Contents

Editorial Board / xi
Contributors / xiii
Foreword: How It Began / xxiii
Preface / xxv
Author and Editor Conflicts of Interest / xxvii

section A
GENERAL METHODS / 1
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: THOMAS A. FLEISHER
1 Introduction / 3
THOMAS A. FLEISHER
2 Molecular Methods for Diagnosis of Genetic Diseases Involving the Immune System / 5
AMY P. HSU
3 The Human Microbiome and Clinical Immunology / 19
FREDERIC D. BUSHMAN
4 Protein Analysis in the Clinical Immunology Laboratory / 26
ROSHINI SARAH ABRAHAM AND DAVID R. BARNIDGE

section B
IMMUNOGLOBULIN METHODS / 47
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: DAVID F. KEREN
5 Introduction / 49
DAVID F. KEREN
6 Immunoglobulin Genes / 51
THOMAS J. KIPPS, EMANUELA M. GHIA, AND LAURA Z. RASSENTI
7 Immunoglobulin Quantification and Viscosity Measurement / 65
JEFFREY S. WARREN
8 Clinical Indications and Applications of Serum and Urine Protein Electrophoresis / 74
DAVID F. KEREN AND RICHARD L. HUMPHREY
9 Immunochemical Characterization of Immunoglobulins in Serum, Urine, and Cerebrospinal Fluid / 89
ELIZABETH SYKES AND YVONNE POSEY
10 Cryoglobulins, Cryofibrinogenemia, and Pyroglobulins / 101
PETER D. GOREVIC AND DENNIS GALANAKIS
11 Strategy for Detecting and Following Monoclonal Gammopathies / 112
JERRY A. KATZMANN AND DAVID F. KEREN

section C
COMPLEMENT / 125
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: PATRICIA C. GICLAS
12 Introduction / 127
PATRICIA C. GICLAS
13 The Classical Pathway of Complement / 129
PATRICIA C. GICLAS
14 Analysis of Activity of Mannan-Binding Lectin, an Initiator of the Lectin Pathway of the Complement System / 133
STEFFEN THIEL
15 The Nature of the Diseases That Arise from Improper Regulation of the Alternative Pathway of Complement / 138
RICHARD J. H. SMITH
section D
FLOW CYTOMETRY / 145
VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITOR: MAURICE R. G. O'GORMAN

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Volume Editor</th>
<th>Section Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Introduction</td>
<td>MAURICE R. G. O'GORMAN</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Polychromatic Flow Cytometry</td>
<td>ANGÉLIQUE BIANCOTTO AND J. PHILIP MCCOY, JR.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>High-Sensitivity Detection of Red and White Blood Cells in Paroxysmal Nocturnal Hemoglobinuria by Multiparameter Flow Cytometry</td>
<td>ANDREA ILLINGWORTH, MICHAEL KEENEY, AND D. ROBERT SUTHERLAND</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Standardized Flow Cytometry Assays for Enumerating CD34+ Hematopoietic Stem Cells</td>
<td>D. ROBERT SUTHERLAND AND MICHAEL KEENEY</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Functional Flow Cytometry-Based Assays of Myeloid and Lymphoid Functions for the Diagnostic Screening of Primary Immunodeficiency Diseases</td>
<td>MAURICE R. G. O'GORMAN</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Acute Lymphoblastic Leukemia/Lymphoma: Diagnosis and Minimal Residual Disease Detection by Flow Cytometric Immunophenotyping</td>
<td>JOSEPH A. DiGIUSEPPE</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Acute Myeloid Leukemia: Diagnosis and Minimal Residual Disease Detection by Flow Cytometry</td>
<td>BRENT WOOD AND LORI SOMA</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Chronic Lymphocytic Leukemia, the Prototypic Chronic Leukemia for Flow Cytometric Analysis</td>
<td>HEBA DEGEIDY, DALIA A. A. SALEH, CONSTANCE M. YUAN, AND MARYALICE STETLER-STEVENSON</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Plasma Cell Disorders</td>
<td>JUAN FLORES-MONTERO, LUZALBA SANOJA, JOSÉ JUAN PÉREZ, FANNY POJERO, NOEMI PUIG, MARÍA BELÉN VIDRIALES, AND ALBERTO ORFAO</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Future Cytometric Technologies and Applications</td>
<td>HOLDEN T. MAECKER</td>
<td></td>
</tr>
</tbody>
</table>

section E
FUNCTIONAL CELLULAR ASSAYS / 259
VOLUME EDITOR: BARBARA DETRICHT
SECTION EDITOR: STEVEN D. DOUGLAS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Volume Editor</th>
<th>Section Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Introduction</td>
<td>STEVEN D. DOUGLAS</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Cryopreservation of Peripheral Blood Mononuclear Cells</td>
<td>ADRIANA WEINBERG</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Lymphocyte Activation</td>
<td>ROSHINI SARAH ABRAHAM</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Functional Assays for B Cells and Antibodies</td>
<td>MOON H. NAHM AND ROBERT L. BURTON</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Methods for Detection of Antigen-Specific T Cells by Enzyme-Linked Immunospot Assay (ELISPOT)</td>
<td>BARBARA L. SHACKLETT AND DOUGLAS F. NIXON</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Regulatory T Cell (Treg) Assays: Repertoire, Functions, and Clinical Importance of Human Treg</td>
<td>THERESA L. WHITESIDE</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Measurement of NK Cell Phenotype and Activity in Humans</td>
<td>SAMUEL C. C. CHIANG AND YENAN T. BRYCESON</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Functional Assays for the Diagnosis of Chronic Granulomatous Disease</td>
<td>DEBRA LONG PRIEL AND DOUGLAS B. KUHNS</td>
<td></td>
</tr>
</tbody>
</table>

section F
CYTOKINES AND CHEMOKINES / 321
VOLUME EDITOR: BARBARA DETRICHT
SECTION EDITOR: JOHN J. HOOKS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Volume Editor</th>
<th>Section Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Introduction</td>
<td>JOHN J. HOOKS</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Multiplex Cytokine Assays</td>
<td>ELIZABETH R. DUFFY AND DANIEL G. REMICK</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Cytokine Measurement by Flow Cytometry</td>
<td>HOLDEN T. MAECKER</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Chemokine and Chemokine Receptor Analysis</td>
<td>SABINA A. ISLAM, BENJAMIN D. MEDOFF, AND</td>
<td></td>
</tr>
</tbody>
</table>
Contents

ANDREW D. LUSTER
38 Cytokines: Diagnostic and Clinical Applications / 357
PRIYANKA VASHISHT AND TIMOTHY B. NIEWOLD
39 Detection of Anticytokine Autoantibodies and Clinical Applications / 365
SARAH K. BROWNE

section G
IMMUNOHISTOLOGY AND IMMUNOPATHOLOGY / 373
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: R. NEAL SMITH
40 Introduction / 375
ROBERT G. HAMILTON
41 Immunofluorescence Methods in the Diagnosis of Renal and Cardiac Diseases / 376
A. BERNARD COLLINS, JAMES R. STONE, AND R. NEAL SMITH
42 Western Blot Analysis for the Detection of Anti-Glomerular Basement Membrane Antibodies and Anti-Phospholipase A2 Receptor Antibodies / 385
A. BERNARD COLLINS AND R. NEAL SMITH

section H
INFECTIONIOUS DISEASES CAUSED BY BACTERIA, MYCOPLASMAS, CHLAMYDIAE, AND RICKETTSIAE / 391
VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITOR: CHRISTINE M. LITWIN
43 Introduction / 393
CHRISTINE M. LITWIN
44 Diagnostic Methods for Group A Streptococcal Infections / 394
CHRISTINE M. LITWIN, SHELDON E. LITWIN, AND HARRY R. HILL
45 Diagnosis of Helicobacter pylori Infection and Assessment of Eradication / 404
BRUCE E. DUNN AND SUHAS H. PHADNIS
46 Laboratory Diagnosis of Syphilis / 412
JOHN L. SCHMITZ
47 Lyme Disease, Relapsing Fever, and Leptospirosis / 419
GUIQING WANG AND MARIA E. AGUERO-ROSENFELD
48 Immunological Tests in Tuberculosis / 433
CHRISTINE M. LITWIN
49 Mycoplasma: Immunologic and Molecular Diagnostic Methods / 444
KEN B. WAITES, MARY B. BROWN, AND JERRY W. SIMECKA
50 Chlamydia and Chlamyphilia Infections / 453
ROSEMARY SHE
51 The Rickettsiaceae, Anaplasmataceae, and Coxiellaceae / 461
LUCA S S. BLANTON AND DAVID H. WALKER
52 The Bartonellaceae, Brucellaceae, and Franciellaceae / 473
CHRISTINE M. LITWIN, BURT ANDERSON, RENEE TSOLIS, AND AMY RASLEY

section I
MYCOTIC AND PARASITIC DISEASES / 483
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: THOMAS B. NUTMAN
53 Introduction / 485
THOMAS B. NUTMAN
54 Immunological and Molecular Approaches for the Diagnosis of Parasitic Infections / 486
PATRICIA P. WILKINS AND THOMAS B. NUTMAN
55 Serological and Molecular Diagnosis of Fungal Infections / 503
MARK D. LINDSLEY

section J
VIRAL DISEASES / 535
VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITORS: RICHARD L. HODINKA AND JOHN L. SCHMITZ
56 Introduction / 537
JOHN L. SCHMITZ
57 Immunologic and Molecular Methods for Viral Diagnosis / 538
MARIE LOUISE LANDRY AND YI-WEI TANG
58 Herpes Simplex Virus / 550
D. SCOTT SCHMID
59 Varicella-Zoster Virus / 556
D. SCOTT SCHMID
60 Epstein-Barr Virus and Cytomegalovirus / 563
HENRY H. BALFOUR, JR., KRISTIN A. HOGQUIST, AND PRIYA S. VERGHESE
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Immunodeficiency Diseases</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>Volume Editor: Barbara Detrick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section Editors: Kathleen E. Sullivan and Howard M. Lederman</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>The Primary Immunodeficiency Diseases</td>
<td>713</td>
</tr>
<tr>
<td>74</td>
<td>Severe Combined Immune Deficiency: Newborn Screening</td>
<td>715</td>
</tr>
<tr>
<td>75</td>
<td>Combined Immunodeficiencies</td>
<td>721</td>
</tr>
<tr>
<td>76</td>
<td>Antibody Deficiencies</td>
<td>737</td>
</tr>
<tr>
<td>77</td>
<td>Hereditary and Acquired Complement Deficiencies</td>
<td>749</td>
</tr>
<tr>
<td>L</td>
<td>Allergic Diseases</td>
<td>781</td>
</tr>
<tr>
<td></td>
<td>Volume Editor: Robert G. Hamilton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section Editor: Pamela A. Guerrerio</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Introduction</td>
<td>783</td>
</tr>
<tr>
<td>81</td>
<td>Quantitation and Standardization of Allergens</td>
<td>784</td>
</tr>
<tr>
<td>82</td>
<td>Immunological Methods in the Diagnostic Allergy Clinical and Research Laboratory</td>
<td>795</td>
</tr>
<tr>
<td>83</td>
<td>Assay Methods for Measurement of Mediators and Markers of Allergic Inflammation</td>
<td>801</td>
</tr>
<tr>
<td>84</td>
<td>Tests for Immunological Reactions to Foods</td>
<td>815</td>
</tr>
<tr>
<td>85</td>
<td>Diagnosis of Rare Eosinophilic and Mast Cell Disorders</td>
<td>825</td>
</tr>
<tr>
<td>M</td>
<td>Systemic Autoimmune Diseases</td>
<td>839</td>
</tr>
<tr>
<td></td>
<td>Volume Editor: Barbara Detrick</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Section Editor: Westley H. Reeves</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Introduction</td>
<td>841</td>
</tr>
<tr>
<td>87</td>
<td>Antinuclear Antibody Tests</td>
<td>843</td>
</tr>
<tr>
<td>88</td>
<td>Detection of Autoantibodies by Enzyme-Linked Immunosorbent Assay and Bead Assays</td>
<td>859</td>
</tr>
</tbody>
</table>

61	Human Herpesviruses 6, 7, and 8	578
62	Parvovirus B19	591
63	Respiratory Viruses	598
64	Measles, Mumps, and Rubella Viruses	610
65	Viral Hepatitis	620
66	Viral Agents of Gastroenteritis	639
67	Arboviruses	648
68	Diagnosis of Hantavirus Infections	658
69	Rabies Virus	665
70	Human T-Cell Lymphotropic Virus	674
71	Diagnosis of Prion Diseases	682
72	Principles and Procedures of Human Immunodeficiency Virus Diagnosis	696
73	Neutropenia and Neutrophil Defects	765
74	Evaluation of Natural Killer (NK) Cell Defects	774

section **K**

IMMUNODEFICIENCY DISEASES / 711

section **L**

ALLERGIC DISEASES / 781

section **M**

SYSTEMIC AUTOIMMUNE DISEASES / 839
Contents

Systemic Lupus Erythematosus / 868
WESTLEY REEVES, SHUHONG HAN, JOHN MASSINI, AND YI LI

90 Immunodiagnosis of Autoimmune Myopathies / 878
MINORU SATOH, ANGELA CERIBELLI, MICHITO HIRAKATA, AND EDWARD K. L. CHAN

91 Immunodiagnosis of Scleroderma / 888
MASATAKA KUWANA

92 Antibody and Biomarker Testing in Rheumatoid Arthritis / 897
ANN DUSKIN CHAUFFE AND MICHAEL RAYMOND BUBB

93 Antiphospholipid Antibody Syndrome: Clinical Manifestations and Laboratory Diagnosis / 905
MARTINA MURPHY AND NEIL HARRIS

94 Antineutrophil Cytoplasmic Antibodies (ANCA) and Strategies for Diagnosing ANCA-Associated Vasculitides / 909
R. W. BURLINGAME, C. E. BUCHNER, J. G. HANLY, AND N. M. WALSH

95 IgG4-Related Disease: Diagnostic Testing by Serology, Flow Cytometry, and Immunohistopathology / 917
JOHN H. STONE

96 Future Perspectives for Rheumatoid Arthritis and Other Autoimmune Diseases / 922
JEREMY SOKOLOVE

section N

Organ-Localized Autoimmune Diseases / 927

VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITORS: C. LYNNE BUREK AND PATRIZIO CATUREGLI

97 Introduction / 929
C. LYNNE BUREK

98 Endocrinopathies: Chronic Thyroiditis, Addison Disease, Pernicious Anemia, Graves’ Disease, Diabetes, and Hypophysitis / 930
C. LYNNE BUREK, N. R. ROSE, GIUSEPPE BARBESINO, JIAN WANG, ANDREA K. STECK, GEORGE S. EISENBARTH, LIPING YU, LUDOVICA DE VINCENTISI, ADRIANA RICCIUTI, ALESSANDRA DE REMIGIS, AND PATRIZIO CATUREGLI

99 Myasthenia Gravis / 954
ARNOLD I. LEVINSON AND ROBERT P. LISAK

100 Autoantibodies to Glycolipids in Peripheral Neuropathy / 961
HUGH J. WILLISON

101 Detection of Antimitochondrial Autoantibodies in Primary Biliary Cholangitis and Liver Kidney Microsomal Antibodies in Autoimmune Hepatitis / 966
PATRICK S. C. LEUNG, MICHAEL P. MANNS, ROSS L. COPPEL, AND M. ERIC GERSHWIN

102 Cardiovascular Diseases / 975
CHERYL L. MAIER, C. LYNNE BUREK, NOEL R. ROSE, AND AFTAB A. ANSARI

103 Celiac Disease and Inflammatory Bowel Disease / 983
MELISSA R. SNYDER

104 Autoantibodies Directed against Erythrocytes in Autoimmune Hemolytic Anemia / 990
R. SUE SHIREY AND KAREN E. KING

105 Immune Thrombocytopenia / 995
THOMAS S. KICKLER

106 Monitoring Autoimmune Reactivity within the Retina / 998
JOHN J. HOOKS, CHI-CHAO CHAN, H. NIDA SEN, ROBERT NUSSENBLATT, AND BARBARA DETRICK

section O

Cancer / 1005

VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITORS: DANIEL CHAN AND LORI J. SOKOLL

107 Introduction / 1007
ROBERT G. HAMILTON

108 Immunoassay-Based Tumor Marker Measurement: Assays, Applications, and Algorithms / 1008
ELIZABETH A. GODBEY, LORI J. SOKOLL, AND ALEX J. RAI

109 Malignancies of the Immune System: Use of Immunologic and Molecular Tumor Markers in Classification and Diagnostics / 1015
ELAINE S. JAFFE AND MARK RAFFELD

110 Monitoring of Immunologic Therapies / 1036
THERESA L. WHITESIDE

111 Circulating Tumor Cells as an Analytical Tool in the Management of Patients with Cancer / 1051
DANIEL C. DANILA, HOWARD I. SCHER, AND MARTIN FLEISHER

section P

Transplantation Immunology / 1063

VOLUME EDITOR: BARBARA DETRICK
SECTION EDITORS: ELAINE F. REED AND QIUHENG JENNIFER ZHANG

112 Histocompatibility and Immunogenetics
 Testing in the 21st Century / 1065
 QIUHENG JENNIFER ZHANG AND ELAINE F. REED

113 Molecular Methods for Human Leukocyte
 Antigen Typing: Current Practices and Future
 Directions / 1069
 MARK KUNKEL, JAMIE DUKE, DEBORAH FERRIOILA, CURT LIND, AND
 DIMITRI MONOS

114 Evaluation of the Humoral Response in
 Transplantation / 1091
 PAUL SIKORSKI, RENATO VEGA, DONNA P. LUCAS, AND ANDREA A. ZACHARY

115 Non-Human Leukocyte Antigen Antibodies in
 Organ Transplantation / 1103
 ANNETTE M. JACKSON AND BETHANY L. DALE

116 Evaluation of the Cellular Immune Response in
 Transplantation / 1108
 DIANA METES, NANCY L. REINSMOEN, AND ADRIANA ZEEVI

117 Complement in Transplant Rejection / 1123
 CARMELA D. TAN, E. RENE RODRIGUEZ, AND WILLIAM M. BALDWIN III

118 Molecular Characterization of Rejection in
 Solid Organ Transplantation / 1132
 DARSHANA DADHANIA, TARA K. SIGDEL, THANGAMANI MUTHUKUMAR,
 CHOLI HARTONO, MINNIE M. SARWAL, AND MANIKKAM SUTHANTHIRAN

119 Killer Cell Immunoglobulin-Like Receptors in
 Clinical Transplantation / 1150
 RAJA RAJALINGAM, SARAH COOLEY, AND JEROEN VAN BERGEN

120 Chimerism Testing / 1161
 LEE ANN BAXTER-LOWE

section Q

LABORATORY
MANAGEMENT / 1169

VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: RONALD J. HARBECK

121 Clinical Immunology Laboratory
 Accreditation, Licensure, and
 Credentials / 1171
 LINDA COOK AND RONALD J. HARBECK

122 Validation and Quality Control: General
 Principles and Application to the Clinical
 Immunology Laboratory / 1180
 VIJAYA KNIGHT AND TERRI LEBO

Author Index / 1193
Subject Index / 1195
Contributors

ROSHINI SARAH ABRAHAM
Mayo Clinic, Laboratory Medicine and Pathology, Hilton
210e, 200 1st St. SW, Rochester, MN 55905

MARIA E. AGUERO-ROSENFELD
NYU Langone Medical Center, Rm. H374A, 560 First Ave.,
New York, NY 10016

CEM AKIN
Brigham and Women’s Hospital, Department of Medicine,
Rheumatology, Immunology, 75 Francis Street,
Boston, MA 02115

MOHSIN ALI
Icahn School of Medicine at Mount Sinai, Department of
Medical Education, One Gustave L. Levy Place,
New York, NY 10029

BURT ANDERSON
Department of Molecular Medicine, Morsani College of
Medicine, University of South Florida, 12901 Bruce B. Downs
Blvd., Tampa, FL 33612

GIUSEPPE BARBESINO
Thyroid Unit, Massachusetts General Hospital – Harvard
Medical School, 15 Parkman St., Boston, MA 02114

DAVID R. BARNIDGE
Department of Laboratory Medicine and Pathology, Mayo
Clinic, Rochester, MN 55905

LEE ANN BAXTER-LOWE
Children's Hospital Los Angeles, 4650 Sunset Blvd., #32,
Los Angeles, CA 90027

ANGELIQUE BIANCOTTO
CHI/NHLBI, National Institutes of Health, 10 Center Drive,
Bldg. 10 Room 7N110a, Bethesda, MD 20892

LUCAS S. BLANTON
University of Texas Medical Branch-Galveston,
Department of Internal Medicine, 301 University Blvd.,
Galveston, TX 77555

MARY B. BROWN
Department of Infectious Diseases and Pathology, College of
Veterinary Medicine, University of Florida, P.O. Box 110880,
2015 S.W. 16th Ave., Gainesville, FL 32611

SARAH K. BROWNE
NIH, Immunopathogenesis Section, Bldg. 10 - CRC
Rm. B3-4233, 10 Center Drive, Bethesda, MD 20014

YENAN T. BRYCESON
Center for Hematology and Regenerative Medicine,
Department of Medicine, Karolinska Institutet, Karolinska
University Hospital Huddinge, S-14186 Stockholm, Sweden,
and Institute of Clinical Sciences, University of Bergen,
N-5021 Bergen, Norway

MICHAEL RAYMOND BUBB
Division of Rheumatology, University of Florida, 1600 S.W.
Archer Rd D2-39, P.O. Box 100221, Gainesville, FL 32610

C. E. BUCHNER
Genalyte, Inc., 10520 Wateridge Circle, San Diego, CA 92121
C. LYNNE BUREK
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

RUFUS W. BURLINGAME
Genalyte, Inc., Diagnostic Assay Development, 10520 Wateridge Circle, San Diego, CA 92121

ROBERT L. BURTON
University of Alabama at Birmingham, 845 19th St. S, BBRB612, Birmingham, AL 35294

FREDERIC D. BUSHMAN
Perelman School of Medicine, University of Pennsylvania, Department of Microbiology, 3610 Hamilton Walk, Philadelphia, PA 19104

