borne diseases, yellow fever, and epidemic encephalitides in, 35–45
Microtome, 85
Middleton, Peter, 222–223
Miller, Seward, 167, 168
Milstein, Cesar, 279–283
Mirsky, I. Arthur, 262
Mizutani, Satoshi, 310
Moffet, Hugh, 218
Molecular biology, 310
Molecular diagnostics, future directions for, 326–330
Molecular revolution, 293–338
Monkeys, arthropod-borne diseases, yellow fever, and epidemic encephalitides in, 35–45
polio in, 31–35
Monoclonal antibodies, 279–284
Monod, Jacques, 309
Montagnier, Luc, 313, 314
Montagu, Lady Mary Wortley, 54–56
Morange, Michael, 315, 319
Mosquito, 2
Mountin, Joseph W., 165–167
Muckenfuss, R. S., 37
Mueller, Howard, 228
Mullis, Kary, 293, 294, 296, 319–322
Mumps, complications of, 159 diagnosis of, 159
Mumps virus, 229
Murakami, S., 258–259
Murphy, James B., 45
N
Nakane, R. K., 267–268
Napoleon Bonaparte, General, 57
Nasopharyngeal carcinoma, 158
Nathans, David, 316–317
National Foundation for Infantile Paralysis, 123, 125
Negri, Adelchi, 31, 80, 88
Negri bodies, 86–90
Nelms, Sarah, 58, 59
Netter, A., 69
Neutralization test, in tissue culture, 69–70
Noguchi, Hideyo, 35–36, 37, 44
Norovirus, 214–215
Norwalk agent, 213, 215, 223
Nott, J. C., 12, 18
Nucleic acid amplification tests, 319–326
Nucleic acid techniques, molecular, diagnostic applications of, 316–319
Nuland, S. B., 83
Nuttall, George, 63
Nye, Robert N., 120
O
O’Connor, Basil, 123
Oertelis, S. J., 208
Okochi, K., 258–259
Oligonucleotide probes, 320
Olitsky, Peter, 169
Oncogene, 178, 179, 184, 194
Organon Scientific Development Group, 272, 277–278
Ou, C.-Y., 322
Ouchterlony, O., 257–258
Overby, L. R., 266
P
Panama Canal, 4, 13, 18–20, 36
Pandemic
HIV/AIDS, 328
Influenza, 37–42, 47–49, 142, 143, 311, 328, 329, 331
Panencephalitis, subacute sclerosing, 186
Panum, Peter Ludwig, 9
Pappenheimer, A. M., 97–99
Parainfluenza virus type 2, 182
Parker, Frederic, 120
Parrott, Robert, 173, 182, 183
Paschen, Enrique, 92
Paschen bodies, 90–92
Pasteur, Louis, 3, 5–6, 9, 24–26, 28, 86
Paul, John R., 31–33, 120, 162, 256
Paul test, 91, 94
Pauling, Linus, 301, 302–306
PCR, 293, 294, 296, 312, 316, 319–325, 328, 331–334, 336
Pease, D. C., 199
Penicillin, 133
Perlmann, Peter, 269, 270
Persing, D. H., 322
Perutz, Max, 305, 306
Pfeiffer, R., 38, 41
Pfeiffer phenomenon, 64
Phagocytosis, 61–68
Pharyngitis, 182, 188
Phipps, James, 59
Photomicroscopy, 86
Pierce, G. B. Jr., 267–268
Pleurodynia, 176
 coxsackie B viruses and, 188
Plotkin, Stanley, 161, 239
Plotz, Harry, 73, 127, 128, 135–138, 168
Pneumocystis carinii, 312, 315
Pneumocystis jirovecii, 312
Pneumonia, 182
 cold agglutinin-positive, 183
 viral, 180
Point-of-care testing, 327–328
Polio, 184
 in monkeys, 31–35
Polio vaccine, 122
 attenuated oral, 180
Poliovirus, 180, 189
 Lansing strain of, 113
Polymerase chain reaction (PCR) screening, 293–294, 319–326
Popper, Erwin, 32, 33, 34
Porath, J., 268–269
Porter, Katherine Anne, 38
Poxvirus, electron micrograph of, 105, 106, 198
Prince, A. M., 258
Psittacosis, 254
Purcell, Robert, 173, 217