BREANNA CARUSO
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

PATRIZIO CATUREGLI
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

ANGELA CERIBELLI
Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Via A. Manzoni 56, 20089, Rozzano (Milan), Italy

CHI-CHAO CHAN
Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg. 10 Rm 10N109, 10 Center Drive, Bethesda, MD 20892

EDWARD K. L. CHAN
Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, FL 32610

ANITA CHANDRA
Department of Clinical Biochemistry and Immunology, Box 109, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom

ANN DUSKIN CHAUFFE
Division of Rheumatology, University of Florida, 1600 S.W. Archer Rd D2-39, P.O. Box 100221, Gainesville, FL 32610

SAMUEL C. C. CHIANG
Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden

A. BERNARD COLLINS
Massachusetts General Hospital, Pathology, 503 Warren Bldg., 14 Fruit St., Boston, MA 02114

LINDA COOK
University of Washington, Laboratory Medicine, 1616 Eastlake Ave. E, Suite 320, Seattle, WA 98102

SARAH COOLEY
University of Minnesota, Hematology, Oncology and Transplantation, 420 Delaware St. SE, Mayo Mail Code 806, Minneapolis, MN 55455

ROSS L. COPPEL
Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia 3800

WILSON DE MELO CRUVINEL
Pontificia Universidade Católica de Goiás, School of Medical, Pharmaceutical and Biomedical Sciences, Avenida Universitária 1440, Setor Universitário, Goiânia, GO, 74.605-010, Brazil

KELLY A. CURTIS
Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

DARSHANA DADHANIA
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065

BETHANY L. DALE
Immunogenetics Laboratory, Johns Hopkins University School of Medicine, 2041 E. Monument St., Baltimore, MD 21205

DANIEL C. DANILA
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

ALESSANDRA DE REMIGIS
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

WILLIAM MARCIEL DE SOUZA
Virology Research Center, School of Medicine of Ribeirao Preto of University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

LUDOVICA DE VINCENTIIS
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

HEBA DEGHEIDY
FDA, Center for Biologics Evaluation and Research, WO52/72 RM 3209, 10903 New Hampshire Ave., Silver Spring, MD 20993

ALESSANDRA DELAVANCE
Fleury Laboratories, Research and Development Department, Avenida Valdomiro de Lima 508, São Paulo, SP 04344-070, Brazil

BARBARA DETRICK
Immunology Laboratory, Department of Pathology, Johns Hopkins University, School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287

JOSEPH A. DiGIUSEPPE
Hematopathology and Special Hematology Laboratory, Department of Pathology & Laboratory Medicine, Hartford Hospital, 80 Seymour St., Hartford, CT 06102
STEVEN D. DOUGLAS
The Children's Hospital of Philadelphia, University of Pennsylvania, Suite 1208 Abramson Research Building, 34th & Civic Center Blvd., Philadelphia, PA 19104

ELIZABETH R. DUFFY
Boston University School of Medicine, Pathology and Laboratory Medicine, 670 Albany St., Boston, MA 02118

JAMIE DUKE
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

BRUCE E. DUNN
Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226

GEORGE S. EISENBARTH
[Deceased]

MELISSA ELDER
University of Florida, Pediatrics, 1600 S.W. Archer Road, Gainesville, FL 32610

DEBORAH FERRIOLE
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

LUIZ TADEU MORAES FIGUEREIDO
Virology Research Center, School of Medicine of Ribeirao Preto of University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

DAVID M. FLEISCHER
Children's Hospital Colorado, Pediatrics, Aurora, CO 80045

MARTIN FLEISHER
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

THOMAS A. FLEISHER
Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bldg. 10 Rm. 2C306, 10 Center Drive, Bethesda, MD 20814

JUAN FLORES-MONTERO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

PAULO LUIZ CARVALHO FRANCESCANTONIO
Pontificia Universidade Católica de Goiás, School of Medical, Pharmaceutical and Biomedical Sciences, Avenida Universitária 1440, Setor Universitário, Goiânia, GO, 74.605-010, Brazil

MARVIN J. FRITZLER
University of Calgary, Cumming School of Medicine, Calgary, Alberta T2N 4N1, Canada

DENNIS GALANAKIS
State University of New York, Stony Brook, NY 11794

M. ERIC GERSHWYN
Division of Rheumatology/Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility Suite 6510, School of Medicine, University of California at Davis, Davis, CA 95616

EMANUELA M. GHIA
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92093

PATRICIA C. GICLAS
National Jewish Health, Diagnostic Complement Laboratory, 1400 N. Jackson St., Denver, CO 80206

KIMBERLY C. GILMOUR
Immunology, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom

ELIZABETH A. GODBEY
Department of Pathology, Columbia University Medical Center, New York, NY 10032

PETER D. GOREVIC
Division of Rheumatology, The Mount Sinai Medical Center, Annenberg Building; Room 21-056, Box 1244, New York, NY 10029

KIM Y. GREEN
Calicivirus Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, 9000 Rockville Pike, Building 50, Room 6318, Bethesda, MD 20892

PAMELA A. GUERRERIO
Food Allergy Research Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, 4 Memorial Dr., Building 4, Room 228B, MSC0430, Bethesda, MD 20892

ROBERT G. HAMILTON
Johns Hopkins University School of Medicine, Dermatology, Allergy and Clinical Immunology Reference Library, 5501 Hopkins Bayview Circle, Baltimore, MD 21224

SHUHONG HAN
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

J. G. HANLY
Dalhousie University and Nova Scotia Health Authority (Central Zone), Departments of Medicine and Pathology, Nova Scotia Rehabilitation Center, 1341 Summer St., Halifax, NS B3H 4K4, Canada

RONALD J. HARBECK
National Jewish Health, 1400 Jackson Street, Denver, CO 80206
NEIL HARRIS
University of Florida, Department of Pathology, 1600 SW Archer Rd, Gainesville, FL 32610

CHOLI HARTONO
Weill Cornell Medical College, Nephrology, 505 E. 70th St., Helmsley 2nd Floor, New York, NY 10021

HARRY R. HILL
University of Utah, Department of Pathology, Pediatrics and Medicine, 50 N. Medical Drive, Room 5B-114, Salt Lake City, UT 84132

MICHITO HIRAKATA
Medical Education Center, Graduate Medical Education Center, Keio University School of Medicine, Tokyo, Japan

RICHARD L. HODINKA
University of South Carolina School of Medicine Greenville and Greenville Health System, Room 210, Health Science Administration Building, 701 Grove Rd., Greenville, SC 2960

KRISTIN A. HOGQUIST
Center for Immunology, University of Minnesota, 2-186 MBB, 2101 6th St. SE, Minneapolis, MN 55455

STEVEN M. HOLLAND
National Institutes of Health, LCID, CRC B3-4141, MSC 1684, Bethesda, MD 20892

JOHN J. HOOKS
National Institutes of Health, Immunology & Virology Section, NEI, Bldg. 10 Rm. 10N248, 10 Center Drive, Bethesda, MD 20814

D. CRAIG HOOPER
Thomas Jefferson University, Jefferson Center for Neurovirology, 1020 Locust St, Philadelphia, PA 19107

AMY P. HSU
National Institutes of Health, Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, Bldg. 10 CRC Rm B3-4233, 10 Center Drive, Bethesda, MD 20892

RICHARD L. HUMPHREY
Johns Hopkins Hospital, Pathology, 600 North Wolfe St., Baltimore, MD 21287

ANDREA ILLINGWORTH
Dahl Chase Diagnostic Services, 417 State St., Suite 540, Bangor, ME 04401

SABINA A. ISLAM
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114

ANNETTE M. JACKSON
Immunogenetics Laboratory, Johns Hopkins University School of Medicine, 2041 E. Monument Street, Baltimore, MD 21205

STEVEN JACOBSON
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

ELAINE S. JAFFE
Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, 10 Center Dr./Rm. 3S235, MSC-1500, Bethesda, MD 20892

JEFFREY A. JOHNSON
Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

JERRY A. KATZMANN
Mayo Clinic and Mayo Foundation, Laboratory Medicine and Pathology, 200 First St. SW, Rochester, MN 55905

MICHAEL KEENEY
Hematology/Flow Cytometry, London Health Sciences Centre, Victoria Hospital, 800 Commissioners Road E, London, Ontario, N6A5W9 Canada

DAVID F. KEREN
University of Michigan, 5228 Medical Science I, 1301 Catherine, Ann Arbor, MI 48109

THOMAS S. KICKLER
Johns Hopkins University School of Medicine, 1800 Orleans Street, Sheikh Zayed B2-120Q, Baltimore, MD 21287

KAREN E. KING
Johns Hopkins Hospital, Transfusion Medicine, 1800 Orleans St., Baltimore, MD 21287

THOMAS J. KIPPS
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92039

AMY D. KLION
National Institutes of Health, Laboratory of Parasitic Diseases, NIAID, Bldg. 4, Rm. B1-28, Bethesda, MD 20892

VIJAYA KNIGHT
National Jewish Health, National Jewish Health Advanced Diagnostic Laboratories, Division of Pathology, Department of Medicine, 1400 Jackson St., Denver, CO 80206

DOUGLAS B. KUHNS
Clinical Services Program, P.O. Box B, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702

D.S. KUMARARATNE
Department of Clinical Biochemistry and Immunology, Box 109, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom

MARK KUNKEL
The Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104
MASATAKA KUWANA
Department of Allergy and Rheumatology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan

ROBERT S. LANCIOTTI
Arbovirus Diseases Branch, Centers for Disease Control & Prevention, 3150 Rampart Road (CSU Foothills Campus), Fort Collins, CO 80521

MARIE LOUISE LANDRY
Yale University, Laboratory Medicine and Internal Medicine, P.O. Box 208035, New Haven, CT 06520

TERRI LEO
National Jewish Health, Advanced Diagnostic Laboratories, 1400 Jackson St., Denver, CO 80206

HOWARD M. LEDERMAN
Pediatric Allergy & Immunology, Johns Hopkins Hospital - CMSC 1102, 600 N Wolfe St, Baltimore, MD 21287-3923

DIANE S. LELAND
Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IU Health Pathology Laboratory Building, Room 6027F, 350 W 11th St, Indianapolis, IN 46202

PATRICK S. C. LEUNG
Division of Rheumatology/Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility Suite 6510, School of Medicine, University of California at Davis, Davis, CA 95616

ARNOLD I. LEVINSON
Perelman School of Medicine, University of Pennsylvania School of Medicine, Room 316 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104

YI LI
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

DONNA P. LUCAS
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205

ANDREW D. LUSTER
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114

HOLDEN T. MAECKER
Stanford University, Institute for Immunity, Transplantation, & Infection, Stanford University Medical School, 299 Campus Drive, Stanford, CA 94305

CHERYL L. MAIER
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322

MICHAEL P. MANNNS
Department of Gastroenterology and Hepatology, Zentrum Innere Medizin, Medizinische Hochschule Hannover, Hannover, Germany

REBECCA MARSH
Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229

JOHN MASSINI
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

RAYA MASSOUD
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

J. PHILIP McCOY, JR.
National Institutes of Health, NHLBI, 10 Center Drive, Bethesda, MD 20892

BENJAMIN D. MEDOFF
Center for Immunology and Inflammatory Diseases, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114

DIANA METES
University of Pittsburgh Medical Center, Thomas E Starzl Transplantation Institute, BST E1549, 200 Lothrop St., Pittsburgh, PA 15213

DIMITRI MONOS
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

MARTINA MURPHY
University of Florida, Hematology/Oncology, 1600 SW Archer Rd., Gainesville, FL 32610

THANGAMANI MUTHUKUMAR
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065
MOON H. NAHM
University of Alabama at Birmingham, 845 19th St. S, BBRB 614, Birmingham, AL 35294

STANLEY J. NAIDES
Immunology, Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92675

HUBERT G. M. NIESTERS
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

TIMOTHY B. NIEWOLD
Mayo Clinic, Department of Immunology and Division of Rheumatology, 200 1st Street SW, Rochester, MN 55905

DOUGLAS F. NIXON
Dept. of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Ross Hall 736, 2300 Eye Street, NW, Washington, D.C. 20037

ROBERT NUSSENBLATT
Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg. 10 Rm 10N109, 10 Center Drive, Bethesda, MD 20814

THOMAS B. NUTMAN
Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Room B1 03, Bethesda, MD 20892

MAURICE R. G. O’GORMAN
Keck School of Medicine, University of Southern California, and the Children’s Hospital of Los Angeles, Pathology and Pediatrics, 4650 Sunset Blvd #43, Los Angeles, CA 90027

ALBERTO ORFAO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

S. MICHELE OWEN
National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

GABRIEL I. PARRA
Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, 9000 Rockville Pike, Building 50, Room 6316, Bethesda, MD 20892

R. STOKES PEEBLES, JR.
Vanderbilt University, Medicine, T-1218 MCN, Vanderbilt University Medical Center, Nashville, TN 37232

JOSÉ JUAN PÉREZ
Departamento de Hematología, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL); Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, 37007, Spain

ROBERT B. PETERSEN
Case Western Reserve University, Department of Pathology, 5-126 Wolstein Building, 2103 Cornell Road, Cleveland, OH 44106

SUHAS H. PHADNIS
Medical College of Wisconsin, Pathology, 9200 W. Wisconsin Ave., Milwaukee, WI 53205

FANNY POJERO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

YVONNE POSEY
Beaumont Hospital – Royal Oak, Clinical Pathology, 3601 W. 13 Mile Road, Royal Oak, MI 48073

DEBRA LONG PRIEL
Clinical Services Program, P.O. Box B, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702

CALMAN PRUSSIN
Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N238, Bethesda, MD 20892-1881

NOEMÍ PUIG
Departmento de Hematología, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL); Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, 37007, Spain

RONALD L. RABIN
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

MARK RAFFELD
Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, 10 Center Dr./Rm. 35235, MSC-1500, Bethesda, MD 20892

ALEX J. RAI
Department of Pathology, Columbia University Medical Center, New York, NY 10032

RAJA RAJALINGAM
University of California at San Francisco, Immunogenetics and Transplantation Laboratory, Department of Surgery, 43 Castro St., Main Hospital Level B, CPMC Davis Campus, San Francisco, CA 94114

AMY RASLEY
Host-Pathogen Laboratory Group, Lawrence Livermore National Laboratory, Livermore, CA 94550
LAURA Z. RASSENTI
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92039

ELAINE F. REED
UCLA, Pathology, Rehab 1520, 1000 Veteran Avenue, Immunogenetics Center, Los Angeles, CA 90095

WESTLEY H. REEVES
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

NANCY L. REINSMOEN
HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars-Sinai Health Systems, HLA and Immunogenetics Lab-SSB 197, 8723 Alden Drive, Los Angeles, CA 90048

RYAN F. RELICH
Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IU Health Pathology Laboratory Building, Room 6027E, 350 W 11th St, Indianapolis, IN 46202

DANIEL G. REMICK
Boston University School of Medicine, 670 Albany St., Boston, MA 02118

LYNNSEY RENN
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

ADRIANA RICCIUTI
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

ANNELEIS RIEZEBOS-BRILMAN
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

KIMBERLY RISMA
Division of Allergy/Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229

E. RENE RODRIGUEZ
Department of Pathology, 9500 Euclid Ave., Cleveland, OH 44022

JOHN T. ROEHRRIG
Centers for Disease Control and Prevention, Atlanta, GA (Retired)

NOEL R. ROSE
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Avenue, Baltimore, MD 21205

JOHN M. ROUTES
Department of Pediatrics and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226

RICHARD RUBENSTEIN
SUNY Downstate Medical Center, Departments of Neurology and Physiology/Pharmacology, 450 Clarkson Ave., Brooklyn, NY 11203

DALIA A. A. SALEM
CCR, NCI, NIH, Laboratory of Pathology, Building 10, Mail Stop 1500, Room 3S 241, Bethesda, MD 20892

LUZALBA SANOJA
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-UNAM), Instituto Bioanatomo de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

CARAH B. SANTOS
National Jewish Health, 1400 Jackson St., K731A, Denver, CO 80206

MINNIE M. SARWAL
University of California San Francisco, Division of Transplant Surgery, G893, 513 Parnassus Ave., San Francisco, CA 94143

MINORU SATOH
Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Isei-ga-oka, Yahata-cho-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan

HOWARD I. SCHER
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

D. SCOTT SCHMID
Centers for Disease Control and Prevention, NCIRD/DVD/MMRHLB, 1600 Clifton Rd NE, Atlanta, GA 30333

JOHN L. SCHMITZ
University of North Carolina, Department of Pathology & Laboratory Medicine, School of Medicine, Rm. 1035 East Wing, UNC Hospitals, Chapel Hill, NC 27514

JOHN T. SCHROEDER
Johns Hopkins University, Medicine, Division of Allergy and Immunology, Unit Office 2, 5501 Hopkins Bayview Circle, Baltimore, MD 21224

H. NIDA SEN
Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg. 10 Rm 10N109, 10 Center Drive, Bethesda, MD 20814

CHRISTINE SEROOGY
University of Wisconsin, Pediatrics, 1111 Highland Ave., 4139 WIMR, Madison, WI 53705

BARBARA L. SHACKLETT
Dept. of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, 3146 Tupper Hall, 1 Shields Ave., Davis, CA 95616
ROSEMARY SHE
Keck Medical Center of USC, Pathology, 1441 Eastlake Ave., Suite 2424, Los Angeles, CA 90089

R. SUE SHIREY
Johns Hopkins Hospital, Transfusion Medicine, 1800 Orleans St., Baltimore, MD 21287

TARA SIGDEL
University of California San Francisco, Division of Transplant Surgery, 513 Parnassus Avenue, S-1268 Medical Sciences Building, San Francisco, CA 94143

PAUL SIKORSKI
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205

JERRY W. SIMECKA
Department of Cell Biology and Immunology, University of North Texas Health Science Center, RES 432A 3500 Camp Bowie Blvd., Fort Worth, TX 76107

JAY E. SLATER
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

MAREK SMIEJA
McMaster University, Department of Pathology & Molecular Medicine, L424-St. Joseph’s Healthcare Hamilton, 50 Charlton Ave E, Hamilton, ON L8N 4A6, Canada

R. NEAL SMITH
Massachusetts General Hospital, Pathology, 501B Warren Bldg., 14 Fruit St., Boston, MA 02114

MELISSA R. SNYDER
Mayo Clinic, Hilton 2-10D, 200 First St. SW, Rochester, MN 55905

LORI J. SOKOLL
Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205

JEREMY SOKOLOVE
VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304-1207, and Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305

LORI SOMA
University of Washington, Department of Laboratory Medicine, NW120, Box 357110, 1959 Pacific St., Seattle, WA 98195-7110

DAVID J. SPEICHER
Griffith University, Menzies Health Institute Queensland, Gold Coast Campus, Queensland 4222, Australia

ANDREA K. STECK
Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045

MARYALICE STETLER-STEVENSON
CCR, NCI, NIH, Laboratory of Pathology, Building 10, Mail Stop 1500, Room 3S 235G, Bethesda, MD 20892

JAMES R. STONE
Massachusetts General Hospital, Pathology, 185 Cambridge Street, Boston, MA 02114

JOHN H. STONE
Harvard Medical School, Division of Rheumatology, 25 Shattuck St, Boston, MA 02115

MANIKKAM SUTHANTHIRAN
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065

D. ROBERT SUTHERLAND
Laboratory Medicine Program, Toronto General Hospital/University Health Network, 200 Elizabeth St., Room 11E416, Toronto, Ontario, M5G2C4 Canada

ELIZABETH SYKES
Beaumont Hospital – Royal Oak, Clinical Pathology, 3601 W. 13 Mile Road, Royal Oak, MI 48073

CARMELA D. TAN
Department of Pathology, 9500 Euclid Ave., Cleveland, OH 44022

YI-WEI TANG
Memorial Sloan-Kettering Cancer Center, Clinical Microbiology Service, 1275 York Ave., S328, New York, NY 10065

STEFFEN THIEL
Aarhus University, Department of Medicine, Bartholin Building, Wilhelm Meyers Allé 4, Aarhus, 8000, Denmark

RENEE TSOLIS
Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616

JEROEN VAN BERGEN
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands

CORETTA C. VAN LEER-BUTER
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

PRIYANKA VASHISHT
Mayo Clinic, Department of Immunology and Division of Rheumatology, 200 1st St. SW, Rochester, MN 55905

RENATO VEGA
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205
JAMES W. VERBSKY
Department of Pediatrics and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226

PRIYA S. VERGHESE
Pediatric Kidney Transplantation, University of Minnesota, Children's Hospital, 2450 Riverside Ave., MB 687, Minneapolis, MN 55454

MARÍA BELÉN VIDRIALES
Departamento de Hematología, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL); Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, 37007, Spain

KEN B. WAITES
Department of Pathology, University of Alabama at Birmingham, WP 230, 619 S. 19th St., Birmingham, AL 35249

DAVID H. WALKER
University of Texas Medical Branch-Galveston, Department of Pathology, 301 University Blvd., Galveston, TX 77555

NOREEN M. WALSH
Dalhousie University and Nova Scotia Health Authority (Central Zone). Department of Pathology and Laboratory Medicine, Mackenzie Building, Room 721, 5788 University Ave., Halifax, Nova Scotia B3H1V8, Canada

GUIQING WANG
New York Medical College, Department of Pathology, 100 Woods Road, Westchester Medical Center Rm. 1J-04, Valhalla, NY 10595

JIAN WANG
Department of Endocrinology, Jinling Hospital, Nanjing, China

JEFFREY S. WARREN
University of Michigan, Pathology, 5242 MSI, 1301 Catherine St., Ann Arbor, MI 48109

ADRIANA WEINBERG
Department of Pediatrics, Medicine and Pathology, University of Colorado Health Sciences Center, 4200 E. Ninth Ave., Campus Box C 227, Denver, CO 80262

THERESA L. WHITESIDE
University of Pittsburgh Cancer Institute, Research Pavilion at the Hillman Cancer Center, 5117 Centre Ave. Suite 1.27, Pittsburgh, PA 15213

PATRICIA P. WILKINS
Division of Parasitic Diseases & Malaria, Center for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333

HUGH J. WILLISON
B330, GBRC, 120 University Place, University of Glasgow, Glasgow, Scotland, G12 8TA, United Kingdom

THOMAS WISNIEWSKI
New York University School of Medicine, Department of Neurology, Psychiatry and Pathology, Alexandria ERSP, Rm. 802, 450 E. 29th St., New York, NY 10016

BRENT WOOD
University of Washington Medical Center, Hematopathology, Seattle, WA 98109

ROBERT A. WOOD
Johns Hopkins University, Baltimore, MD 21287

LIPING YU
Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045

CONSTANCE M. YUAN
CCR, NCI, NIH, Laboratory of Pathology, Building 10, Mail Stop 1500, Room 2A33, Bethesda, MD 20892

ANDREA A. ZACHARY
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205

ADRIANA ZEEVI
University of Pittsburgh Medical Center, Clinical Laboratory Building, Room 4033, 3477 Euler Way, Pittsburgh, PA 15213

QIUHENG JENNIFER ZHANG
UCLA Immunogenetics Center, Department Pathology & Laboratory Medicine, 15-20 Rehab, 1000 Veteran Ave., Los Angeles, CA 90024

Acknowledgment of Previous Contributors

The Manual of Molecular and Clinical Laboratory Immunology is by its nature a continuously revised work which refines and extends the contributions of previous editions. Since its first edition in 1976, many eminent scientists have contributed to this important reference work. The American Society for Microbiology and its Publications Board gratefully acknowledge the contributions of all of these generous authors over the life of this Manual.
In 1971, I was working at the University of Oxford’s Sir William Dunn School of Pathology in the laboratory of James Gowans, the investigator who first definitively showed that the lymphocyte was the source of specific adaptive immunity. I was busily cannulating the thoracic ducts of rats in order to harvest T lymphocytes when I was informed that a transatlantic telephone call was coming in. My first reaction was fear of bad news. Rather, it was a phone call from Earle Spaulding. I knew Earle as the chairman of microbiology at Temple and active in the Eastern Pennsylvania branch of the American Society for Microbiology (ASM). He explained that he was calling as a member of the editorial group of the *Manual of Clinical Microbiology* (MCM), at that time in its first edition. His particular concern was the chapter on immunology, which devoted 100 pages to various serologic tests for infectious organisms with no mention of noninfectious diseases. Earle felt strongly that the field of immunologic diagnosis was growing exponentially and deserved a separate, companion manual. The MCM editorial board agreed, providing I was willing to accept the position of Editor-in-Chief.

I was delighted to receive the invitation. I had recently chaired a “blue ribbon” committee of the American Association of Immunologists (AAI) on the future of clinical immunology. We concluded that there was no space for a new patient-centered clinical specialty, but great need for improved, expanded laboratory support. A comprehensive manual would serve as a great stimulus to the whole field of laboratory-based clinical immunology. I accepted the offer with two qualifications. First, I needed a co-editor, particularly someone well versed at a practical level in immunology related to infectious diseases. Second, I asked that such a manual be cosponsored by the AAI. Both qualifications were agreed to by the ASM Publications Board.

The person I had in mind as co-Editor-in-Chief was Herman Friedman. I knew Herman from contacts arising from our joint interest in allergy research. I knew he understood the practice of laboratory immunology and was one of the few immunologists who actually researched the immunology of infection. Herman readily agreed to partner with me on the *Manual*, and so began a close collaboration that continued for three subsequent editions of the *Manual*, ended only by his untimely death. The AAI also accepted an offer of collaboration and appointed a liaison committee to work with us.

We were off and running, but we had no idea of how to proceed. There had never been a manual describing the entire laboratory practice of immunology. Part of our mission was to include the many applications of immunology devoted to detection and analysis of a wide variety of diseases, not only those induced by microorganisms. Should we approach the subjects disease by disease or method by method? We finally decided to compromise by beginning the book with invited chapters on the common methods used in the immunology laboratory, then continuing with sections covering their application to the main categories of disease. We included a final section on laboratory administration and quality control.

Having developed particular sections, we then sought the most experienced and highly qualified individuals to serve as section editors. Because of the cross-cutting matrix arrangement, there was major concern that some topics would be dealt with twice or even three times. We therefore decided to organize a “stakeholders meeting,” at which all of the section editors met at ASM in Washington, DC, with proposed outlines of their sections. Going through each one systematically, we identified topics where overlap occurred and ensured that everything important was included once, but not more. We also made a fundamental decision that the book would be complete and free-standing. The methods would be described in sufficient detail that the laboratory worker could actually perform the tests, and interpret the results without consulting other references. It should be understood that, at that time, most laboratory reagents...
were prepared within the laboratory and were generally not available as commercial kits. This format required that we keep descriptions terse and the reference lists short.

When the first edition of the *Manual of Clinical Immunology* was published in 1976, we felt it warranted some type of celebration. Herman suggested that we should organize a meeting to mark the birth of the book and to bring together the leaders in clinical laboratory immunology, including our authors and section editors. Eventually, this led to the formation of the Association of Medical Laboratory Immunologists and the American Board of Medical Laboratory Immunology.

The *Manual* continues to be published at regular intervals to the present, as the editorial lineup has evolved. Barbara Detrick and Robert G. Hamilton joined me as Editors for the Sixth Edition, and Dr. Detrick has continued to lead the *Manual* for the Seventh and the present Eighth Edition. I hope the series will go on for many years. Although the *Manual*’s name has changed and the format is altered, the overall aim is still to improve the care of patients with infectious malignant inflammatory and immune-mediated disorders. With the ready availability of validated kits, the job of the clinical laboratory immunologist has shifted toward working with clinical colleagues on the significance and interpretation of laboratory tests.

I’m proud to have been involved in the genesis of this *Manual*. It would not have been possible without the continued support of ASM, the cooperation of AAI, the persistence of succeeding volume and section editors, the contributions of hundreds of practicing clinical laboratory immunologists, and the foresight of a few visionary microbiologists of the 1970 era who realized that immunology had become a discipline and specialty of its own. It never would have happened if Herman Friedman had not joined with me in accepting the challenge. I hope that he will long be remembered for his numerous contributions to immunology.

NOEL R. ROSE, MD, Ph.D.
For over 40 years, the Manual of Clinical Laboratory Immunology has been the leading reference source, both in the United States and abroad, to advance the field of laboratory immunology, to foster the best contemporary and most cutting-edge methodologies, and to translate basic immunologic principles into appropriate laboratory tests.

Since the publication of the 7th edition of this Manual, remarkable progress has been made in the field of immunology, and these notable advancements have been reflected in the clinical immunology arena as well. The scope of clinical immunology is exceptionally broad and encompasses nearly every medical specialty, including such areas as transplantation, rheumatology, oncology, infectious disease, allergy, hematology, and neurology, to name a few. Because of its strategic position in the hospital setting, it is critical that the clinical immunology laboratory should have a guide to follow with regard to accurate and appropriate laboratory procedures. As the field of clinical immunology continues to expand, we look to the laboratory director as a key person to gather the new basic information and integrate it into useful clinical procedures as well as to serve as a pivotal contact for communication with the various disciplines. In addition to keeping abreast with the most updated testing systems, the goal for this Manual is that it must not only serve the needs of today’s clinical immunology laboratory but also look to the future, where even more dramatic progress in diagnosis and treatment can be anticipated.

In an effort to capture the new dimensions in this field and to reflect the continuous evolution of clinical immunology, significant changes have been introduced into the 8th edition of the Manual of Molecular and Clinical Laboratory Immunology. Several sections of the Manual have been notably updated to reflect the latest laboratory approaches in molecular assays as well as the shift to automated testing, kit-based diagnostics, and new technical tools: themes that are carried throughout the book. New chapters have been introduced to highlight these changes. For example, section D, Flow Cytometry, describes the latest applications of these techniques, such as polychromatic flow cytometry and mass cytometry; section F reviews fresh information on the clinical applications of cytokines and chemokines; the infectious disease sections H, I, and J include the newest strategies used in infectious disease diagnosis and treatment, including the HIV and syphilis algorithms; section K, Immunodeficiency Diseases, presents the recent newborn screening programs for severe combined immune deficiency; and section P, Transplantation Immunology, outlines the usefulness of next-generation sequencing in the human leukocyte antigen (HLA) laboratory.

Once again, this Manual is offered not just in print but also electronically as either an EPUB file or a PDF. This special feature will allow a larger audience to review and use the Manual.

As we produce the 8th edition of this Manual, it is appropriate to celebrate its success. Noel Rose, the Manual’s first Editor-in-Chief, has provided a foreword reflecting on how the field has changed over the past 5 decades.

Since the publication of this Manual is a joint effort of many dedicated individuals, I wish to acknowledge the outstanding commitment and invaluable support of our volume editors, section editors, and chapter authors, all of whom, as internationally renowned experts in their areas, have contributed their extraordinary experience, energy, and time to the success of this edition. Also, I would like to extend my appreciation to the ASM editorial staff, in particular Ellie Tupper, Senior Production Editor, and Christine Charlip, Director, ASM Press, who have provided their valuable experience and support to complete this edition.

BARBARA DETRICK, Ph.D.
Editor in Chief
Author and Editor
Conflicts of Interest

Cem Akin (coauthor on chapter 85) has consultancy agreements with Novartis and Patara Pharma and receives research funding from Dyax.

Barbara Detrick (Editor in Chief, coauthor on chapter 106) serves as a consultant to Siemens Healthcare Diagnostics, Inc., Abbott Laboratories, and INOVA Diagnostics, Inc.

Deborah Ferriola (coauthor on chapter 113) receives royalties from Omixon. Omixon has licensed the protocol we developed for HLA typing by NGS from the Children’s Hospital of Philadelphia and makes it available as a commercial product named “Holotype HLA.” Omixon is mentioned in this chapter as a company that provides software analysis tools for the genotyping of HLAs using NGS data. It is not mentioned as a company that commercializes HLA typing products/kits, because at the time of writing Omixon had not developed this activity.

Marvin J. Fritzler (coauthor on chapter 88) has been a consultant to or received research gifts in kind from Inova Diagnostics Inc., Euroimmun GmbH, Mikrogen GmbH, Dr. Fsoke Laboratorien GmbH, ImmunoConcepts, GSK Canada, Amgen, Roche, and Pfizer. He is the Director of Mitogen Advanced Diagnostics Laboratory.

Andrea Illingworth (coauthor on chapter 18) has received unrestricted Educational Grant funding and speaker honoraria from Alexion Pharmaceuticals.

Michael Keeney (coauthor on chapters 18 and 19) is a consultant for Beckman Coulter, Canada, and Alexion Pharma, Canada. He has received unrestricted Educational Grant funding and speaker honoraria from Alexion Pharmaceuticals.

Masataka Kuwana (chapter 91) holds a patent on an anti-RNA polymerase III antibody measuring kit.

Curt Lind (coauthor on chapter 113) receives royalties from a licensing agreement between Omixon Biocomputing and the Children’s Hospital of Philadelphia and is an employee of Thermo Fisher Scientific, Transplant Diagnostics.

Robert P. Lisak (coauthor on chapter 99) is on an advisory board for Syntimmune.

Dimitri Monos (coauthor on chapter 113) receives royalties from Omixon. Omixon has licensed the protocol we developed for HLA typing by NGS from the Children’s Hospital of Philadelphia and makes it available as a commercial product named “Holotype HLA.” Omixon is mentioned in this chapter as a company that provides software analysis tools for the genotyping of HLAs using NGS data. It is not mentioned as a company that commercializes HLA typing products/kits, because at the time of writing Omixon had not developed this activity.

Stanley J. Naides (chapter 62) is a full-time employee of Quest Diagnostics Nichols Institute and receives a salary, stock, and stock options from Quest Diagnostics.

Timothy Niewold (coauthor on chapter 38) has received research grants from Janssen Inc. and EMD Serono Inc.

Maurice R. G. O’Gorman (chapter 20) is a BD Biosciences consultant and contractee.

Paul Sikorski (coauthor on chapter 114) is an employee of One Lambda, Inc., a Thermo Fisher Scientific brand.

Marek Smieja (coauthor on chapter 63) has done small studies with Copan and GenMark.

Melissa R. Snyder (chapter 103) participates on the Strategic Advisory Committee with INOVA Diagnostics.

Kathleen E. Sullivan (section editor) is a Baxter grant recipient and an Immune Deficiency Foundation consultant.

D. Robert Sutherland (coauthor on chapters 18 and 19) has received speaker fees and consulting fees from Alexion Pharmaceuticals.
Yi-Wei Tang (coauthor on chapter 57) has received research funds from Roche Molecular Diagnostics and the Luminex Corporation.

Brent Wood (coauthor on chapter 22) has received research funding and honoraria for Advisory Board participation from Seattle Genetics and Amgen and honoraria from Abbvie for Advisory Board participation.

Andrea A. Zachary (coauthor on chapter 114) is a consultant for BiologicTx and Genentech and is a Scientific Advisory Board member for Immucor.
Author Index

Abraham, Roshini Sarah, 26, 269
Aguero-Rosenfeld, Maria E., 419
Akin, Cem, 825
Ali, Mohsin, 598
Anderson, Burt, 473
Andrade, Luis Eduardo Coelho, 843
Ansari, Aftab A., 975

Baldwin III, William M., 1123
Balfour, Jr., Henry H., 563
Barbesino, Giuseppe, 930
Barnidge, David R., 26
Baxter-Lowe, Lee Ann, 1161
Biancotto, Angélique, 149
Blanton, Lucas S., 461
Brown, Mary B., 444
Browne, Sarah K., 365
Bryceson, Yenan T., 300
Bubb, Michael Raymond, 897
Buchner, C. E., 909
Burek, C. Lynne, 929, 930, 975
Burlingame, Rufus W., 859, 909
Burton, Robert L., 280
Bushman, Frederic D., 19
Caruso, Breanna, 674
Caturegli, Patrizio, 930
Ceribelli, Angela, 878
Chan, Chi-Chao, 998
Chan, Edward K. L., 859, 878
Chandra, Anita, 737
Chauffe, Ann Duskin, 897
Chiang, Samuel C. C., 300
Collins, A. Bernard, 376, 385
Cook, Linda, 1169
Cooley, Sarah, 1150
Coppel, Ross L., 966
Cruvinel, Wilson de Melo, 843
Curtis, Kelly A., 696

Dalhania, Darshana, 1132
Dale, Bethany L., 1103
Davula, Daniel C., 1051
De Remigiis, Alessandra, 930
de Souza, William Marciel, 658
De Vincentiis, Ludovica, 930
Degheidy, Heba, 226

Dellavance, Alessandra, 843
Dettrock, Barbara, 998
DiGiuseppe, Joseph A., 207
Douglas, Steven D., 261
Duffy, Elizabeth R., 324
Duke, James L., 1069
Dunn, Bruce E., 404

Eisenbarth, George S., 930
Elder, Melissa, 721

Ferroni, Deborah, 1069
Figuereido, Luiz Tadeu Moraes, 658
Fleisher, David M., 815
Fleisher, Martin, 1051
Fleisher, Thomas A., 3
Flores-Montero, Juan, 235
Francescantonio, Paulo Luiz Carvalho, 843
Fritzler, Marvin J., 859

Galanakis, Dennis, 101
Gershwin, M. Eric, 966
Gia, Emanuela M., 51
Giclas, Patricia C., 127, 129, 749
Gilmour, Kimberly C., 737
Godoy, Elizabeth A., 1008
Gorevic, Peter D., 101
Green, Kim Y., 639
Guerrero, Pamela A., 783, 801

Hamilton, Robert G., 375, 795, 1007
Han, Shuhong, 868
Hanly, J. G., 909
Harbeck, Ronald J., 1169
Harris, Neil, 905
Hartono, Choli, 1132
Hill, Harry R., 394
Hirakata, Michito, 878
Hodinka, Richard L., 578
Hogquist, Kristin A., 563
Holland, Steven M., 766
Hoeks, John J., 323, 998
Hooper, D. Craig, 665
Hu, Amy P., 5
Humphrey, Richard L., 74

Illingworth, Andrea, 168
Islam, Sabina A., 343
Jackson, Annette M., 1103
Jacobson, Steven, 674
Jaffe, Elaine S., 1015
Johnson, Jeffrey A., 696

Katzmann, Jerry A., 112
Keeney, Michael, 168, 182
Keren, David E., 49, 74, 112
Kickler, Thomas S., 995
King, Karen E., 990
Kipps, Thomas J., 51
Klons, Amy D., 825
Knight, Vijaya, 1180
Kuhns, Douglas B., 310
Kumararatne, D. S., 737
Kunkel, Mark, 1069
Kuwana, Masataka, 888

Lanciotti, Robert S., 648
Landy, Marie Louise, 538
Lebo, Terri, 1180
Lederman, Howard M., 713
Leland, Diane S., 610
Leung, Patrick S. C., 966
Levinson, Arnold L., 954
Li, Yi, 868
Lind, Curt, 1069
Lindsley, Mark D., 503
Lisak, Robert P., 954
Litwin, Christine M., 393, 394, 433, 473
Litwin, Sheldon E., 394
Lucas, Donna P., 1091
Luster, Andrew D., 343

Maekawa, Heron, 251, 338
Maier, Cheryl L., 975
Manns, Michael P., 966
Marsh, Rebecca, 775
Massini, John, 688
Massoud, Raya, 674
McCoy, Jr., J. Philip, 149
Medoff, Benjamin D., 343
Metes, Dima, 1108
Monos, Dimitri, 1069
Murphy, Martina, 905
Muthukumar, Thangamani, 1132
AUTHOR INDEX

Nahm, Moon H., 280
Naides, Stanley J., 591
Nieters, Hubert G. M., 620
Niewold, Timothy B., 357
Nixon, Douglas F., 290
Nussenblatt, Robert, 998
Nuttman, Thomas B., 485, 486

O’Gorman, Maurice R. G., 147, 199
Orfao, Alberto, 235
Owen, S. Michele, 696

Parra, Gabriel I., 639
Peebles, Jr., R. Stokes, 801
Pérez, José Juan, 235
Petersen, Robert B., 682
Phadnis, Suhas H., 404
Pofjero, Fanny, 235
Posey, Yvonne, 89
Priel, Debra Long, 310
Prussin, Calman, 825
Puig, Noemí, 235

Rabin, Ronald L., 784
Raffeld, Mark, 1015
Rai, Alex J., 1028
Rajalingam, Raja, 1150
Rasley, Amy, 473
Rassenti, Laura Z., 51
Reed, Elaine F., 1065
Reeves, Westley H., 841, 868
Reimann, Nancy L., 1108
Relich, Ryan F., 610
Remick, Daniel G., 324
Renn, Lynne, 784
Ricciuti, Adriana, 930
Riezebos-Brilman, Annelies, 620

Risma, Kimberly, 775
Rodriguez, E. Rene, 1123
Roehrig, John T., 648
Rose, Noel R., 930, 975
Routes, John M., 715
Rubenstein, Richard, 682

Risma, Kimberly, 775
Sanoja, Luzalba, 235
Santos, Carah B., 815
Sarwal, Minnie M., 1132
Satoh, Minoru, 878
Scher, Howard L., 1051
Schmid, D. Scott, 552, 556
Schmitz, John L., 412, 537
Schoeder, John T., 801
Sen, H. Nida, 998

Seroogy, Christine, 721
Shacklett, Barbara L., 290
She, Rosemary, 453
Shirey, R. Sue, 992
Singel, Tara K., 1132
Sikorski, Paul, 1091
Simecka, Jerry W., 444
Slater, Jay E., 784
Smieja, Marek, 598
Smith, Richard J. H., 138
Smith, R. Neal, 376, 385
Snyder, Melissa R., 983
Sokoll, Lori J., 1008
Sokolove, Jeremy, 922
Soma, Lori, 217
Speicher, David J., 598
Steck, Andrea K., 930
Stern, James R., 376
Stone, John H., 917
Suthanthiran, Manikkam, 1132
Sutherland, D. Robert, 168, 182

Sykes, Elizabeth, 89
Tan, Carmela D., 1123
Tang, Yi-Wei, 538
Thiel, Steffen, 133
Tsolis, Renee, 473

Van Bergen, Jeroen, 1150
Van Leer-Buter, Coreta C., 620
Vashisth, Priyanka, 357
Vega, Renato, 1091
Verbsky, James W., 715
Verghese, Priya S., 563
Vidrias, María Belén, 235

Waites, Ken B., 444
Walker, David H., 461
Walsh, Noreen M., 909
Wang, Guiqing, 419
Wang, Jian, 930
Warren, Jeffrey S., 54
Weinberg, Adriana, 263
Whiteside, Theresa L., 296, 1036
Wilkins, Patricia P., 486
Willison, Hugh J., 961
Wisniewski, Thomas, 682
Wood, Brent, 217
Wood, Robert A., 815