Q
Q fever, 128, 175, 183

R
Rabbits, rabies in, 24–31
Rabies, 86–90, 171
 in dogs and rabbits, 24–31
 in humans, 27
 postexposure prophylaxis of, 29, 30, 230
 rapid diagnosis of, 240
 transmission to animals, 27
Rabies vaccine, 86
Rabies virus, diagnosis of, 198
Rabies virus infection, fluorescent-antibody technique to diagnose, 232
Radioimmunoassay, 150, 239, 240, 250, 284, 285, 287, 288, 291, 292
Ramses V, 53
Rapid viral diagnosis, 80, 100, 143, 187, 189, 198, 199, 211, 225, 226, 229, 231, 233, 237–240, 242
Reagan, Reginald, 137, 168
Reed, Walter, 11–18, 23, 68
Reiner, L., 227
Remlinger, Paul, 29–30
Respiratory diseases, acute, 188, 197
Respiratory syncytial virus, 181, 182, 233
 acute lower respiratory tract infection with, 235–236
Rhouzes, A. B. M. I. Z., 52
Rhodes, A. J., 73, 114
RIA, 250, 260–269, 271, 272, 278
Ribbert, P., 97
Rickettsia, 175
Rickettsialpox, 173
Rift Valley fever, 254
Riggs, J. L., 230
Rivers, Thomas M., 73, 118–120, 144, 168, 183
Robbins, Frederick, 94, 113, 127–129, 133
Rocky Mountain spotted fever, 229
Roosevelt, Eleanor, 123
Roosevelt, Franklin Delano, 122–124, 255
Rosen, Leon, 173
Rotavirus, 221–222
 rapid diagnosis of, 240
Rouëché, Berton, 173
Rous, Peyton, 45
Roux, Emile, 28, 29, 63
Rowe, Wallace, 173, 176–179
Rubella syndrome, congenital, 277
Rush, Benjamin, 1–3
Ruska, Ernst, 101–104
Ruska, Helmut, 103–105
Russell, N., 297

S
Sabin, Albert, 169, 180–181
Sanders, Murray, 121
Sanger, Fred, 279
Sarcoma virus, Rous, 310
SARS (severe acute respiratory syndrome), 328
Sawyer, W. A., 70–71
Schaeffer, Morris, 167–171
Schieble, J. H., 236
Schluederberg, A., 275–277
Schmidt, Nathalie J, 144, 149–150
Schuurs, Anton, 270
Sellers, T. F., 86–88
Serum hepatitis, 249
Shaffer, H. F., 130
Shell vial, 187
Shelokov, Alexis, 71, 176
Shepard, C. C., 229
Shope, Richard, 38, 41, 42, 44, 45
Shulman, N. R., 265
Sickles, Grace, 150, 175
Sigel, Michael, 169
Silverstein, A. M., 62, 64
Smadel, Joseph Edwin, 70, 73–74, 92, 128, 138–143, 144, 147, 170–171
Smallpox, 9, 230
and immune response, 51–77
diagnosis of, 105, 106
distinguished from chicken pox, 90–91
Guarnieri bodies and elementary bodies, 90–92
inoculation against, 56
protection against, 52
Smallpox vaccination, 52
fear of, 59–61
Smith, Hamilton O., 316–317
Smith, Margaret, 99, 144–146, 178
Smith, William, 42, 43, 44
Solomon, T., 278
Spontaneous generation, theory of, 5
St. Louis encephalitis virus, 37, 181
Staehelin, T., 272, 273
Stanley, W. M., 105
Steinhardt, Edna, 118, 119–120, 132
Stent, Gunther, 296
Sternberg, George Miller, 12, 14, 68–69
Stokes, Adrian, 36, 37, 69
Straus, Bernard, 261, 262
Streptomycin, 133
Surveillance, 167, 182, 328, 329
Svehag, S.-E., 275
Swine, influenza in, 42
Syphilis, 3–5