Yu, Liping, 930
Yuan, Constance M., 226

Zachary, Andrea A., 1091
Zeevi, Adriana, 1108
Zhang, Quiheng Jennifer, 1065

AABB (American Association of Blood Banks), 1172
AAE (acquired angioedema), 756–757
ABB (American Board of Bioanalysis), 1174
ABCC (American Board of Clinical Chemistry), 1174
ABFT (American Board of Forensic Toxicology), 1174
ABHI (American Board of Histocompatibility and Immunogenetics), 1172
ABI SOLiD system, 20
ABMG (American Board of Medical Genetics), 1172
ABMLI (American Board of Medical Laboratory Immunology), 1172
ABMM (American Board of Medical Microbiology), 1172
Absolute cell counting, in polychromatic flow cytometry, 155
ACA (anticentromere antibody), 888–889
Acanthamoeba, 489
Accreditation of clinical immunology laboratory, 1176–1177
Accuracy, 1183–1184
Acetylcholine, 954–956
Acetylcholine receptor, 954–958
Acetylcholine receptor antibodies, 954–958
Acetylcholinesterase, 957
aCGH (array comparative genomic hybridization), 745
ACIF (anticomplement immunofluorescence assay), for human herpesvirus-6, 582–583
Acoustic radiation, 151
ACPA. See Anti-cyclic citrullinated peptide antibody
Acquired angioedema (AAE), 756–757
Acrocyanosis, cryoglobulins and, 101–102
Acrodermatitis chronica atrophicans, Lyme, 421
Activated partial thromboplastin time (APTT), 906–907
Activation-induced deaminase (AID), 59, 740
Active cell movement, signal transduction and, 351
Acute erythroid leukemia, 220
Acute glomerulonephritis, poststreptococcal, 394–395, 397, 399–401
Acute lymphoblastic leukemia (ALL), 207–214, 1150
Acute myocardial injury, 975–976
Acute- phase reaction, electrophoresis, 81–82
Acute promyelocytic leukemia (APL), 220
Acute respiratory tract infections, 598. See also Respiratory viruses
Acute rheumatic fever, 394–395, 397–401
ADA, 301, 306
Adalimumab, 361
ADCC (antibody-dependent cellular cytotoxicity), NK cell-mediated, 1156
ADDCs (analog-to-digital converters), 153
Addison disease antibodies to adrenal antigens, 931–932
clinical manifestations, 931
indirect IF test for adrenal autoantibodies, 931–932
prevalence, 931
Addressable laser bead immunoassay (ALBIA), 862–863
Adenosine, extracellular, 298
Adenoviridae, 640
Adenoviruses, 598, 644–645
clinical significance, 539
species, 645
rapiddiagnosis, 602–603
taxonomy, 599
transmission, 600
Adhesion assays, 350
Adhesion disorders, 771
Adhesion molecules, allograft rejection and, 1132
Adult T-cell leukemia/lymphoma, 1026
human T-cell lymphotropic virus, 674–675
immunophenotype of, 228
Affinity maturation, 59, 67
African sleeping sickness, 489
African tick bite fever, 463–464
African trypanosomiasis, 489
Agarose gel electrophoresis
CSF samples, 98–99
monoclonal gammopathies, 115
protein identification, 77
reference ranges, 77
serum proteins, 83
urine proteins, 85–86, 97
Age-related macular degeneration (AMD), 100, 127, 749
Agglutination, rheumatoid arthritis testing, 900
Agreement, 1184
Agrin, antibodies against, 958–959
AHF0 assay, 749–751, 752–753
analytical concerns, 753
controls, 752–753
interpretation, 754
materials and reagents, 752
pitfalls and troubleshooting, 753

Subject Index
Antibody assays
aspergillosis, 515
blastomycosis, 517
candidiasis, 518
in cryoglobulinemia, 105
Antibody avidity
human herpesvirus-6, 583
vaccine carrier virus, 559–560
Antibody deficiencies, 737–746
absent B cells, 738
clinical manifestations, 737
common variable immune deficiency (CVID), 740
defect in immunoglobulin isotype switching, 739–740
evaluation of patients, 737–741
gene analysis, 745–746
direct sequencing, 745
MPLA and aCGH, 745–746
IgA deficiency, 740–741
IgG subclass deficiency, 741
inheritance of, 739
laboratory investigation, 741–745
CD40L (CD154) expression for diagnosis of X-linked hyper IgM syndrome
CD40L (CD154) expression for diagnosis of X-linked antibody deficiency
CD40L (CD154) expression for diagnosis of X-linked lymphoproliferative syndrome 1 (XLP1), 743–745
diagnosis of X-linked hyper IgM syndrome
diagnosis of X-linked lymphoproliferative syndrome 1 (XLP1), 743–745
diagnosis of X-linked lymphoproliferative syndrome 2 (XLP2), 743–745
extended B-cell immunophenotyping, 742–743
flow cytometry, 741
next-generation sequencing, 746
phenotypes, 738
Antibody-dependent cellular cytotoxicity (ADCC), NK cell-mediated, 1156
Antibody detection
African trypanosomiasis, 489
amebiasis, 489
arboviruses, 648, 650–652
babesiosis, 490–491
cryptosporidiosis, 491–492
cyclosporiasis, 492
cysticercosis, 492–493
cytomegalovirus, 572–573
echinococcosis, 493
Epstein-Barr virus, 567–568
fascioliasis, 494
fungal infections, 504–505
giardiasis, 495
human herpesvirus-6, 581–582
leishmaniasis, 495
paragonimiasis, 496
parasitic infections, 486–488, 492
schistosomiasis, 496
strongyloidiasis, 496–497
toxocariasis, 497
toxoplasmosis, 497–498
trichinellosis, 498
Antibody-mediated rejection (AMR), 1123–1129
Antibody microarrays, 29
Antibody screening, in evaluation of humoral response to transplantation
advantages and disadvantages of, 1093
assay characteristics, 1097
interpretation, 1097
overview, 1093
quality control, 1095–1096
Antibody-secreting memory B cells, 615
Antibody titration, with polychromatic flow cytometry, 159, 161
Anti-C5a peptide antibodies, 401
Anti-calpastatin antibody, 899
Anticardiolipin assay, 907
Anticellular antibody, 843
Anticomplement antibody (ACA), 888–889
Anticoagulant, choice in cryofibrinogenemia
Anticyclic citrullinated peptide, in inflammatory bowel disease, 987–988
Anticyclic citrullinated peptide antibody (ACPA), 897–902, 923
Anticytokine autoantibodies, 323, 365–370
detection, 365–368
enzyme-linked immunosorbent assay (ELISA), 365, 367–368
immunoblotting, 367–368
luciferase immunoprecipitation systems (LIPS), 367–368
Luminox, 367–368
protein array, 367–368
radioimmunoassay (RIA), 367–368
diseases associated with, 365–366
functional assays, 369
isotype and subclass analysis, 369
titers, 369
Anti-deaminated glialin antibodies, 984–985
Anti-DNase B test, 399–400
Anti-deaminated gliadin antibodies, 984–985
Anti-IFN-γ test, 399–400
Anti-IFN-γ test, 399–400
Anti-keratin antibody, 898–899
Anti-la (SS-B) antibodies, 869
Anti-MCV (mutated citrullinated vimentin), 899
Antimitochondrial autoantibodies, 386, 909–914
in inflammatory bowel disease, 987–988
tests for, 909–911
vacuolitides associated with, 909–914
Antinuclear antibodies, 868
in scleroderma/systemic sclerosis, 888–895
Antinuclear antibody assays, 843–845
IFN-ANCA patterns, 849–857
decision-tree algorithm for classification, 856
disease associations, 854
interpretation of IFN-ANCA test, 852–857
LE cell test, 843–844
limitations, 855
methodological platforms, 843–845
automated readers for IFN-ANCA assay, 844
enzyme-based HEp-2 cell ANA, 844
indirect immunofluorescence assay on HEp-2 cells, 843–845
solid-phase ANA, 844–845
negative test, meaning of, 852
positive test
meaning of, 852–853
without clinical evidence of systemic autoimmunity, 853–855
quality control, 855, 859
reading IFN-ANCA slides, 849–852
report of IFN-ANCA test, 849, 852–857
strategy for ordering, 855
technical recommendations, 846–849
assay procedure, 846–849
cell substrate, 846
controls, 846
dark room, 849
first washing, 847
incubation with conjugate, 847–848
microscopy, 848–849
primary antibody incubation, 847
sample dilution, 846
samples, 846
second washing and coverslip mounting, 848
standard operating procedure, 846
workspace, 846
when to order, 852
Rosetta bacteria for production of large recombinant proteins, 861
use of natural autoantigens, 860
use of peptide antigens, 860
Anti-glaucoma antibodies, 984–985
Anti-glomerular basement disease, 911
Anti-glomerular basement membrane antibodies, Western blot analysis of, 385–387
Antiglycolipid antibodies, 961–964
Anti-GMI ganglioside IgM antibodies, 961–962, 964
Anti-granulocyte-macrophage colony stimulating factor autoantibodies and pulmonary alveolar proteinosis, 323
Anti-hyaluronidase test, 400
Anti-IgG-γ autoantibodies and opportunistic infection, 323
Anti-keratin antibody, 898–899
Anti-Ku antibody, 891
Anti-La (SS-B) antibodies, 869
Anti-MCV (mutated citrullinated vimentin), 899
Antinuclear antibodies, 868
in scleroderma/systemic sclerosis, 888–895
Antinuclear antibody tests, 843–845
technical recommendations, 846–849
strategy for ordering, 855
report of IIF- ANA test, 849, 852–857
LE cell test, 843–844
limitations, 855
methodological platforms, 843–845
automated readers for IIF- ANA assay, 844
enzyme-based HEp-2 cell ANA, 844
indirect immunofluorescence assay on HEp-2 cells, 843–845
solid-phase ANA, 844–845
negative test, meaning of, 852
positive test
meaning of, 852–853
without clinical evidence of systemic autoimmunity, 853–855
quality control, 855, 859
reading IIF-ANCA slides, 849–852
report of IIF-ANCA test, 849, 852–857
strategy for ordering, 855
technical recommendations, 846–849
assay procedure, 846–849
cell substrate, 846
controls, 846
dark room, 849
first washing, 847
incubation with conjugate, 847–848
microscopy, 848–849
primary antibody incubation, 847
sample dilution, 846
samples, 846
second washing and coverslip mounting, 848
standard operating procedure, 846
workspace, 846
when to order, 852
Downloaded from www.asmscience.org by IP: 54.70.40.11 On: Thu, 08 Aug 2019 03:04:07
Anti-perinuclear factor, 898–899
Anti-phospholipase A2 receptor antibodies, Western blot analysis of, 387–388
Antiphospholipid antibody syndrome (APS), 905–907
anticardiolipin assay, 907
clinical manifestations, 905
considerations when testing, 907
diagnostic criteria, 905–906
laboratory testing, 906–907
lupus anticoagulant testing, 906–907
whom to test, 907
Anti-PM-Scl antibody, 891
Anti-proliferating cell nuclear antigen (PCNA) antibodies, 870
Anti-RA33 antibody, 899
Antiretroviral therapy (ART), 545–546
Anti-ribosomal P antibodies, 870
Anti-RNA helicase A autoantibodies, 873, 890–891
Antibody detection
antigen technology, 860
use of peptide antigens, 860
use of natural autoantigens, 860
purification of recombinant proteins, 860–861
production of recombinant proteins, 860–861
puriﬁcation of autoantigens, 860
puriﬁcation of recombinant proteins, 861
Rosetta bacteria for production of large recombinant proteins, 861
use of natural autoantigens, 860
use of peptide antigens, 860
bead-based immunoassays, 862–865
addressable laser bead immunoassay (ALBIA), 862–863
advantages of, 864
challenges of multiplexed immunoassays of, 865
chemiluminescence immunoassay (CIA), 863–864
overview, 859
Autoantigens
pituitary antibodies, 946–949
purification, 860
use in autoantibody detection, 860
Autoimmune diseases. See also speciﬁc disorders
antineutrophil cytoplasmic antibodies (ANCA) associated vasculitis, 909–914
Antiphospholipid antibody syndrome (APS), 1198
ASTH (American Society for Hematology, Lymphoma), 421
Asthma
chemokines in, 346–347
exacerbation by respiratory viruses, 601
Astrakhan spotted fever, 461
Astroviridae, 640
Astroviruses, 642–644
detection and characterization, 643–644
genome, 643
overview, 642–643
Ataxia telangiectasia, 713, 722, 725
ATG16L1 gene, 986
Atherosclerosis, chemokines in, 346
Athletes software, 1087
ATLR (angiotensin II type 1 receptor), 1103–1104
ATLL. See Adult T-cell leukemia/lymphoma
Atopic dermatitis, food allergy and, 815–819, 821
Atopic disorders, 795–797
Atopy patch tests, 817–818
Atorvastatin, 1138
Atopic dermatitis, food allergy and, 815–819, 821
Atopic dermatitis, food allergy and, 815–819,
two-tier serologic testing algorithm, 423
Western blot, 422–423, 425
taxonomy of Lyme Borrelia, 419–420
transmission, 421
Borrelia, 1066, 1099
Bovine spongiform encephalopathy (BSE), 682, 684–686, 691
Bowie alignment program, 1086
Boydén chamber, 349
B-prolymphocytic leukemia, 226
Brachyspiraceae, 419
BRAF gene, 1028
Brain-abundant membrane-attached signal protein 1 (BASP1), 1137–1138
Breast cancer biomarkers, 922
circulating tumor cells, 1052, 1054, 1056–1057
Breastfeeding, human T-cell lymphotropic virus transmission by, 675
Brefeldin A, 160, 339
Brill-Zinsser disease, 462
Brochiolitis, viral, 601
Bronchitis, viral, 601
Bronchoalveolar lavage fluid, complement activation soluble products in, 1127–1128
Brucella B. abortus, 473–475, 477–478
B. canis, 473, 475
B. ceti, 473
B. inopinata, 473
B. microti, 473
B. ovis, 473
B. pinnepedialis, 473
B. suis, 473–475, 478
B. thermophila, 473
Brucella capsulatus, 473
Brucella melitensis, 473–475, 478
Brucella mongolitovis, 473
Brucella pinnipediae, 473
B. suis, 473–475, 478
clinical manifestations, 475
epidemiology, 474
laboratory diagnosis, 477–478
culture, 477
molecular diagnosis, 478
serology, 477–478
serology, 477–478
Coombs test, 478
ELISA, 478
Rose Bengal test, 477–478
serum agglutination test (SAT), 477
Western blot, 478–479
two-tier serologic testing algorithm, 423
C1, 129–131, 133–134, 749, 1100
antibodies to, in transplant rejection, 1123
deficiency, 755–756
C1r, 129–132, 749
deficiency, 755
C1s, 129–132, 749
deficiency, 755
C2, 129–133, 749
deficiency, 132, 755–756
C2a, 130–131, 755
C2b, 131, 755
C3, 133, 138–143, 749, 760
antibodies to, in transplant rejection, 1124–1126
bypass mechanism for cleavage of, 128
deficiency, 760
electrophoresis, 75–76, 79, 82–83, 86
glomerulopathy, 142–143
receptor for, 749
C3a, 131, 138, 142
C3b, 131, 133, 138–140, 749, 758, 1124–1125, 1128
C3c, 142, 1126
C3d, 142, 758, 1124–1129
C4, 129–134, 137, 749
antibodies to, in transplant rejection, 1123–1124
anti-C4 antibodies, 135
deficiency, 754–755
receptor for, 749
C4a, 129–131, 755
C4b, 129–131, 134, 755, 1123–1124, 1128
C4BP (C4 binding protein), 130–131, 138,
758, 1124
C4BP deficiency, 758
C4c, 131
C4d, 131, 758, 1100
antibodies to, in transplant rejection,
1123–1124, 1126
staining of renal allografts, 377–378, 1137
C5, 131–132, 138–140, 142–143, 749, 760
deficiency, 132, 760
monoclonal anti-C5 antibody, 127
C5a, 131, 138–139, 142–143
anti-C5a peptide antibodies, 401
C5b, 131, 139, 142
antibodies to, in transplant rejection, 1126
C6, 131, 142, 749
deficiency, 760
C7, 131, 142, 749
deficiency, 760
C8, 131, 142, 749
deficiency, 761
C9, 131, 142, 749
antibodies to, in transplant rejection, 1126
deficiency, 760–761
Ca2+ flux assays, in combined immunodeficiency (CID), 732–733
flow cytometry, 733
fluorometric assay, 733
protein tyrosine phosphorylation by
immunoblotting, 733
CA125, 1012
CagA protein, Helicobacter pylori, 404–405, 407–409
Cage effects in mouse models, 22
Calculated panel-reactive antibody (cPRA), 1065
Calcium, 632, 640
Calcitriol, 632
California, clinical immunology laboratory certifying program, 1176
Calpastatin, 899
Calprotectin, 987
cAMP response element, 934
Cancer. See also specific cancer types
 circulating tumor cells, 1051–1057
cryoglobulins and, 101
electrophoresis patterns, 82, 84
epithelial-mesenchymal transition (EMT), 1031–1052
Epstein-Barr virus, 567
immune system malignancies, 1015–1029
monitoring immunologic therapies, 1036–1048
overview, 1007
pyroglobulins and, 110
Treg depletion for treatment of, 299
tumor markers, 1028–1034
Cancer-associated retinopathy, 999, 1001
Candida, T cell response to, 272, 275
Candidiasis, 504, 506, 518–519
 T cell response to, 272, 275
Candida
 agglutination test for trypanosomiasis
gene, 986
CARD15
 CARD agglutination test for trypanosomiasis, 489
 cccDNA (covalently closed circular DNA), 624
 CC chemokines, 343
 CCR1, in rheumatoid arthritis, 346
 CCR5
 human immunodeficiency virus (HIV) and, 706–707
 in rheumatoid arthritis, 346
 CCR6, 298
 CCR7, 298, 580
 CCR6, 298
 CCRY
 human immunodeficiency virus (HIV) and, 706–707
 in rheumatoid arthritis, 346
 CDC (complement control protein), 757
 CC chemokines, 343
 acute lymphoblastic leukemia, 207, 210
 cytotoxic T cell lymphomas, 1026
 T cell lymphoproliferative disorders, 228
 lymphocytic variant hypereosinophilic syndrome, 828
 T-cell chronic lymphoproliferative disorders, 228
 lymphocytic variant hypereosinophilic syndrome, 828
 rejection and, 1137
 acute lymphoblastic leukemia, 207–210, 212
 T cell lymphomas, 1025, 1027
 acute lymphoblastic leukemia, 207, 209–210
 allograft rejection, 1132
 acute myeloid leukemia, 217–220
 B cell chronic lymphoproliferative disorders, 227
 B cell lymphomas, 1023, 1025
 B cells, 281
 chronic lymphocytic leukemia (CLL), 226, 229
 lymphocytic variant hypereosinophilic syndrome, 828
 acute lymphocytic leukemia, 209–210
 acute myeloid leukemia, 217
 acute myeloid leukemia, 217–218
 B cell chronic lymphoproliferative disorders, 227
 B cell lymphomas, 1023, 1025
 acute lymphoblastic leukemia, 209–211, 223
 CD(34)+ cells, 161
 acute lymphoblastic leukemia, 207, 209–211, 214
 cross-linking, 732–733
 human herpesvirus-6, 580
 lymphocytic variant hypereosinophilic syndrome, 828
 stimulation in intracellular cytokine stimulation, 269
 human herpesvirus-6, 578
 stimulation in intracellular cytokine stimulation, 828
 T cell lymphoproliferative disorders, 228
 T cell lymphoproliferative disorders, 228
 T cell lymphomas, 1020
 T cell lymphomas, 1027
 acute lymphoblastic leukemia, 207
 acute myeloid leukemia, 217–220
 allograft rejection, 1132
 cytomegalovirus and, 570, 573
 cytotoxic assays, 275
 Downey cells, 564, 566
 enumeration of, 135
 enzyme-linked immunosorbent spot (ELISPOT) assay, 290–292
 Epstein-Barr virus, 564, 566, 569
 human herpesvirus-6, 578
 human herpesvirus-7, 585
 human herpesvirus-6, 578
 human herpesvirus-7, 585
 human herpesvirus-8, 578
 human herpesvirus-7, 585
 loss of expression with phorbol myristate acetate (PMA)-ionomycin, 269
 lymphocytic variant hypereosinophilic syndrome, 828–829
 phytohemagglutinin (PHA) and T cell stimulation, 269
 responder cell frequency (RCF), 264
 stimulation in intracellular cytokine staining (ICCS) assay, 339–340
 T-cell chronic lymphoproliferative disorders, 228
 T cell lymphomas, 1025–1026
 Tregs. See Regulatory T cell
 CD4 Dynabeads, 1118
 acute lymphoblastic leukemia, 209, 211
 acute myeloid leukemia, 218–219, 223
 B cell chronic lymphoproliferative disorders, 227
 B cell lymphomas, 1023, 1025
 B cells, 281
 chronic lymphocytic leukemia (CLL), 226, 229
 lymphocytic variant hypereosinophilic syndrome, 828
 T cell chronic lymphoproliferative disorders, 228
 CD6
 lymphocytic variant hypereosinophilic syndrome, 828
 rejection and, 1137
 CD7
 acute lymphoblastic leukemia, 208, 210
 acute myeloid leukemia, 218–219, 223
 chronic lymphocytic leukemia (CLL), 226
 lymphocytic variant hypereosinophilic syndrome, 828
 T cell chronic lymphoproliferative disorders, 228
 T cell lymphoproliferative disorders, 228
 T cell lymphomas, 1025, 1027
 acute lymphoblastic leukemia, 212
 acute myeloid leukemia, 212
 acute myeloid leukemia, 212–213, 214
 B cell chronic lymphoproliferative disorders, 227
 B cell lymphomas, 1024–1025
 chronic lymphocytic leukemia (CLL), 226, 229
 T cell lymphomas, 1026
 CD11b, 150, 155, 749
 acute lymphoblastic leukemia, 212
 acute myeloid leukemia, 217–220
 acute lymphocytic leukemia, 212
 acute myeloid leukemia, 212
 acute myeloid leukemia, 212
CD23 (continued)
- B-cell chronic lymphoproliferative disorders, 227
- chronic lymphocytic leukemia (CLL), 226
- hairy cell leukemia, 1028
- Langerhans cells, 1028

CD13
- acute lymphoblastic leukemia, 211–212
- acute myeloid leukemia, 217–220
- chronic lymphocytic leukemia (CLL), 226

CD14
- acute lymphoblastic leukemia, 212
- acute myeloid leukemia, 217–218, 220
- in assays for PNH, 172, 174–175, 177
- Langerhans cells, 1028

CD15
- acute lymphoblastic leukemia, 212
- acute myeloid leukemia, 217–220
- in assays for PNH, 171–172, 175, 177–178
- Hodgkin’s lymphoma, 1027–1028

CD15s deficiency
- deficiency, 201
- leukocyte adhesion deficiency (LAD), 770–771

CD19
- acute lymphoblastic leukemia, 207–208, 210, 212–213
- acute myeloid leukemia, 217–218
- B-cell chronic lymphoproliferative disorders, 227
- B cells, 280–281
- chronic lymphocytic leukemia (CLL), 226–229, 232
- deficiency, 240
- human herpesvirus-8, 586–587
- plasma cells, 239–246
- T-cell lymphoblastic lymphoma, 1021