T
T-even bacteriophage, 203
Tedder, R. S., 283
Temin, Howard, 310
Theiler, Max, 37, 69
Tissue culture, 249
applications to viral growth, 118–120
beginnings of, 114–116
cytopathic effect in, 113–156, 157
Tissue preparation, advances in, 85–86
Tobacco mosaic virus, 105, 200, 208
Tomato bushy stunt virus, 200
Toomey, J. A., 91
Towbin, Harry, 272–274
Townley, R. R. W., 220
Traub, Eric, 176
Tregear, G. W., 269
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuberculosis, 6</td>
</tr>
<tr>
<td>Turner, Andrew, 220–221</td>
</tr>
<tr>
<td>Typhoid, 227</td>
</tr>
<tr>
<td>Typhus, 136</td>
</tr>
<tr>
<td>epidemic, rickettsiae of, 229</td>
</tr>
<tr>
<td>Tyrrell, David Arthur John, 185, 209</td>
</tr>
<tr>
<td>Tyzzer, E. E., 80, 92–94</td>
</tr>
<tr>
<td>Tzanck, A., 94</td>
</tr>
<tr>
<td>Tzanck smear, 94, 96</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>Unna, P. G., 93</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>Vaccine body, 93</td>
</tr>
<tr>
<td>Vaccinia virus, neutralization of, 68</td>
</tr>
<tr>
<td>Vallery-Radot, R., 29</td>
</tr>
<tr>
<td>van Leeuwenhoek, Antony, 5, 83</td>
</tr>
<tr>
<td>van Rooyen, C. E., 73, 91, 105, 114</td>
</tr>
<tr>
<td>van Weemen, Bauke K., 270</td>
</tr>
<tr>
<td>Varicella. See Chicken pox</td>
</tr>
<tr>
<td>Varicella virus, 198</td>
</tr>
<tr>
<td>Varicella-zoster inclusions, 94, 95</td>
</tr>
<tr>
<td>Variola. See Smallpox</td>
</tr>
<tr>
<td>Vellios, F., 99</td>
</tr>
<tr>
<td>Veterans Administration</td>
</tr>
<tr>
<td>Bronx, NY, 261</td>
</tr>
<tr>
<td>West Haven, CT, 164</td>
</tr>
<tr>
<td>Vibrio cholerae, 64</td>
</tr>
<tr>
<td>Vibrio cholerae antibodies, 227</td>
</tr>
<tr>
<td>Viral diagnosis, differential susceptibility for, 184–187</td>
</tr>
<tr>
<td>timeliness of, 198–199</td>
</tr>
<tr>
<td>Viral diagnostic laboratory, first, 135–143</td>
</tr>
<tr>
<td>Viral diseases, 8–19</td>
</tr>
<tr>
<td>Viral illnesses, undefined, 197–198</td>
</tr>
<tr>
<td>Viral inclusion bodies, 79–111</td>
</tr>
<tr>
<td>Viral inclusions, 79–80</td>
</tr>
<tr>
<td>Viral infection, animal models of, 23–50</td>
</tr>
<tr>
<td>Viral pathogen discovery, future directions for, 326–330</td>
</tr>
<tr>
<td>Virchow, Rudolf Ludwig, 61–62, 81–83, 250</td>
</tr>
<tr>
<td>Variolation, 54–57, 59</td>
</tr>
<tr>
<td>Virological studies, electron microscopy and, 100–107</td>
</tr>
<tr>
<td>Virology, birth of, 8–19</td>
</tr>
<tr>
<td>diagnostic, at Communicable Disease Center (Centers for Disease Control and Prevention), 165–171</td>
</tr>
<tr>
<td>Virology laboratory, diagnostic, first in U.S. civilian sector, 143–150</td>
</tr>
<tr>
<td>Virus infections, 51</td>
</tr>
<tr>
<td>rapid diagnosis of, 233–240</td>
</tr>
<tr>
<td>Viruses, imaging of, and tagging of antigens, 197–248</td>
</tr>
<tr>
<td>Viruses, “arthropod-borne,” 37</td>
</tr>
<tr>
<td>“filterable,” 8–19</td>
</tr>
<tr>
<td>growth of, applications of tissue culture to, 118–120</td>
</tr>
<tr>
<td>latency and persistence in primate tissues, 164</td>
</tr>
<tr>
<td>Visnich, S., 258</td>
</tr>
<tr>
<td>Voller, Allister, 271</td>
</tr>
<tr>
<td>von Borries, Bodo, 101, 102, 104</td>
</tr>
<tr>
<td>von Gerlach, Joseph, 85</td>
</tr>
<tr>
<td>von Prowazek, Stanislaus, 91–92</td>
</tr>
<tr>
<td>VonGlahn, W. C., 97–99</td>
</tr>
<tr>
<td>Vyas, G. N., 265</td>
</tr>
<tr>
<td>W</td>
</tr>
<tr>
<td>Walsh, John, 264, 265</td>
</tr>
<tr>
<td>Walter Reed Army Institute of Research (WRAIR), 182</td>
</tr>
<tr>
<td>Walter Reed Army Medical Center, 128, 137, 139, 140, 142, 143, 155, 158, 182</td>
</tr>
<tr>
<td>Walter Reed Army Medical School, 135</td>
</tr>
<tr>
<td>Ward, Hugh, 126</td>
</tr>
<tr>
<td>Warrell, D. A., 27</td>
</tr>
<tr>
<td>Warren, Joel, 140</td>
</tr>
<tr>
<td>Washington, General George, 56–57</td>
</tr>
<tr>
<td>Waterson, Anthony, 209</td>
</tr>
</tbody>
</table>
Watson, B. K., 229
Watson, James D., 204, 206, 296, 300, 301, 304–309
Weaver, D. Harry, 123
Webster, L. T., 37
Weil’s disease (leptospirosis), 251
Weiner, Anna, 148
Welch, William, 45
Weller, Thomas, 94, 97, 100, 113, 122, 127, 128, 130–133, 178, 229
Werner, J. H., 177–178
Wertman, Kenneth, 137
Western blots, 272–274
Wickman, Ivar, 32, 69
Wide, L., 268–269
Wigzell, Hans, 283
Wilkins, Maurice, 305, 306
Wilkinson, Lise, 24, 91
Williams, R. C., 200
Winter vomiting disease, electron microscopy and, 211–217
Wolbach, S. B., 99
Woodruff, Alice, 45–46
Woodruff, Eugene, 45
Work, Telford H., 171
Wright, A. E., 64
Wright, Howell, 180
Wyatt, J. P., 99
Wyckoff, R. W. G., 200

Y
Yale-New Haven Hospital, 162
Yalow, Rosalyn, 260–261, 263, 264
Yellow fever, 1, 23, 44, 197–198, 251, 328
Yellow Fever Commission, 11–19
Yellow fever vaccine, 198, 251–254
Yersin, Alexandre, 63
Yow, M. D., 218–219

Z
Zahorsky, John, 211–213
Zidovudine, 315
Zinke, Georg Gottfried, 24–31
Zinsser, Hans, 126, 127, 136, 225
Zuckerman, Harriet, 319
zur Hausen, Harald, 317, 318