CD20
- acute lymphoblastic leukemia, 207–208, 210, 212–213
- B-cell chronic lymphoproliferative disorders, 227
- B cells, 280–281
- chronic lymphocytic leukemia (CLL), 226–227, 229
- Hodgkin’s lymphoma, 1028
- plasma cells, 239–240, 243
- removal by pronase treatment of cells, 1099
- T cell lymphoblastic lymphoma, 1021
- tissue rejection and, 1137

CD21, 563, 1028
- acute lymphoblastic leukemia, 208–210, 212
- B-cell chronic lymphoproliferative disorders, 227
- chronic lymphocytic leukemia (CLL), 226, 229

CD23
- B-cell chronic lymphoproliferative disorders, 227
- B-cell lymphomas, 1023
- B cells, 281
- chronic lymphocytic leukemia (CLL), 226, 229
dendritic cells, 1028

CD24, in assays for PNH, 172–173, 175, 177
CD25
- acute lymphoblastic leukemia, 212
- B-cell chronic lymphoproliferative disorders, 227
- chronic lymphocytic leukemia (CLL), 226
dacarbazine (anti-CD25 antibody), 299
deficiency, 723, 727–728
- mast cells, 831–833
- T-cell chronic lymphoproliferative disorders, 228
- T-cell lymphomas, 1026
- T cells, 296–298

CD27
- B cells, 281
- lymphocytic variant hypereosinophilic syndrome, 828
- plasma cells, 239–242, 245–246

CD28
- plasma cells, 239–240, 242, 244

CD30
- Hodgkin’s lymphoma, 1028
- T-cell lymphomas, 1027

CD33
- acute myeloid leukemia, 217, 220, 223
- in assays for PNH, 171–172
- chronic lymphocytic leukemia (CLL), 226
- plasma cells, 239–240

CD34/CD34+ cells, 147

CD34
- acute myeloid leukemia, 217–218, 220
- acute lymphoblastic leukemia, 207–211
- chronic lymphocytic leukemia (CLL), 226–229
- Hodgkin’s lymphoma, 1028
- in assays for PNH, 171–172, 175, 177–178
- B-cell lymphomas, 1024

CD35
- 130–131, 138, 749

CD36
- acute myeloid leukemia, 218, 220

CD38
- acute lymphoblastic leukemia, 207, 209
- acute myeloid leukemia, 217, 219–220
- B-cell lymphomas, 1024
- chronic lymphocytic leukemia (CLL), 226, 232
- plasma cells, 236, 238–240, 242, 246–247

CD39, Treg cells, 296–298

CD40
- X-linked hyper IgM syndrome (XHIM)
- and, 726

CD40L
- expression for diagnosis of X-linked hyper IgM syndrome (HIGM), 742–744
- as marker of T cell activation, 269–270, 275

CD40 ligand deficiency screens, 201–203

CD43
- chronic lymphocytic leukemia (CLL), 226, 229

CD45
- acute lymphoblastic leukemia, 207–214
- acute myeloid leukemia, 217–222
- in assays for PNH, 175, 178
- B-cell lymphomas, 1024
- chronic lymphocytic leukemia (CLL), 226, 229
- in flow cytometry of hematopoietic stem cells, 183–195
- plasma cells, 239–242, 245–246

CD46, 130–131, 138–139, 141, 580, 749, 1124

CD54, 155, 238–240, 239

CD55, 131, 138–139, 141, 749
- absence in PNH, 168–169
- in assays for PNH, 170
- flow cytometry quantification, 150

CD56
- acute myeloid leukemia, 218–219, 223
- NK cell defects, 777
- NK cells, 300–301, 305–306
- plasma cells, 239, 242
- T-cell chronic lymphoproliferative disorders, 228
- T-cell lymphomas, 1027

CD56dim, 300

CD57, T-cell chronic lymphoproliferative disorders, 228

CD57lig, 305

CD59, 131, 138, 1126
- absence in PNH, 168–169
- in assays for PNH, 169–172, 174, 180
- deficiency, 761
- flow cytometry quantification, 150

CD61, acute myeloid leukemia, 220

CD62L, 155
- in cryoprotected peripheral blood mononuclear cells, 266
- NK cells, 300
- CD63, as basophil surface activation marker in allergy, 791, 806, 821

CD64, 32–33
- acute lymphoblastic leukemia, 212
- in assays for PNH, 171–172, 175, 177–178
- CD65, in acute lymphoblastic leukemia, 211

CD66b, in assays for PNH, 170

CD68, 1127

CD69
- as basophil surface activation marker in allergy, 806, 826
- as marker of T cell activation, 269, 275
- NK cells, 301, 305
- X-HIGM screening, 731–732

CD71, acute myeloid leukemia, 217–218, 220

CD73, 298

CD79a, 52, 209, 212
- B-cell lymphomas, 1024
- T-cell lymphoblastic lymphoma, 1021

CD79b, 52

CD79a, 52, 209, 212

CD81
- as basophil surface activation marker in allergy, 806, 826
- as marker of T cell activation, 269, 275

CD82
- acute lymphoblastic leukemia, 207–214
- chronic lymphocytic leukemia (CLL), 226, 229

CD83
- as basophil surface activation marker in allergy, 806, 826
- as marker of T cell activation, 269, 275

CD84
- acute lymphoblastic leukemia, 207–214
- chronic lymphocytic leukemia (CLL), 226, 229

CD85j
- deficiency, 201
- leukocyte adhesion deficiency (LAD), 770–771

CD86
- as basophil surface activation marker in allergy, 806, 826
- as marker of T cell activation, 269, 275

CD90, 52, 209, 212
- B-cell lymphomas, 1024
- T-cell lymphoblastic lymphoma, 1021

CD95
- 52
- B-cell chronic lymphoproliferative disorders, 227
- chronic lymphocytic leukemia (CLL), 226, 229
Chlamydia trachomatis, 453–458
Chlamydia, 453–458
Chromatogram, 1080
Clinical immunology laboratory accreditation and licensure, 1176–1177
American Society for Histocompatibility and Immunogenetics (ASHH), 1177
College of American Pathologists, 1176–1177
The Joint Commission, 1177
proficiency testing, 1177
credentialing agencies and programs, 1178–1179
federal government agencies and regulatory issues, 1171–1175
analyte specific reagents regulation, 1175
Clinical Laboratory Improvement Amendment (CLIA), 1171–1172, 1174–1175
Good Laboratory Practices (GLP) Regulations, 1175
laboratory-developed tests regulation, 1175
website addresses of governmental agencies, 1173
international issues, 1171–1175
quality control, 1177–1179
state certifying programs, 1175–1176
California, 1176
New York State, 1176
Washington State, 1175
validation, 1180–1187, 1190

Delta heavy chain, 66–67

Deltavirus (genus), 674

Dendritic cells, 1023
 in allergic conditions, 801, 807
 follicular, 1028
 interdigitating, 1028
 interferon alpha production, 807
 Langerhans cells, 1028
 proliferative histiocytic lesions, 1028

Dengue virus, 648–653

Denileukin diftitox, 299

Dermatitis herpetiformis, 984

Density gradients, in polychromatic flow cytometry, 153

Dendritic cells, 1023

Deltaretrovirus (genus), 674

Delta heavy chain, 66–67

Diabetes mellitus

Dimethyl sulfoxide (DMSO), as

Dilute Russell Viper Venom time assay, 906

Dilated cardiomyopathy, 975–978

DiGeorge syndrome, 713

Diffuse large B-cell lymphoma (DLBCL), 226, 227, 1020, 1024–1025

Difference gel electrophoresis (DIGE), 6

Dideoxynucleotides (ddNTPs), 5

Direct antiglobulin test, for autoimmune hemolytic anemia, 991

Direct detection
 herpes simplex virus, 551–552
 viral infections, 538–543

Direct fluorescent antibody (DFA) adenoviruses, 603

Chlamydia trachomatis, 454

Cryptosporidiosis, 491–492

enterovirus, 603

Francisella, 479

giardiasis, 495

herpes simplex virus, 552

human metapneumovirus, 603

influenza virus, 603

parainfluenza viruses, 603

Pneumocystis jirovecii, 527

rabies virus, 666, 671

respiratory syncytial virus, 603

respiratory viruses, 603

trichomoniasis, 498

varicella-zoster virus, 558

viral infections, 542

Disease, animal models of chemokines and chemokine receptors in, 353

DFA. See Direct fluorescent antibody

DHR. See Dihydorhodamine

DiGeorge syndrome, 713

DiGeorge syndrome, 713

Dihydorhodamine

DiGeorge syndrome, 713

Dihydorhodamine

Diffuse large B-cell lymphoma (DLBCL), 226, 227, 1020, 1024–1025

Dimethyl sulfoxide (DMSO), as

cryoprotectant, 263

DrB1 locus, 1066

Droplet digital PCR, for human T-cell lymphotropic virus, 678

Drug-induced vasculitis, 913

Duck hepatitis virus, 624

DuraClone, 159

Dystrophin, 978

Early T-cell precursors (ETPs), 207, 210–211

Eastern equine encephalitis (EEE), 648–656

EBERs (Epstein-Barr virus-encoded RNA transcripts), 567

EBNA (Epstein-Barr virus nuclear antigens), 563–564, 566–567

Ebola virus, 651

EBV. See Epstein-Barr virus

EC (endothelial cell) crossmatch, 1105

EC (endothelial cell) crossmatch, 1105

Echinococcus diagnosis, 486–487, 493

E. granulosus, 493

E. multilocularis, 493

ECL assay. See Electrochemiluminescence (ECL) assay

Eculizumab, 169, 761

EDTA, in cryothrinogenemia testing, 108–109

Edu (5-ethyl-2′-deoxyuridine), 270, 271, 277

EE (eastern equine encephalitis), 648–656

EF (European Federation of Immunogenetics), 1075

EFLM (European Federation of Clinical Chemistry and Laboratory Medicine), 1179

EGID. See Eosinophilic gastrointestinal diseases

EGPA (eosinophilic granulomatosis with polyangiitis), 829

Ehrlichia

E. chaffeensis, 462–464, 466, 468

E. ewingii, 462–463, 468

E. muris-like agent, 462–463, 468

E. ruminantium, 462–468

DiGeorge syndrome, 713

DiGeorge syndrome, 713

Dihydorhodamine

Diffuse large B-cell lymphoma (DLBCL), 226, 227, 1020, 1024–1025

DiGeorge syndrome, 713

Dihydorhodamine (DHR)

analysis of FMN H2O2 production by flow cytometry of dihydorhodamine 123 staining, 310–312

interpretation and limitations, 312

principle, 310

procedure, 311–312

reagents, 310–311

zinc transporter-8 (ZnT8) subclass and isotope determination, 945

zinc transporter-8 (ZnT8)

zinc transporter-8 (ZnT8)
Enzyme-linked immunosorbent spot (ELISPOT) assay (continued)
cellular immune response in transplantation, evaluation of, 1113–1114
clinical significance, 1114
pitfalls and troubleshooting, 1114
for circulating tumor cells, 1054
cytomegalovirus, 573
data analysis methods, 293
detection of antigen-specific T cells, 261, 290–293
enhancement methods, 291–293
establishing background levels, 292
positive controls, 291–292
Epstein-Barr virus, 569
herpes simplex virus, 553
identifying positive responses, 292
immunologic monitoring, 1045
intracellular cytokine staining (ICS) assay
immunologic monitoring, 1045
identifying positive responses, 292
herpes simplex virus, 553
Epstein-Barr virus, 569
enhancement methods, 291–293
protocol, 290–291
establishing background levels, 292
quantifying cytokine-producing cells, 265
validation, 292, 1180, 1184–1187
Eosinophilia
eosinophilic gastrointestinal diseases (EGID), 783, 829–831
hyper eosinophilic syndrome (HES), 783, 825–829
IgE and IgG serology in, 796
secondary causes, 826
Eosinophilic angiocentric fibrosis, 79
Eosinophilic esophagitis, 829–830
Eosinophilic gastrointestinal diseases (EGID), 783, 829–831
definition, 829–830
diagnosis, 830
treatment, 830–831
Eosinophilic granulomatosis with polyangiitis (EGPA), 829, 913
Epidemic typhus, 461, 463
Epithelial cell adhesion molecule (EpCAM), 1024
Epithelial membrane antigen, 1024, 1027
Epithelial-mesenchymal transition (EMT), 1051–1052
Epitope testing, of autoantibodies in diabetes, 945
Epsilon heavy chain, 66–67
Epstein-Barr virus, 563–570
antibody detection, 567–568
biology, 563–564
IgZLF1 protein, 563
oncology, 567
cancers, 567
central nervous system infections, 567
clonality analysis, 569–570
culture, 569
DNA detection, 569
eye antigen, 568
ELISPOT, 569
enzyme immunoassay (EIA), 564, 567–568
hepatitis, 564
heterophile antibody test, 565–567
IgA detection, 568
IgG detection, 568
immunoblotting, 568–569
in immunocompromised host, 567
immunohistochemistry (IHC), 567–568
indications for laboratory tests, 564–567
indirect fluorescent antibody (IFA), 564
in situ hybridization (ISH), 568
latency, 563
lymphomas, 1020
neutralization assay, 569
past infection, documentation of, 564
PCR, 568
pharyngitis, 600
prevalence, 564
primary infections, 564–567
rapid diagnosis, 539
reactivation, 563
T-cell lymphomas, 1026–1027
T lymphocytes, EBV-specific, 569
T or NK cell lymphoproliferative diseases, 567
transmission, 564
viral capsid antigen, 564–568
viral loads, 567
viremia, 565
Epstein-Barr virus-encoded RNA transcripts (EBERs), 567
Epstein-Barr virus nuclear antigens (EBERs), 567
Epstein-Barr virus nucleic antigens (EBNA), 563–564, 566–567
ERAP (endoplasmic reticulum aminopeptidase) 2 gene, 998
Erlend- Chester disease, 1028
ERIC (European Research Initiative in CLL), 232
Erythema infectiosum, 591–592
Erythema marginatum, streptococcal, 395
Erythema migrans, Lyme disease, 421–426
Erythrocytes
autoimmune hemolytic anemia, 990–993
paroxysmal nocturnal hemoglobinuria (PNH), 168–180
Erythrocyte sedimentation rate, as rheumatoid arthritis biomarker, 922, 924
Erythrocytes lysis, 155
Erythropoietin (EPO) autoantibodies, 366
Erythropoiesis, 892
Erythropoietin, 892
Ferricytochrome c, quantitative analysis of
O2− generation using SOD-inhibitable ferricytochrome c reductase, 314–315
interpretation and limitations, 315
principle, 314–315
procedure, 315
reagents, 315
results and normal range, 315
FEVI (forced expiratory volume in 1 second), 810–811
FFI (familial familial insomina), 682, 687, 690–691
FHL (familial hemophagocytic lymphohistiocytosis), 204
Fibrin, crythrobrinogenemia and, 106–110
Fibrin binding globulin, 899
Fibrinogen, crythrobrinogenemia, 106–110
electrophoresis, 79, 86–87
Electron microscope, 155–156
Ficolin, 133–134, 756
Ficol-Hypaque density-gradient separation, 153–156
Fifth disease, 591–592
Filariasis, 494–495
FilmArray Respiratory Panel, 605–606
Filtration assays, for circulating tumor cells, 1054
Filter assays, for cultivating tumor cells, 1054
FISH. See Fluorescent in situ hybridization
Fit-for-purpose, 1182
subject index

FLAER (fluorescent derivative of bacterial pro-aerolysin), in PNH detection assays, 169, 172–178, 180
Flagellin, Borella burgdorferi, 421–422
Flaviviruses, 626–627
Flavivirus, 627
FlowCAP, 164
Flow cytometry. See also Polychromatic flow cytometry
 - acute lymphoblastic leukemia/lymphoma
 - immunophenotyping, 207–214
 - acute myeloid leukemia (AML), 217–223
 - allergen extract potency testing, 791
 - antibody deficiencies, laboratory investigation of, 741
 - automated liquid-handling systems, 1189–1190
 - basophil activation testing, 821
 - bead array assays, 332–334
 - CD34 cell enumeration, 150
 - CD34+ hematopoietic stem cells enumeration, 182–196
 - benefits, 190–191
 - CD34+ cell subsets in backup marrow, 196
 - clinical issues, 183
 - clinical utility, 195–196
 - commercial kits based on ISHAGE guidelines, 187–190
 - controls for rare-event detection, 184
 - early methods, 183
 - graft assessment, 183
 - immunological characterization of
 CD34+ stem cells, 193–195
 - ISHAGE protocol, basic, 185
 - ISHAGE single platform with viability assessment, 185–187
 - lysing agents, 191
 - negative antibody controls, 191
 - quality assurance, 191
 - sequential Boolean gating, 184–185
 - simultaneous CD34+ and CD3- cells, 192–193
 - single-platform absolute CD34+ count, 185
 - statistical issues in rare-event detection, 183–184
 - technical issues, 184
 - chemokine/chemokine receptor assays, 348
 - chimerism testing, 1165
 - chronic lymphocytic leukemia (CLL), 226–232
 - minimal residual disease, 232
 - role in diagnosis, 226
 - role in prognostication, 226–227
 - sample preparation, 227–228
 - ZAP-70 analysis, 229–232
 - circulating tumor cells, 1054
 - combined immunodeficiency (CID), 729–732
 - Ca2+ flux assay, 733
 - enumeration of lymphocyte cell populations, 729–730
 - FoxP3 analysis, 731
 - intracellular cytokine staining, 730
 - intracellular protein expression and T-cell differentiation, 730
 - T-cell activation, 731–732
 - tyrosine phosphorylation (phosphoepitope analysis), 732
 - WASP, SAP, or XIAP expression, 731
 - compensation
 - fluorescence, 150
 - hardware, 149
 - software, 149
 - complement control proteins, 749
 - cytokine measurement, 323, 338–340
 - bead array assays, 332–334
 - cell processing, 339–340
 - costimulation, 338
 - data analysis, 340
 - resting prior to stimulation, 338
 - secretion inhibitors, 339
 - specimen types, 338
 - stimulating antigens, 339
 - stimulation kinetics, 339
 - stimulation vessels, 338
 - workflow of intracellular cytokine staining (ICS) assay, 340
 - future technologies and applications, 251–257
 - hantaviruses, 663
 - history of, 149
 - humoral response in transplantation, 1094–1095
 - evaluation of advantages and disadvantages, 1094–1085
 - assay characteristics, 1093
 - general principles, 1094
 - IgG4-related disease, 920
 - immunologic monitoring cytokine, 1042
 - intracellular staining for flow cytometry, 1042
 - multiparameter flow cytometry, 1042–1043
 - immunophenotyping cryopreserved peripheral blood mononuclear cells (PMBC), 265–266
 - interferon assessment, 876
 - laboratory investigation of antibody deficiencies, 741–742
 - leukocyte adhesion deficiency (LAD), 771
 - lymphoma, 1017
 - mass cytometry, 251–253
 - acquisition speed, 252–253
 - cell loss, 253
 - clinical applications, 256–257
 - data analysis, 253, 255
 - logistic considerations, 251
 - phospho-flow combined with, 256
 - sensitivity, 253
 - SPADE, 253, 255
 - spillover and contamination, 253–254
 - workflow overview, 252
 - multiparameter CPEF-MLC, 1111–1112
 - multiparametric intracellular cytokine staining, 1114–1116
 - non-HLA antibody testing, 1104
 - paroxysmal nocturnal hemoglobinuria, 175
 - high-sensitivity detection of red and white blood cells, 168–180
 - assay sensitivity, 179–180
 - assay validation, 178–180
 - evolution of methods, 168–169
 - fluorescence-minus two controls, 177–178
 - general guidelines, 169
 - high-sensitivity five-color WBC assay, 175, 177
 - high-sensitivity four-color WBC assay, 170–171
 - high-sensitivity RBC assay, 170–171
 - high-sensitivity six-color WBC assay, 175, 178
 - issues with early flow methods, 169
 - presence of type II populations in neutrophils and monocytes, 174–176
 - quality control and assurance, 175, 177–178
 - routine versus high-sensitivity, 169
 - strategies for outgoing antibody-conjugate verification, 175
 - verification of instrument set-up and antibody performance, 178–179
 - phospho-flow, 253–256
 - antibodies, 255
 - data analysis, 255
 - fixation and permeabilization, 255
 - mass cytometry combined with, 256
 - staining of cell surface epitopes, 255
 - stimuli, 255
 - technical considerations, 253, 255
 - plasmablaster, 920
 - plasma cell disorders, 235–247
 - clinical utility of MFC
 - immunophenotyping, 243–247
 - diagnosis and classification, 243
 - MRD monitoring in multiple myeloma, 244–247
 - prognostic stratification of patients, 243–244
 - quantitation of plasma cells in bone marrow aspirated samples, 242–243
 - primary immunodeficiency diseases, 199–206
 - CD40 ligand deficiency screens, 201–203
 - CD107a as surrogate of degranulation in T cell and NK cell cytotoxicity, 204–205
 - cell surface adhesion marker upregulation in LAD-1 (leukocyte adhesion deficiency type-1), 201–202
 - examples, table of, 200
 - familial hemophagocytic lymphohistiocytosis (FHL), 204
 - oxidative burst assay screen for CGD (chronic granulomatous disease), 204
 - phosphorylated kinase substrate evaluation, 199–200
 - STAT1 gain-of-function alleles in CMCD (chronic mucocutaneous candidiasis), 200–201
 - STAT1 phosphorylation levels as signal for type 1 cytokine signaling abnormalities, 200
 - protein detection, 31–34
 - quality control, 1188–1189
 - T cell proliferation measurement, 270
 - uses, 150
 - validation, 1180–1182, 1184–1187
 - “Flow Cytometry Standard” (Fcs) files, 149, 164
 - Fluidics, 151
 - Fluorescence enzyme immunoassay (FEIA), for systemic sclerosis-related antinuclear antibodies, 892
 - Fluorescence microscopes, 379
 - Fluorescence-minus-one (FMO), 164, 1185–1187
 - Fluorescence quantum yield, 159, 161
 - Fluorescence quantum yield, 156
 - Fluorescence-activated cell sorter (FACS), 159, 161
 - antibody deficiencies, 742–745
 - neutrophil defects, 767–771, 773
 - Fluorescent antibody to membrane antigen (FAMA) assay, for varicella-zoster virus, 538–539

SUBJECT INDEX
Fluorescent-antibody virus neutralization (FAVN), for rabies virus, 669–670
Fluorescent in situ hybridization (FISH) chimerism testing, 1164–1165
lymphoma, 1019–1020, 1024–1025, 1027
myeloproliferative hypereosinophilic syndromes, 827
Fluorescent treponemal antibody absorption (FTA-ABS) test, 414–417
Fluorochromes
polychromatic flow cytometry, 149–150, 158–160
Fluorescent treponemal antibody absorption (FTA-ABS) test, 414–417
Forced expiratory volume in 1 second (FEV1), 231
Food allergy, 783, 815–822
atopic dermatitis and, 815–819, 821
cell-mediated disorders, 815–816
disorders, 816
foods commonly associated with, 815 IgE-mediated, 815–816
RAST (radioallergosorbent test), 817, 819
signs and symptoms, 816
skin testing, 808
in vitro tests, 819–822
basophil responses, 821
component resolved diagnostics, 820–821
quantification of food-specific IgE antibodies, 819–820
quantification of food-specific IgG antibodies, 821
specific epitope analysis, 821–822
total IgE, 821
tryptase, serum, 821
in vitro tests, 816–819
atopy patch tests, 817–818
elimination diets, 818
fresh food skin prick tests, 817
intradermal skin tests, 817
oral food challenges, 818–819
skin prick tests, 816–817
Food and Drug Administration (FDA) analyte specific reagents regulation, 1175
Good Laboratory Practices (GLP) Regulations, 1175
laboratory-developed tests regulation, 1175
test system premarket approval process, 1172
Food challenges
double-blind, placebo-controlled, 815–822
oral, 818–819
Forced expiratory volume in 1 second (FEV1), 810–811
Fourier transform ion cyclotron resonance (FTICR) MS, 1143
FOX3, 13, 275, 296, 1046
CD25 deficiency and, 727
detection in intracellular cytokine staining (ICS) assay, 339
flow cytometry, 731
Francesella clinical manifestations, 475
epidemiology, 474
F. novicida, 473
F. philomiragia, 473–474, 479
F. tularensis, 473–475, 479
F. tularensis subsp. holarctica, 473–475
F. tularensis subsp. mediasiatica, 473–474
F. tularensis subsp. novicida, 473–474, 479
F. tularensis subsp. tularensis, 473–475
immunological methods, 479
laboratory diagnosis, 478–479
culture, 478
immunological methods, 479
molecular methods, 479
serology, 478–479
serology, 478–479
ELISA, 479
microagglutination, 478–479
tube agglutination, 478–479
taxonomy, 473–474
Franciscella, 473–474
Free light chain(s) clearance/metabolism of, 89
diseases, 94
electrophoresis, 94
tuberocruculae, 473–474
Franciscella tularensis, 473–475
Franciscella tularensis subsp. mediasiatica, 473–474
Franciscella tularensis subsp. novicida, 473–474
Franciscella tularensis subsp. tularensis, 473–475
Gain-of-function variants, in interferon regulatory factors, 359
Gajadhar, Carlton, 687
Gamma interferon (IFN-γ), 1046
Gene therapy, for severe combined immunodeficiency (SCID), 715
Gene expression profiles in allografts, techniques for characterization, 1132–1135
absolute quantification of mRNA levels by PCR, 1133
competitive quantitative PCR, 1133
microarray assays, 1134
next-generation sequencing, 1134–1135
PCR, 1132–1133
preamplification-enhanced real-time PCR assay, 1133–1134
real-time quantitative PCR, 1133
Gene expression profiles in allografts, techniques for characterization
Gene therapy, for severe combined immunodeficiency (SCID), 715
Genome Analysis Toolkit (GATK), 7–8, 1087
Genenius HIV1/2 supplemental assay, 703–704
Gene expression profiles in allografts, techniques for characterization
Genotyping
HLA typing, 1074
human immunodeficiency virus (HIV), 706
killer cell immunoglobulin-like receptors (KIRs), 1154, 1157–1158
mumps virus, 614
cancer, 464
viral infections, 544, 546
German measles, 615
Gerstmann-Sträussler-Scheinker (GSS) syndrome, 682, 687, 690
Giant cell arteritis, 911
Downloaded from www.asmscience.org by IP: 54.70.40.11
On Thu, 08 Aug 2019 03:04:07

GAE (granulomatous amebic encephalitis), 489
Gain-of-function variants, in interferon regulatory factors, 359
Gajadhar, Carlton, 687
Gamma interferon (IFN-γ), 1046
Gene expression profiles in allografts, techniques for characterization
Genotyping
HLA typing, 1074
human immunodeficiency virus (HIV), 706
killer cell immunoglobulin-like receptors (KIRs), 1154, 1157–1158
mumps virus, 614
cancer, 464
viral infections, 544, 546
German measles, 615
Gerstmann-Sträussler-Scheinker (GSS) syndrome, 682, 687, 690
Giant cell arteritis, 911
Hematopoietic stem cell transplantation (HSCT), 182–183
chimerism testing after, 1161–1165
Epstein-Barr virus and, 563–564
graft assessment by CD34+ cell enumeration, 183
killer cell immunoglobulin-like receptors (KIRs) in, 1154–1156
augmenting NK cell-mediated benefits after transplant, 1156
control of viral infections after transplant, 1155–1156
determination of donor NK cell alloreactivity, 1154–1155
donor selection based on KIR genotype, 1155
mismatching, 1155
measuring graft adequacy, 182
mismatching, 1066, 1155
for severe combined immunodeficiency (SCID), 715
Hemoglobinuria. See Paroxysmal nocturnal hemoglobinuria
Hemolysin, 510
Hemolytic anemia, autoimmune, 990–993
Hemolytic uremic syndrome, atypical,
Hemolytic anemia, autoimmune, 990–993
Hemoglobinuria. See Paroxysmal nocturnal hemoglobinuria
HENoch-Schönlein purpura, 755
Hepatitis B virus, 624–626
Hepatitis A virus, 622–624
Hepatitis, 620–635
(genus), 624
Hepadnavirus (genus), 626
Hepacivirus
Henoch- Schönlein purpura, 755
Hemophagocytic lymphohistiocytosis (HLH),
Hemolytic uremic syndrome, atypical,
Hemolytic anemia, autoimmune, 990–993
Hemoglobinuria. See Paroxysmal nocturnal hemoglobinuria
Hemolysin, 510
Hemolytic anemia, autoimmune, 990–993
Hemolytic uremic syndrome, atypical,
Hemolytic anemia, autoimmune, 990–993
Hemoglobinuria. See Paroxysmal nocturnal hemoglobinuria
HENoch-Schönlein purpura, 755
Hepatitis B virus, 624–626
Hepatitis A virus, 622–624
Hepatitis, 620–635
(genus), 624
Hepadnavirus (genus), 626
Hepacivirus
Henoch- Schönlein purpura, 755
Hemophagocytic lymphohistiocytosis (HLH),
Hemolytic uremic syndrome, atypical,
Hemolytic anemia, autoimmune, 990–993
Hemoglobinuria. See Paroxysmal nocturnal hemoglobinuria
Hemolysin, 510
Hemolytic anemia, autoimmune, 990–993
Hemolytic uremic syndrome, atypical,
natural killer cell receptor ligands, 1150–1158
nomenclature, 1072
relevance in transplantation, 1091–1092
HLA Caller software, 1087
HLA-DR, 208, 211, 217–220, 1125
HLA genes
organization/structure, 1069–1071
polymorphic nature of, 1069
publication of data, 1071
role of, 1069
HLA Twin software, 1087
HLA typing
in celiac disease, 984, 986
contamination prevention, 1075–1076
future of, 1087–1088
contamination prevention, 1075–1076
in celiac disease, 984, 986
role of, 1069
publication of data, 1071
polymorphic nature of, 1069
relevance in transplantation, 1091–1092
nomenclature, 1072
sequence-specific oligonucleotide probes
Sanger sequence-based typing (SBT), 69–70
HLH (hemophagocytic lymphohistiocytosis), 204
HME (human monocytotropic ehrlichiosis), 462–464, 466, 468
HMG (high-mobility group) proteins, 58
Hodgkin’s lymphoma
classical, 1027–1028
nodular lymphocyte-predominant, 1025, 1028
Hook effect, 68–69
Horizon stains, 149
Horseshoe crab, 127, 129, 514
HSCT. See Hematopoietic stem cell transplantation
hSLAM (human signaling lymphocyte activation molecule) protein, 611
HTLV. See Human T-cell lymphotropic virus
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 675
Human bocavirus
description of agents, 599–600
new species, 598
specimen collection, transport, and storage, 602–603
taxonomy, 599
Human Cell Differentiation Molecules (HCDM), 158
Human coronavirus
clinical significance, 600–602
description of agents, 599
epidemiology, 600
Middle East respiratory syndrome (MERS) coronavirus, 538, 598–599, 602–603
new species, 598
rapid diagnosis of, 539
severe acute respiratory syndrome (SARS) coronavirus, 538, 599, 602
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600
Human Genome Variation Society nomenclature, 6
Human granulocytic anaplasmosis (HGA), 462–463, 466, 468
Human herpesvirus-6, 578–585
antibody avidity assay, 583
antibody detection, 581–582
anticomplement immunofluorescence assay (ACIF), 582–583
antigen detection, 580–582
antiviral susceptibility testing, 584–585
biological characteristics, 579
clinical manifestations, 579
collection and storage of specimens, 582
culture, 581
diagnostic methods, 581
enzyme immunoassay (EIA), 581, 583
epidemiology and clinical characteristics, 580
genetic polymorphism, 578
genome, 578
immunohistochemistry (IHC), 580–581
immunologic diagnosis, 580–583
immunity of infection, 580
indirect fluorescent antibody (IFA), 582
molecular diagnosis, 583–584
morphology, 578
neutralization test, 583
nucleic acid detection, 581, 583–584
PRC, 583–584
radioimmunoprecipitation assay (RIA), 583
rapid diagnosis, 539
reactivation, 579–580
respiratory symptoms, 600
serology, 583
spin amplification shell vial assay, 581–582
transmission, 579–580
Western blot, 583
Human herpesvirus-7, 585–586
antigenemia assay, 586
biological characteristics, 579
clinical disease, 581
culture, 581
diagnostic methods, 581
genome, 585
immunologic and molecular diagnosis, 585–586
indirect fluorescence antibody (IFA), 586
nucleic acid detection, 581
reactivation, 585
serology, 586
Western blot, 586
Human herpesvirus-8, 586–588
biological characteristics, 579
culture, 581, 587
diagnostic methods, 581, 587–588
disease associations, 586
enzyme immunoassay (EIA), 587
epidemiology and clinical characteristics, 580
genetic diversity, 586
genome, 586
HIV coinfection, 586–588
immunoblot, 587–588
indirect fluorescence antibody (IFA), 587–588
nucleic acid detection, 581
PCR, 587
respiratory symptoms, 600
serology, 587–588
transmission, 587
Human herpesvirus 8, lymphomas and, 1020, 1025
Human Immune Monitoring Center, 148
Human immunodeficiency virus (HIV)
antiviral susceptibilities, 726–707
genotyping assays, 706
phenotyping assays, 706–707
tropism assays, 707
assay result trending, 542
chemiluminescence immunoassay (CIA), 698–700
chemiluminescence immunoassay (CLIA), 542
circulating recombinant forms, 699
coinfections/codisorders
Baronella, 474
Epstein-Barr virus, 567
human herpesvirus-6, 578–579
human herpesvirus-8, 586–588
lymphoma, 1025
strongyloidiasis, 497
syphilis, 412
toxoplasmosis, 498
Human immunodeficiency virus (HIV)
(continued)
Trypanosoma cruzi, 491
tuberculosis, 440–441
diagnosis principles and procedures, 696–707
direct detection, 701
drug resistance tests, 546
enzyme immunoassay (EIA), 542, 698–701, 703
Genius HIV/2 supplemental assay, 703–704
genotyping, 546
historical perspective, 696
hypermelanotic syndromes (HES) and, 826
IgM detection in response to infection, 543
immunochromatographic assays, 703–704
indirect fluorescence antibody (IFA), 703
laboratory markers of infection, 696–698
nucleic acid testing, 676–698
serologic tests, 698–701
specimens for antibody testing, 700–701
Western blot, 703–704
Tregs and, 296, 298–299
testing algorithms, 696–699
specimens for antibody testing, 700–701
testing algorithms, 696–699
Tregs and, 296, 298–299
viral load testing, 706
virion structure, 697
Western blot, 703

Human metapneumovirus, 598
clinical significance, 601
description of agents, 599
direct fluorescent antibody (DFA), 603
epidemiology, 600
rapid diagnosis, 539
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600

Human Microbiome Project, 22

Human monocytotropic ehrlichiosis (HME), 826

Human metapneumovirus, 598
clinical significance, 600–601
description of agents, 599
epidemiology, 600
new species, 598
rapid diagnosis, 540
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600

Human monocytotropic ehrlichiosis (HME), 826

Human metapneumovirus, 598
clinical significance, 600–601
description of agents, 599
epidemiology, 600
new species, 598
rapid diagnosis, 540
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600

Human metapneumovirus, 598
clinical significance, 600–601
description of agents, 599
epidemiology, 600
new species, 598
rapid diagnosis, 540
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600

Human T-cell lymphotropic virus (HTLV), 674–678
characteristics, 674
discovery, 674
epidemiology, 674
genomic distribution, 674
indications for testing, 675
laboratory assays, 675–678
ELISA, 676
line immunoassay, 676–677
particle agglutination, 676–677
PCR, 676–678
western blotting, 676–677
lymphoma, 1020, 1026
pathogenesis, 675
transmission, 674–675
HUMARA assay, 1018–1019
Humoral immunity
associations with deficiencies, 281
parasitic infections, 486
Humoral response in transplantation, evaluation of, 1091–1010
desensitization protocols, monitoring, 1100–1101
goals and aims, 1092
how to test, 1100
interference, 1099–1100
assessment of antibody function, 1100
autoantibodies, 1099
prognosis treatment of cells, 1099
in solid-phase immunoassays, 1099–1100
therapeutic antibodies, 1099
methods, 1092–1096
antibody screens, 1093
assay characteristics, 1093
crossmatches, 1093
patient profile, 1092
quality control, 1095–1096
techniques for testing antibody, 1093–1095
tests, 1092–1093
relevance, 1091–1092
risk assessment, 1101
test interpretation, 1097–1101
antibody screen, 1097
calculated PRA (panel-reactive antibody), 1097
crossmatch test, 1097
phenotype panel, 1097–1098
single-antigen panel, 1098–1099
virtual crossmatching, 1097–1099
test validation, 1096–1097
when to test, 1100
whom to test, 1100
HUVS (hypocomplementemicriticarial vasculitis), 875
Hybridization protection assay, for human immunodeficiency virus (HIV), 701
Hydatid cysts, 493
Hydrogen peroxide, analysis of PMN H2O2
Hypereosinophilic syndromes (HES), 783, 788–789
Hydroxylase, 358
Iatrogenic Creutzfeldt- Jakob disease (iCJD), 682, 687, 691
ICCS (International Clinical Cytometry Society), 169, 171–173, 1185
ICS. See Intracellular cytokine staining (ICS) assay
ICSH (International Council for Standardization in Hematology), 1180, 1185
IEF (isoelectric focusing), 98–99, 791–792
IEMA (immunoenzymatic assay), 797, 799–800
IFA. See Indirect fluorescent antibody
IFCC (International Federation of Clinical Chemistry and Laboratory Medicine), 1178–1179
IFE. See Immunofraction electrophoresis
IFTI, 358
IFN. See Interferon
IFN-y release assays, tuberculosis and, 435–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and HIV-infected patients, 440–441
interpretation, 439
QuantiFERON-TB Gold In-Tube assay (QFT-GIT), 435–437, 439–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and HIV-infected patients, 440–441
interpretation criteria, 436–437
eosinophilic granulomatosis with polyangiitis (EGPA), 829
Gleich’s syndrome, 829
lymphocytic variant HES, 828–829
diagnosis, 828–829
epidemiology and clinical features, 828
treatment, 829
myeloproliferative HES, 826–828
diagnosis, 827–828
epidemiology and clinical features, 826–827
therapy, 828
patient evaluation, 826
subtypes, classification of, 826
Hypergammaglobulinemia E syndrome, 795–796
Hyper-IgM syndromes, 722, 726
Hypertrophic cardiomyopathy, 977–978
Hyperviscosity syndrome
cryoglobulins and, 101
monoclonal gammopathy, 115
pyroglobulins and, 110
symptoms, 71–72
viscosity measurement, 71
Hypoalbuminemia
in liver disease, 81
in nephrotic syndrome, 82
Hypocomplementemicriticarial vasculitis (HUVS), 875
Hypogammaglobulinemia
electrophoresis, 82
immunglobulin measurement, 82
nonsecretory multiple myeloma, 94
Hypophysitis, autoimmune, 946–949
Hypothyroidism, 933–935
IAA (insulin autoantibodies), 935–938, 941–945
Iatrogenic Creutzfeldt-Jakob disease (iCJD), 682, 687, 691
ICCS (International Clinical Cytometry Society), 169, 171–173, 1185
ICS. See Intracellular cytokine staining (ICS) assay
ICSH (International Council for Standardization in Hematology), 1180, 1185
IEF (isoelectric focusing), 98–99, 791–792
IEMA (immunoenzymatic assay), 797, 799–800
IFA. See Indirect fluorescent antibody
IFCC (International Federation of Clinical Chemistry and Laboratory Medicine), 1178–1179
IFE. See Immunofraction electrophoresis
IFTI, 358
IFN. See Interferon
IFN-y release assays, tuberculosis and, 435–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and HIV-infected patients, 440–441
interpretation, 439
Quantiferon-TB Gold In-Tube assay (QFT-GIT), 435–437, 439–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and HIV-infected patients, 440–441
interpretation criteria, 436–437
method, 435–436
reproducibility, conversions, and reversions, 437
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
variability and quality control issues, 437
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
T-SPOTTB assay, 435, 437–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and HIV-infected patients, 440–441
interpretation criteria, 439
method, 435, 437–439
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
IgA antimitochondrial autoantibodies, 966
characteristics, 66–67
class switching, 58–59
cryoglobulins, 101–102, 105
deficiency, 70, 740–741, 984
electrophoresis, 80
Epstein-Barr virus, 568
function, 280
heavy-chain disease, 94
hyperviscosity and, 71
immunofixation electrophoresis, 90–91
immunosubtraction, 91–92
measurement of, 67–68
in monoclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
polyclonal, 93
pyroglobulins, 110
structure, 52, 66–67
 subclasses, 67
IgA vasculitis, 911
IgD characteristics, 66–67
class switching, 58–59
electrophoresis, 80
in monoclonal gammopathies, 114
monoclonal, 93–94
M protein electrophoresis, 82
polyclonal, 93
pyroglobulins, 110
structure, 52, 66–67
IgD myeloma, 85
IgE allergen potency testing, 790–791
in allergic diseases
allergen-specific IgE, 795–798
total serum IgE, 796–797, 799–800
basophil histamine release assay for demonstration of activity, 802
characteristics, 66–67
class switching, 58–59
electrophoresis, 80
in eosinophilic gastrointestinal diseases (EGID), 829–830
food allergy, 815–816
quantification of food-specific IgE antibodies, 819–820
specific epitope analysis, 821–822
total IgE, 821
function, 280
hypereosinophilic syndrome, 795–796
in lymphocytic variant hypereosinophilic syndrome, 828
measurement of, 68
monoclonal, 93–94
omalizumab (anti-IgE), 795
pyroglobulins, 110
structure, 52, 66–67
total serum IgE assay, 796–797, 799–800
IgE myeloma, 80, 85
IgG, allergen-specific, 796–797, 799
anti-acetylcholine receptor antibodies, 955
anticytokine autoantibodies, 369
antimitochondrial autoantibodies, 966
Bartonella, 476
Brugia, 494
characteristics, 66–67
class switching, 58–59
complement activation, 129
Coxella, 466–467
cryoglobulins, 101–102
cryoglobulins, 101–102
echinococcosis, 493
electrophoresis, 79
Epstein-Barr virus, 565–569
food-specific IgG antibodies, quantification of, 821
function, 280
hantaviruses, 658, 660–662
heavy-chain disease, 94
hepatitis A virus, 623
hepatitis B virus, 624
hepatitis C virus, 625
human herpesvirus-6, 580, 584
human herpesvirus-8, 587–588
hyperviscosity and, 71
immunofixation electrophoresis, 79, 90–91
immunosubtraction, 91–92
Loa foai, 495
measles viruses, 611–614
measurement of, 67–68
in monoclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
mumps virus, 614–615
onchocerciasis, 494
polyclonal, 79, 92–93
pyroglobulins, 110
Rocky Mountain spotted fever, 465
rubella virus, 616–617
structure, 51–52, 66–67
subclass deficiency, 741
toxoplasmosis, 497–498
trichinellosis, 498
varicella-zoster virus, 557, 559–560
IgG4 allergen-specific, 797, 799
characteristics of molecule, 918
food-specific antibodies, 821
serum concentrations in IgG4-related disease, 919–920
IgG4-related disease, 917–920
clinical features, 917–918
abdomen, 917
chest, 917
head and neck, 917
retroperitoneum, 917–918
flow cytometry, 920
immunodiagnosis, 919
pathology, 918
physiopathology, 918–919
B-cell lineage, 918
CD4 killer cell, 919
IgG4 molecule, 918
immunoglobulin class switch, 918–919
T-cell pathways, 919
serum IgG4 concentrations, 919–920
treatment, 919
IgG avidity
cytomegalovirus, 572–573
herpes simplex virus, 553
human herpesvirus-6, 583
measles viruses, 611
rubella virus, 616
toxoplasmosis, 498
IgG ELISA, for arboviruses, 651
IgG index, 99
IgG myeloma, 89
IGH gene, 1024, 1028
IgM Bartonella, 476
characteristics, 66–67
Chlamydia pneumoniae and, 457
class switching, 58–59
complement activation, 129
Coxella, 466
cryoglobulins, 101–103, 105
cytomegalovirus, 543–544, 572
electrophoresis, 80
Entamoeba histolytica, 489
Epstein-Barr virus, 565–569
development, 280
hantaviruses, 658, 660–662
heavy-chain disease, 94
hepatitis A virus, 624
hepatitis C virus, 625
human herpesvirus-6, 580, 584
hyper-IgM syndrome type I, 58
hyper-IgM syndrome type II, 59
hyperviscosity and, 71
immunofixation electrophoresis, 90–91
immunosubtraction, 91–92
measles viruses, 611–613
measurement of, 67–68
in monoclonal gammopathies, 114
monoclonal, 93
monoclonal gammopathy of undetermined significance (MGUS), 114
M protein electrophoresis, 82–83
in multiple myeloma, 113–114
mumps virus, 614–615
parvovirus B19, 543, 592
polyclonal, 93
pyroglobulins, 110
response measurement to viral infection, 541, 543–544
Rocky Mountain spotted fever, 465
rubella virus, 616–617
structure, 52, 66–67
surfaces, 280–281
toxoplasmosis, 497–498
varicella-zoster virus, 560
Waldenström's macroglobulinemia and, 71, 113, 115
X-linked hyper IgM syndrome (XHIM), 201, 281
IgM autogglutinin, hemolytic anemia and, 990, 993
IgM capture ELISA, for toxoplasmosis, 497
IgM capture ELISA (MAC-ELISA)
arboviruses, 648, 650–651, 655
hantaviruses, 661
IgM ELISA
arboviruses, 648, 650–651
Bartonella, 476
Leptospira, 429–430
IgM paraproteinemic neuropathy, 961, 964
IHA. See Indirect hemagglutination assay
by flow cytometry
acute lymphoblastic leukemia/
lymphoma, 207–214
acute myeloid leukemia (AML),
217–223
B-cell chronic lymphoproliferative
disorders, 227
chronic lymphocytic leukemia (CLL),
226–232, 235–247
cryopreserved peripheral blood
mononuclear cells (PBMC), 265–266
plasma cell disorders, 235–247
T-cell chronic lymphoproliferative
disorders, 228
Immunoprecipitation. See also
Radioimmunoprecipitation
autoimmune myopathies
analysis of proteins, 878–883
analysis of small RNAs, 883–886
in immunofixation electrophoresis, 89–90
in immunosubtraction electrophoresis,
89, 91
LIPS (luciferase immunoprecipitation
system) assay for anti-RNP, 873
pituitary antibodies, 947
systemic lupus erythematosus (SLE),
870–873
Immunopurification, for mass spectrometry, 41
Immunostaining of tissue, in IgG4- related
diseases, 919
Immunologic therapies, monitoring,
1036–1048
challenges, 1036–1037
clinical trials with biologic agents,
1037–1038
rationale for, 1038
currently available assays, 1041
functional assays, 1043–1046
antigen-driven proliferation, 1044
cytokine production and levels, 1045
cytotoxicity assays, 1044–1045
signaling pathways, 1045–1046
suppressor cell functions, 1046
genomics, 1046
phenotypic assays, 1040–1043
epithelial-specific T cells, 1042
immune score and monitoring, 1043
intracellular staining for flow cytometry,
1042
measuring cell death, 1042
multiparameter flow cytometry,
1042–1043
neutrophil-to-lymphocyte ratio,
1041–1042
percentages versus absolute numbers of
immune cells, 1041
selection of markers, 1040–1041
subtyping of T cells, 1042
proteomics, 1046
quality control, 1046–1047
rational, 1038
statistical data analysis, 1047
strategy, 1038–1040
Immunoperoxidase assay (IPA)
amebiasis, 489
Orientia tsutsugamushi, 465
Immunophenotyping
extended B-cell, 742–743
Orientia tsutsugamushi, 465
Porphyromonas gingivalis, 527
Rocky Mountain spotted fever, 465
rubella virus, 616–617
toxoplasmosis, 497
Trypanosoma cruzi, 491
Indirect hemagglutination assay (IHA)
Entamoeba histolytica, 489
Trypanosoma cruzi, 491
Indirect immunofluorescence
gastric parietal cell antibodies, 932–933
islet cell autoantibodies (ICA), 938–939
liver kidney microsomal antibodies,
970–971
pituitary antibodies, 947–949
thyroglobulin antibodies, 930
Indirect immunofluorescence
tumoral antibody (IIF-ANA) assay, 843–857
Inducible costimulating receptor (ICOS), 740
Infectious mononucleosis, 563–564
Inflammation, allergic, 783, 801–812
assays for measurement of mediators/
markers, 801–812
airway challenges, 810–811
basophil IL-4 and IL-13 secretion,
804–806
basophil surface activation markers, 806
dendritic cells, 807
histamine, 801–803
interferon alpha production, 807
leukotriene C4, 803–804
mast cell specific, 806–807
prostaglandin D2, 807
quality assurance of in vitro assays,
807–808
skin testing, 808–810
tryptase, 806–807
Inflammatory bowel disease, 985–988
clinical characteristics, 987
diagnosis, 985, 987–988
epidemiology, 987
pathology, 986–987
quality assurance for clinical testing, 988
treatment with cytokine inhibitors, 357,
362
Infliximab, 361
Influenza-like illness, 600–601
Influenza virus, 598–607
antigen assays, 604
antigen detection, 606
antiviral susceptibility testing, 606
avian influenza, 538
biohazard, 603
clinical significance, 600–602
culture, 603, 606
description of agents, 599
direct fluorescent antibody (DFA), 603
epidemiology, 600
H1N1, 538, 601, 604–606
H3N2, 601, 606
H5N1, 538, 601, 604–606
H7N9, 538, 602
immunohematography, 603–605
molecular tests, 605–606
pathogenesis, 600
rapid influenza diagnostic tests (RDTT),
538–539, 543, 545, 604–605
taxonomy, 599
transmission, 600
vaccination, 601
viremia, 602
when to test, 602
whom to test, 602
InMAD (in vivo microbial antigen discovery),
479
Interleukin-2 (IL-2)
Interleukin-1 (IL-1)
Interferon signature, 358
Interferon regulatory factor 7 (IRF7), 359
Interferon (IFN) β
Insulinoma antigen-2 (IA-2) autoantibodies,
Insulin autoantibodies (IAA), 935–938,
INSTAND (Institute for Standardization
hybridization (ISH)
In situ ELISA, for arboviruses, 653
In situ hybridization (ISH)
arboviruses, 653
cytomegalovirus, 335
cytomegalovirus, 572
Epstein-Barr virus, 568
lymphoma, 1019
INSTAND (Institute for Standardization
and Documentation in Medical
Laboratory), 1178
Insulin autoantibodies (IAA), 935–938, 941–945
Insulinoma antigen-2 (IA-2) autoantibodies,
Insulin autoantibodies (IAA), 936–941
Insulinoma antigen-2B (IA-2B)
Integrin conformation change, measurement
of, 350–351
Interferon (IFN)
cytomegalovirus and, 570
discovery, 323
measuring type 1 interferon gene expression
in SLE, 875–876, 923
flow cytometry, 876
interferon score by quantitative PCR (qPCR), 876
Interferon-α (IFN-α)
dendritic cell production of, 807
human herpesvirus-6, 580
for mastocytosis, 834
in systemic lupus erythematous, 323, 358–359
treatment for hepatitis C, 323, 357, 362
Interferon-β (IFN-β), treatment for multiple
sclerosis, 323, 357, 362
Interferon-γ (IFN-γ)
allograft rejection, 1132
anti-IFN-γ autoantibodies and
opportunistic infection, 323
autoantibodies, 365–366, 369
cytomegalovirus and, 573
elevation in rheumatoid arthritis, 357
ELISPOT assay, 305
enzyme-linked immunosorbent spot
(ELISPOT) assay, 290–291
human herpesvirus-6, 580
NK cells, 50
production in peripheral blood
mononuclear cells, 264, 266
treatment for chronic granulomatous
disease, 323
Interferon-γ receptors (IFN-γR), 200
Interferon regulatory factor 5 (IRF5), 359
Interferon regulatory factor 7 (IRF7), 359
Interferon signature, 358
Interferon-stimulated exonuclease gene 20
αs (ISG20), 1138
Interleukin-1 (IL-1)
biomarker of chronic myocardial injury,
976–977
biodemarker of rheumatic diseases, 923
human herpesvirus-6, 580
IL-1β, 325, 334
in juvenile idiopathic arthritis, 323, 335
receptor antagonist (IL-1Ra), 359, 361–362
Interleukin-2 (IL-2)
allograft rejection, 1132
CD25 deficiency, 728
cytomegalovirus and, 573
human herpesvirus-6, 580
immunologic therapy, 1037–1038
low levels in SLE, 358
lymphocyte propagation, 1112–1113
NK cell activation, 305
production and T cell activation, 271–273
receptors, 1026
Interleukin-4 (IL-4), measuring basophil
secretion of, 804–806
Interleukin-5 (IL-5), in lymphocytic variant
hypereosinophilic syndrome, 829
Interleukin-6 (IL-6), 82
autoantibodies, 366, 369
autoimmune retinopathy, 1002
bead array assay, 332
biomarker of chronic myocardial injury,
976–977
elevation in rheumatoid arthritis, 357
elevation in SLE, 358
ELISA, 324–326
inhibition for treatment of rheumatoid
arthritis, 361
adverse effects, 361
clinical efficacy, 361
mechanism of action, 361
Interleukin-6 receptor (IL-6R), 361
Interleukin-8 (IL-8), storage effects on, 1045
Interleukin-10 (IL-10)
autoimmune retinopathy, 1002
detection in intracellular cytokine staining
(ICS) assay, 339
human herpesvirus-6, 580
Interleukin-12 (IL-12), 200, 580
Interleukin-12 receptor (IL-12R), 200
Interleukin-13 (IL-13), measuring basophil
secretion of, 804–806
Interleukin-15 (IL-15)
human herpesvirus-6, 580
human herpesvirus-7, 585
Interleukin-17 (IL-17)
autoantibodies, 365–366, 369
autoimmune retinopathy, 998
intracellular cytokine staining, 730
Interleukin-22 (IL-22) autoantibodies,
365–366
Interleukin-23 (IL-23) receptor, 986
International Clinical Cytometry Society
(ICCS), 169, 171–173, 1185
International Council for Standardization in
Hematology (ICSH), 1180, 1185
International Federation of Clinical
Chemistry and Laboratory Medicine
(IFCC), 1178–1179
International Myeloma Working Group,
83–84, 87, 118, 121, 148
International Organization for
Standardization (ISO), 1177–1179, 1182
International Society for Cellular Therapy,
184
International Society for Heart & Lung
Transplantation (ISHLT), 1137
International Society of Hematology and
Graft Engineering (ISHAGE) protocol,
184–187, 189–194
basic protocol, 185
commercial kits based on ISHAGE
standards, 187–190
guidelines, 185
simultaneous CD34+ and CD3+ cells,
192–193
single platform with viability assessment,
185–187
International Union of Immunological
Societies (IUIS), 1178
International Workshop and Conference on
Human Leukocyte Differentiation
Antigens (HLDA), 158
Interphotoreceptor retinal binding protein
(IRBP), 998, 1001
Intracellular antigen detection, by
polychromatic flow cytometry, 160
Intracellular ATP synthesis assay, 1116–1119
expected values, 1119
interpretation of results, 1118–1119
overview, 1116–1117
procedure, 1117–1118
Intracellular cytokine staining (ICS) assay,
290, 338–340
cell processing, 339–340
for cellular immune response in
transplantation, 1114–1116
data acquisition, 1116
data analysis, 1116
procedure, 1114–1116
troubleshooting, 1116
costimulation, 338
data analysis, 340
enzyme-linked immunosorbent spot
(ELISpot) assay compared, 338–339
resting prior to stimulation, 338
secretion inhibitors, 339
specimen types, 338
stimulating antigens, 339
stimulation kinetics, 339
stimulation vessels, 338
work flow of, 340
Intradermal skin testing, 795–796, 809.
See also Skin testing
Intranasal challenge, 810–811
Intravenous immunoglobulin (IVIG), 1066
Intravitral microscopy (IVM), 350, 352–354
Intrinsic factor, antibodies to, 932
Intracellular splicing enhancers (ISEs), 10
Intracellular splicing silencers (ISSs), 10
In vivo microbial antigen discovery (InMAD),
479
Ionization techniques, mass spectrometry,
34–35
ESI (electrospray ionization), 34–35
MALDI (matrix-assisted laser desorption
ionization), 35
Ionomycin, 269, 277, 340
Ion Torrent, 7, 16, 20, 1085
IPA. See Immunoperoxidase assay
IPEX (immune dysregulation,
polyendocrinopathy, enteropathy,
X-linked), 13, 727
IRBP (interphotoreceptor retinal binding
protein), 998, 1021
IRF5 (interferon regulatory factor 5), 359
IRF7 (interferon regulatory factor 7), 359
IRGM gene, 986
Iron deficiency, Helicobacter pylori
and, 410
ISFs (intracellular splicing enhancers), 10
ISH. See In situ hybridization
ISHAGE, See International Society of
Hematology and Graft Engineering
(ISHAGE) protocol
ISHALT (International Society for Heart &
Lung Transplantation), 1137
Islet cell autoantibodies, 935–939
ISO (International Organization for
Standardization), 1177–1179, 1182
Isoelectric focusing (IEF), 98–99, 791–792
Isoelectric point (pI), 74
Israel tick typhus, 461
ISSs (intronic splicing silencers), 10
Leukemia (continued)
 myelogenous leukemia, BCR-ABL translocation in, 922
 plasma cell, 235–237, 240
 IMWG diagnostic criteria, 237
 monoclonal gammopathy, 113
 pyroglobulins and, 110
 Leukotriene C4, assay for, 803–804
 Levey-Jennings chart, 77–78, 153–154, 1188–1189
 L-ficolin, 133
 Liat HIV Quant VL assay, 702
 Licensure of clinical immunology laboratory, 1176–1177
 Light-chain deposition disease, in monoclonal gammopathy, 113, 115–116, 118
 Light-chain multiple myeloma, 94
 Light chains, immunoglobulin electrophoresis, 80
 free. See Free light chain gene complexes, 53–56
 kappa, 53–56
 lambda, 55–56
 immunofixation electrophoresis, 91–92
 monoclonal proteins, 93–94
 production excess, 89
 structure, 40, 51, 66–67
 LightCycler HA V quantitation assay, 623
 L- ficolin, 133
 L- ficolin, 133
 Limit of detection (LoD), 1185–1187
 Limit of blank (LoB), 1185
 LightCycler HAV quantitation assay, 623
 Limiting dilution assay (LDA) of cytotoxic T lymphocytes, 1110–1111 of helper T lymphocytes, 1110
 Limit of blank (LoB), 1185
 Limit of detection (LoD), 1185–1187
 Limit of quantitation (LoQ), 1185–1186
 Linearity, 1185–1186
 Line-blot immunassay, for systemic sclerosis-related antinuclear antibodies, 892–894
 Line immun assay, for human T-cell lymphotropic virus, 676–677
 Lipoprotein-related protein 4 (LRP4), 1185–1187
 antibodies against, 958
 LIPS. See Luciferase immunoprecipitation systems
 Liquid chromatography coupled with mass spectrometry (LC-MS), 38
 IgG4-related disease, 920
 protein studies in transplant rejection, 1142–1143
 Liquid-handling systems, automated, 1189–1190
 Live-Dead stains, 149
 Live-gating techniques, 163
 Liver disease
 autoimmune hepatitis, 969–972
 electrophoresis pattern, 80–82
 primary biliary cholangitis, 966–969
 Liver kidney microsomal antibodies, 969–972
 Liver transplantation
 complement activation products in, 1127
 microchimerism of recipient, 23
 Lupus. See Systemic lupus erythematosus (SLE)
 Lupus anticoagulant, 905–907
 Lutzomyia verrucarum, 474
 Lyme disease, 419–426
 clinical manifestations, 421
 epidemiology, 419, 421
 erythema migrans, 421–426
 laboratory diagnosis, 421–426
 antigens important in immunodiagnosis, 421–422
 clinical applications and limitations, 424
 direct detection, 424
 ELISA, 422–423
 indirect fluorescent antibody (IFA), 422
 recombinant or peptide antigen use in serology, 423
 test interpretation and practical considerations, 425–426
 two-tier serologic testing algorithm, 423
 western blot, 422–423, 425
 taxonomy of Lyme Borrelia, 419–420
 Lymphatic filariasis, 494
 Lymphoblastic lymphoma, 207–214, 1020–1022
 Lymphohistocytoma, 1147
 Lymphocyte activation, 261, 269–278
 assessment of Treg function, 275
 methodology for measuring, 275–278
 assessment of cell surface markers on T cells after activation with mitogenic stimuli, 274, 277
 lymphocyte proliferation assay using Edu-based flow cytometry, 271, 277
 measurement of polyclonal T cells after stimulation with mitogens, 273, 277–278
 T cell activation and function, 269–275
 cytokine production, 270–275
 cytotoxicity assays, 275
 direct measurement of T cell activation by using functional assays, 270–275
 flow cytometric measurement of T cell proliferation, 270
 Ki-67 assay, 270, 272
 measurement of T cell proliferation by using 14H-thymidine, 270
 Lymphocyte cultures from allograft biopsy specimens, 1122–1123
 concept, 1122–1123
 pitfalls and troubleshooting, 1113
 procedure, 1113
 Lymphocyte proliferation assay (LPA), 732
 for B-cell analysis, 281–282
 cryopreserved peripheral blood mononuclear cells (PBMC), 264–265
 secretion of soluble mediators, 282
 stimulation index, 282
 using Edu-based flow cytometry, 271, 277
 in vitro whole-blood, 283–284
 Lymphocyte separation medium, 1109
 Lymphocyte-specific protein kinase (LCK), 1138
 Lymphogramanuloma venereum, 453–455
 Lymphoma, 1015–1029. See also specific types of lymphoma
 adult T-cell leukemia/lymphoma, 1026
 anaplastic large-cell lymphoma (ALCL), 228, 1017, 1020, 1027
 Burkitt’s, 227, 563, 1017, 1020, 1025
 classification, 1015–1017
 diagnostic tests, 1017–1020
 clonality assays, 1018–1019
 flow cytometry, 1017
 immunohistochemistry, 1017–1018
 in situ hybridization, 1019
 molecular cytogenetics, 1019–1020
 PCR, 1018–1020
 diffuse large B-cell lymphoma (DLBCL), 226–227, 1020, 1024–1025
 Epstein-Barr-associated, 1020
 follicular, 227, 1017, 1023–1024
 human herpesvirus 8-associated, 1020
 human T-cell leukemia virus-associated, 1020
 immunophenotypes of T-cell chronic lymphoproliferative disorders, 228
 lymphoblastic, 1020–1022
 lymphoplasmacytic, 226, 1023–1024
 MALT (mucosa-associated lymphoid tissue), 404, 1017, 1020
 mantle cell lymphoma (MCL), 226–227, 229, 1017, 1023
 marginal zone, 1023
 markers, 1020–1028
 multiple myeloma, 1024
 NK/T-cell, 1020, 1026–1027
 nodular lymphocyte-predominant Hodgkin’s lymphoma, 1025, 1028
 peripheral T-cell lymphoma, 1020
 small lymphocytic, 226, 1023–1024
 small mature B-cell lymphoma, 1023–1025
 splenic marginal zone, 227, 1023
 T-cell-rich large B-cell lymphoma, 1025
 translocations in, 1019–1020, 1022–1024
 Lymphoplasmacytic lymphoma, 226, 1023–1024
 Lymphoproliferative disease
 Epstein-Barr virus-associated, 567
 monoclonal gammopathy, 113
 percentage of plasma cell proliferative disorders, 90
 Lymphoplasmacytic lymphoma, 115
Mass analyzers, 35–38
Marginal zone lymphoma, 1023
Marburg virus, 651
Mannose-binding lectin (MBL), assay of
Mannose-binding lectin (MBL), 138, 756
MALT (mucosa-associated lymphoid tissue) gene, 1024
MALT1
Malignant plasma cell proliferative disorders, 112
MALDI-TOF (matrix-assisted laser desorption ionization), 35
MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometry, 468
Malignancies, immune system, 1015–1029
Malignant plasma cell proliferative disorders, 112–114
MALT1 gene, 1024
MALT (mucosa-associated lymphoid tissue) lymphoma, 404, 1017, 1020
Mannose-binding lectin (MBL), 138, 756
Mannose-binding lectin (MBL), assay of activity, 133–137
assay procedure, 136
assay solutions, 135–136
materials, 134–135
results, calculation, and interpretation, 136–137
serum/plasma preparation, 134
troubleshooting, 137
Mantle cell lymphoma (MCL), 226–227, 229, 1017, 1023
Marburg virus, 651
Marginal zone lymphoma, 226, 1023
Mansell's fever, 461
Mannose-binding lectin (MBL), 133–134, 756–757
Mass analyzers, 35–38
Orbitrap mass spectrometer, 37–38
quadrupole ion trap mass spectrometer, 36–37
time-of-flight (TOF) mass spectrometer, 37–38
triple-quadrupole mass spectrometer, 35–36
Mass cytometry, 32, 251–253
acquisition speed, 252–253
cell loss, 253
clinical applications, 256–257
data analysis, 253, 255
logistic considerations, 251
phospho-flow combined with, 256
sensitivity, 253
SPADE, 253, 255
spillover and contamination, 253–254
workflow overview, 252
Mass spectrometry
clinical samples analyzed by, 41–42
cytometry. See Mass cytometry
elements of, 38–40
MS/MS analysis of proteolytic peptides to quantify proteins by SRM, 38
MS/MS analysis of tryptic peptides to identify proteins, 38
MS/MS of intact proteins, 39–40
top-down MS, 39–40
ionization techniques, 34–35
ESI (electrospray ionization), 34–35
MALDI (matrix-assisted laser desorption ionization), 35
liquid chromatography coupled with, 38
mass analyzers, 35–38
Orbitrap mass spectrometer, 37–38
quadrupole ion trap mass spectrometer, 36–37
time-of-flight (TOF) mass spectrometer, 37–38
triple-quadrupole mass spectrometer, 35–36
phenotyping proteins with MS, 40–41
protein analysis, 34–42
Mast cell, IgE binding to, 66–67
Mast cell leukemia, 833
Mast cell sarcoma, 833
Mastocytosis, 783, 831–834
classification, 831–833
aggressive systemic mastocytosis, 833
cutaneous mastocytosis, 831
extracellular mastocytoma, 833
idolent systemic mastocytosis, 831–833
mast cell leukemia (MCL), 833
mast cell sarcoma (MCS), 833
systemic mastocytosis with AHNMD (associated clonal hematologic non-mast cell disease), 833
definition, 831
diagnostic criteria, 831–833
pitfalls in diagnosis, 833–834
therapy, 834
MAT (microscopic agglutination test), for Leptospira, 429
Matrix metalloproteinases, 976–977
Maximal tolerated dose, 1037
Mayaro fever, 649
MBDA (multi-biomarker disease activity) score, 897, 901
MBL. See Mannose-binding lectin
MBL-associated serine proteases (MASP), 133–134
MCL. See Mantle cell lymphoma
MCM4
MCP
MCTD (mixed connective tissue disease), 112
Membrane cofactor protein (MCP), 130–131, 138, 140–141, 749, 759, 1124–1125
Membranoproliferative glomerulonephritis, 127
Men who have sex with men (MSM), Chlamydia trachomatis, in, 453
MERS (Middle East respiratory syndrome) coronavirus, 538, 598–599, 602
Mesenchymal-epithelial transition (MET), 1052
MESF (molecular equivalents of soluble fluorochrome) units, 1042, 1097
Mesorhiolin, 1013
Mesothelioma, 1013
Messenger RNA. See mRNA
MET (mesenchymal-epithelial transition), 1052
MetaMorph, 20
MetaPhlAn, 20
Metapneumovirus. See Human metapneumovirus
Metapneumovirus (genus), 599
MFC immunophenotyping, in plasma cell disorders, 243–247
diagnosis and classification, 243
MRD monitoring in multiple myeloma, 244–247
prognostic stratification of patients, 243–244
M-ficolin, 133
MFLC. See Monoclonal free light chains
MG. See Myasthenia gravis
MGUS. See Monoclonal gammopathy of undetermined significance
MHC. See Major histocompatibility complex
MIATA program, 1046, 1116
MIB-1 protein, 1023–1026
multiplex bead fluorescence immunoassays (FIA), 611–613
neutralization, 611–613
PCR, 611–612
plaque reduction neutralization, 611–613
rapid diagnosis, 340
resurgence of disease, 610
serology, 612–613
technology for measles testing, 612–613
transplacental transfer of antibodies, 611
vaccination, 610–611
Median fluorescence intensity, 154, 156–157
Medical Test Site Licensure law, Washington State, 1175
Medication adverse reaction assessment, 808–809
Mediterranean spotted fever, 461, 463
MEGAN, 20
Melanoma-associated retinopathy, 999, 1001
Meningococcal attack complex (MAC), 138–140
Measles virus, 610–613
See Measles virus
MDS.
Membrane-bound antibody arrays, 331
Membrane cofactor protein (MCP), 130–131, 138, 140–141, 749, 759, 1124–1125
Membranoproliferative glomerulonephritis, 127
Men who have sex with men (MSM), Chlamydia trachomatis, in, 453
MERS (Middle East respiratory syndrome) coronavirus, 538, 598–599, 602
Mesenchymal-epithelial transition (MET), 1052
MESF (molecular equivalents of soluble fluorochrome) units, 1042, 1097
Mesorhiolin, 1013
Mesothelioma, 1013
Messenger RNA. See mRNA
MET (mesenchymal-epithelial transition), 1052
MetaMorph, 20
Metapneumovirus. See Human metapneumovirus
Metapneumovirus (genus), 599
MFC immunophenotyping, in plasma cell disorders, 243–247
diagnosis and classification, 243
MRD monitoring in multiple myeloma, 244–247
prognostic stratification of patients, 243–244
M-ficolin, 133
MFLC. See Monoclonal free light chains
MG. See Myasthenia gravis
MGUS. See Monoclonal gammopathy of undetermined significance
MHC. See Major histocompatibility complex
MIATA program, 1046, 1116
MIB-1 protein, 1023–1026
Monoclonal gammopathy, 89–90, 112–121.
See also specific disorders

classification, 112–115
malignant plasma cell proliferative disorders, 112–114
premalignant plasma cell proliferative disorders, 114
protein (or low-tumor-burden) diseases, 114–115
diagnostic testing strategy, 115–116
electropherograms, 116–117, 119–120
free light chains, 112–116, 118–121
monitoring M proteins, 119–121
M-spike measurement/quantification, 119–121
order patterns, 121
response to therapy, criteria for, 121
screening panels for M protein detection, 116, 118
stratification of risk, 118–119
Monoclonal gammopathy of undetermined significance (MGLUS), 71, 84, 87, 89–90, 94, 97, 235–237, 239–240, 242–244, 247
diagnosis, 114, 118
immunofixation electrophoresis, 118–119
immunoglobulin types, 114
IMWG diagnostic criteria, 237
incidence, 114
percentage of plasma cell proliferative disorders, 90
progression, 114, 118
progression to multiple myeloma, 236
Monoclonal proteins disorders associated with, 89–90, 93–94
diversity of, 112
electrophoresis
biconal pattern, 93–94
clinical applications, 85–87
detection in serum, 82–83
detection in urine, 84–85
immunofixation and
immunoabsorption, 93–94
immunoglobulin G, 75–76
principles, 75–76
quantification in serum, 83–84
quantification in urine, 97
sample requirements, 75–76
serologic characterization, 89–99
monitoring, 119–121
screening panels for M protein detection, 116, 118
Monocytes
flow cytometry for detection/monitoring of
PNH, 171–179
M protein. See also Monoclonal proteins
anti-M-protein test, 401
detection, 82–83
quantification, 83–84
M protein serotyping, streptococci, 396
MRD. See Minimal residual disease
mRNA
absolute quantification of mRNA levels by
PCR, 1133
cancer-specific, 1054
cytokine, detection with in situ
hybridization, 335
gene expression profiles in allografts, 1132–1135
techniques for characterization, 1132–1135
profiles in tissue rejection, 1135–1138
mRNA quantification assays, in cryopreserved
peripheral blood mononuclear cells (PBMC), 267
MS. See Multiple sclerosis
MS2 phage, 606–607
MS/MS analysis
MS2 phage, 606–607
Mucormycosis, 528
Mucocutaneous gd T-cell lymphomas, 116, 118
Mucin 1, 1054
MTT reduction assay, 1109–1110
mutant (PMBC), 267
mutant, CMV, 725
mutation, 725
MS detection, 82–83
precursor frequency analysis using, 897, 901
score, 897, 901
Multiplex bead fluorescence immunoassays
Multiplex cytokine assays, 324–336
Multiplex disease activity (MDA), 324–336
Multiplex ligation-dependent probe amplification (MLPA), 745
Multiplex reverse transcription-PCR (RT-PCR)
human immunodeficiency virus (HIV), 702
rotavirus, 640
Multiplont HIV-1/HIV-2 rapid test, 703
Mumps virus, 614–615
clinical manifestations, 614
complement fixation, 614
diagnostic strategies, 614–615
enzyme immunoassay (EIA), 615
epidemiology, 614
genotyping, 614
hemagglutination inhibition, 615
incidence, 614
indirect fluorescent antibody (IFA), 615
interpretation of testing, 615
molecular methods, 615
Multiplex bead fluorescence immunoassays (FIA), 615
neutralization test, 615
rapid diagnosis, 540
resurgence of disease, 610
reverse-transcriptase (RT)-PCR, 614–615
serology, 615
technology for testing, 615
transplantation transfer of antibodies, 614
vaccination, 610, 614
virus isolation, 614–615
Murine typhus, 463
Murray Valley encephalitis virus, 648, 650, 654
SUBJECT INDEX

Muscle-specific kinase (MuSK), antibodies against, 958
Mutated citrullinated vimentin, 899
Mutation
 missense, 10
 nonsense, 10
somatic hypermutation, 59
MX1, 358
Myasthenia crisis, 954
Myasthenia gravis, 954–959
 clinical manifestations, 954
 classification, 954
 immunopathogenesis, 954–955
 thymus role in, 957
 immunological testing, 957–959
 pharmacological testing, 957
NADPH oxidase (NOX2), 204, 310
NASBA.
NAATs.
Nephropathy, BK virus, 347, 1135, 1143
Nephritis
 cryoglobulins and, 105
 free light chain measurement, 69
 immunoglobulin measurement, 67–68
 immunologic monitoring, 1040
 protein analysis, 27
 rheumatoid arthritis testing, 900
 rheumatoid factor measurement by, 898
Nephrotic syndrome
 cryoglobulins and, 101–102
 pyroglobulins and, 110
 tubulointerstitial, 917–918
Neoplasm(s)
 myeloproliferative
 (MPN), 237
 Myeloperoxidase, 774
 Myeloproliferative neoplasm (MPN), 237
 Myeloid-derived suppressor cells, 1046
 Myelogenous leukemia, BCR- ABL
 translocation in, 292
 Myeology
 2016, 117–172
 2017, 244
 Myeloid-derived suppressor cells, 1046
 Myeloperoxidase, 774
 Myeloproliferative neoplasm (MPN)
 mastocytosis, 832–833
 myeloproliferative HES and, 826–829
 MyFlowCyt, 1116
 Myocarditis, 978–980
 Myopathies, autoimmune, 878–887
 ELISA using recombinant myositis autoantigens, 885–887
 immunoprecipitation analysis of proteins, 878–883
 autoantibodies identified by, 881
 cell culture, 878–879
 fluorography, 882
 incubation with cell extract, 880
 interpretation, 882
 materials and reagents, 878–879
 PAS bead preparation with purified antibodies, 879
 quality assurance, quality control, and test validation, 882
 radiolabeled cell extract preparation, 879–880
 radiolabeling, 879
 SDS-PAGE fluorography reagents, 880
 SDS-PAGE gel preparation, 880–881
 SDS-PAGE procedure, 881–882
 technology and instrumentation, 878
 washing beads, 880
 immunoprecipitation analysis of small RNAs, 883–886
 cell lysate, 885
 interpretation, 885
 quality assurance, quality control, and test validation, 885
 RNA extraction, 884
 RNA sample preparation for urea-PAGE, 884
 silver staining of nucleic acids, 885
 total RNA sample standard preparation, 883–884
 urea-PAGE gel preparation, 884–885
 urea-PAGE procedure, 884–885
 washing beads, 884
 prevalence and clinical association of myositis autoantibodies, 884
 Myosin-specific autoantibodies, 878–887
 Myositis-specific autoantibodies, 878–887
 Myasthenia gravis, 954–959
 clinical manifestations, 954
 classification, 954
 immunopathogenesis, 954–955
 thymus role in, 957
 NADPH oxidase (NOX2), 204, 310
 NADPH oxidase (NOX2), 204, 310
 NADPH oxidase (NOX2), 204, 310
 Mycoplasma, 444–449
 M. genitalium, 448–449
 molecular biology-based techniques, 448
 recommended diagnostic approach, 449
 serology, 448
 M. hominis, 449
 molecular biology-based techniques, 449
 recommended diagnostic approach, 449
 serology, 449
 M. pneumoniae, 444–448, 600
 cold autoimmune hemolytic anemia (cold agglutinin disease), 990, 993
 molecular biology-based techniques, 440–448
 recommended diagnostic approach, 448
 serology, 444–446
 Myositis antibodies, 878–879
 Myositis-specific autoantibodies, 878–887
 NAArs. See Nucleic acid amplification tests
 NADm, anti-NADase test, 401
 NADPH oxidase (NOX2), 204, 310
 Neisseria gonorrhoeae, complement C5 deficiency and, 760
 Neisseria meningitidis, complement C5 deficiency and, 760
 NEMO (NF-κB essential modulator), 725, 740
 NEMO deficiency, 12–13, 723, 728
 NBT. See Nitroblue tetrazolium
 Neorickettsia
 N. sennetsu, 462–463
 taxonomy, 461–462
 Neostigmine, 957
 Nephelometry
 ASO test, 399
 cryoglobulins, 105
 free light chain measurement, 69
 immunoglobulin measurement, 67–68
 immunologic monitoring, 1040
 protein analysis, 27
 rheumatoid arthritis testing, 900
 rheumatoid factor measurement by, 898
 Nephritis
 cryoglobulins and, 101–102
 pyroglobulins and, 110
 tubulointerstitial, 917–918
 Nephropathy, BK virus, 347, 1135, 1143
 Nephrotic syndrome
 α2-macroglobulin in, 79
 electrohresis pattern, 82
Neurocysticercosis, 492–493
Neupathy
cryoglobulins and, 101–102
peripheral, 961–964
Neurophysiological testing, in myasthenia gravis, 957
Neurosyphilis, 413–414
Neutralization assay
adenoviruses, 645
arboviruses, 651–652
Epstein-Barr virus, 569
hantaviruses, 660
herpes simplex virus, 553
human herpesvirus-6, 583
measles viruses, 611–613
mumps virus, 615
varicella-zoster virus, 559
Neutropenia, 765–767
antineutrophil antibodies, 765, 767
causes, 767–768
clinical approach to, 262
Neutrophil(s)
adherence to nylon wool, 771
antineutrophil cytoplasmic antibodies (ANCA), 909–914
flow cytometry for detection/monitoring of PMN, 171–179
Neutrophil defects, 767–774
adhesion disorders, 767–771
chemotaxis, 771–772
clinical approach to, 262
diseases, 770
granule disorders, 771
oxidative metabolism disorders, 772–774
chemistry, 773–774
DHR (dihydrorhodamine) oxidation, 772–773
myeloperoxidase, 774
NBT (nitroblue tetrazolium) test, 772
Neutrophil extracellular traps, 914
Neutrophil-to-lymphocyte ratio, 1041–1042
Newborn screening, for severe combined immunodeficiency (SCID), 261, 715–719
New York state, clinical immunology laboratory certifying program, 1176
Next-generation sequencing (NGS), 7–8
antibody deficiencies, 746
chimerism testing, 1165
data analysis, 7–8
gene expression profiles in allografts, 1134–1135
HLA (human leukocyte antigen) alleles, 1065
HLA gene coverage strategies, 1084
exons only (amplicon sequencing), 1084
whole genome (overlapping short amplicon sequencing), 1084
whole genome (shotgun sequencing by LR-PCR), 1084
HLA typing, 1069, 1073–1075, 1077, 1081–1087, 1089
applications, 1081–1082
data analysis, 1085–1087
gene coverage strategies, 1084
platforms, 1077, 1079, 1085
potential impact on HLA typing, 1077
principle of the technology, 1081–1082
strengths and weaknesses, 1077, 1084–1085
workflows, 1082–1084
platforms, 7
respiratory viruses, 607
workflows, 1082–1084
clonal amplification, 1083
indexing, 1082–1083
library preparation, 1082
quantitation, 1083
sequencing, 1083–1084
template generation, 1082
NF-κB
activation, defects in, 723, 728
immunologic biomarker for cancer survival, 1046
NF-κB essential modulator (NEMO), 725, 740
deficiency, 12–13, 723, 728
NGS. See Next-generation sequencing
NOG. See Next-generation sequencing
NOD-2
(nonhomologous DNA end joining), 57–58
NOD2 gene, 986
Nodular lymphocyte-predominant Hodgkin's lymphoma, 1025, 1028
Non-HLA antibodies in organ transplantation, 1066, 1103–1106
NMDP (National Marrow Donor Program), 1066
Nocardia, in chronic granulomatous disease
non-HLA antigens implicated in mechanisms of allograft injury, 1103–1104
non-HLA antibodies in organ transplantation, 1066, 1103–1106
clinical relevance, 1103
mechanisms of allograft injury, 1103–1104
non-HLA antigens implicated in transplantation, 1063
testing methods, 1104–1105
test platform selection, 1104
testing procedures, 1105–1106
ELISA, 1105
endothelial cell (EC) crossmatch, 1105
Luminex assay, 1105–1106
validation, 1106
Nonhomologous DNA end joining (NHEJ), 57–58
Nonsense mutation, 10
Noroviruses, 640–642
detection and characterization, 641–642
genome, 640, 643
genotypes, 640–641, 643
rapid diagnosis, 540
virus-like particles, 640
Norovirus Genotyping Tool, 641
Novoalign alignment program, 1086
NOX2, 262, 315, 317–319
immunoblot analysis of phox subunits of NOX2, 317–319
interpretation and limitations, 319
principle, 317
procedure, 319
reagents, 317–319
results and normal range, 319
NRCC (National Registry of Certified Chemists), 1172
Nucleic acid amplification tests (NAATs)
arboviruses, 653
Chlamydia trachomatis, 453, 454, 455, 456
Chlamydophila pneumoniae, 457
cytomegalovirus, 571–572
Mycoplasma pneumoniae, 446–448
quantitative, 572
viral infections, 539–540, 544–546
Nucleic acid detection
adenoviruses, 645
astroviruses, 643–644
in cryptobacterialinfections, 1027
fungal infections, 503, 528–529
human herpesvirus-6, 581, 583–584
human herpesvirus-7, 581
human herpesvirus-8, 581
noroviruses, 641
parasitic infections, 488
respiratory viruses, 605–607
rotaviruses, 639–640, 642
sapoviruses, 642
Nucleic acid purification/isolation, 5, 19–20
Nucleic acid sequence-based amplification (NASBA)
arboviruses, 654
Mycoplasma pneumoniae, 447
Nucleic acid testing, in human immunodeficiency virus (HIV), 701–706
Nylon wool, neutrophil adherence to, 771
Obesity, microbiome and, 23
Ockelbo virus, 654
Ocular larva migrans, 497
Oligoclonal banding, 94–95
in CSF, 98–99
in inflammatory diseases, 98
Omalizumab (anti-IgE), 795
Onchocerca volvulus autoimmune retinopathy, 1000
Onchocerciasis, 494–495
ONTAC, 299
OpenGene DNA sequencing system, 706
Ophthalalabiale, 802
Opsonization, antibody, 282
Opsonophagocytosis assays, 31
multiplexed opsonophagocytic killing assay (MOPA4) for functional antibodies against Streptococcus pneumoniae, 285–288
overview, 282–283
Optical filters, in polychromatic flow cytometry, 152–153
Optimal biologic dose, 1037–1038, 1047
Optimization, assay, 1182
ORAI1, 301, 305, 307
Oral food challenges, 818–819
Oral hairy leukoplakia, 567
Orbitrap mass spectrometer, 37–38
Orientalia
epidemiology, 462
laboratory diagnosis, 463–468
immunodagnosis, 465–466
interpretation, 468
molecular diagnosis, 467
O. tsutsugamushi, 1046–1047
pathobiology, 464
taxonomy, 461–462
Gerstmann-Sträussler-Scheinker (GSS) syndrome, 682, 687, 690
iatrogenic Creutzfeldt-Jakob disease (iCJD), 682, 687, 691
kuru, 682, 687–688
sporadic Creutzfeldt-Jakob disease (sCJD), 682–693, 687–690
variant Creutzfeldt-Jakob disease (vCJD), 682, 684, 687, 691
strains of prions, 683
transmission, 683–685
variably protease-sensitive prionopathy (VPSPr), 682, 687, 689
Western blot, 686, 690
PrioStrip, 686

Proficiency testing, 34, 1120, 1172, 1176–1177, 1184

Progenitor B cells, 56
Programmed death 1 (PD-1), 1026
Proliferating cell nuclear antigen (PCNA), 1138
Propidium iodide, 158
Properdin, 142
Proliferating cell nuclear antigen (PCNA), 1138
Programmed death 1 (PD-1), 1026

Proteasome subunit beta type 9, 1138
Prostate cancer

Prostatitis, 79
Prostate- specific antigen (PSA), 1009–1010, 1052, 1054, 1056–1057
Pulsed- field gel electrophoresis (PFGE), 396
Pulmonary aspergilloma, 515
Pulmonary alveolar proteinosis (PAP), 435, 437–439, 441

Purine nucleic acid sequence

Purpura

Pure red cell aplasia, antierythropoietin

Purulent meningitis, 977
Pseudofascioliasis, 494

Pyroglobulins, 110
Pyroglobulinemia, 110

Pyridostimine, 957
Pyoderma, streptococcal, 394–395
Puumala virus, 660–661, 663

Q fever, 461–468
QLIME, 20
Quadrupole ion trap mass spectrometer, 36–37
Quadrupole time-of-flight (Q-TOF) mass spectrometer, 34, 38

Qualitative assays, 1181
Quality, definition, 1180
Quality assurance
celiac disease testing, 988
cellular immune response in transplantation, evaluation of, 1120
Clinical Laboratory Improvement Amendment (CLIA), 1171–1172, 1174–1175
electrophoresis, 76–77
inflammatory bowel disease testing, 988
polychromat flow cytometry, 163–164
protein analysis, 34

Quality control
antinuclear antibody tests, 855, 859
assays
delta checks, 1189
internal controls, 1189
Levey-Jennings charts, 1188–1189
materials, 1187–1188
result trending, 1189
tools to monitor, 1188–1189
cellular immune response in transplantation, evaluation of, 1120
Clinical Laboratory Improvement Amendment (CLIA), 1171–1172, 1174–1175
complement assays related to tissue biopsy specimens, 1126
electrophoresis, 76–77
external, 1180
HLA typing, 1075
humoral response in transplantation, evaluation of, 1095–1096
immunologic monitoring, 96
internal, 1180
polychromat flow cytometry, 163–164
protein analysis, 34

QUANTA Flash assay, 863–864
Quantiferon-CMV assay, 573
Quantiferon-TB Gold In- Tube assay (QFT- GIT), 435–437, 439–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and HIV-infected patients, 440–441
interpretation criteria, 436–437
method, 435–436
reproducibility, conversions, and reversions, 437
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
variability and quality control issues, 437
quantification, in junctional epitope (heavy/ light chain) assays, 69–70
Quantitative assays, 1181
in viral infections, 544–546
Quantitative PCR (qPCR)
adenviruses, 645
chimerism testing, 1165
gene expression profiles in allografts, 1133
human T-cell lymphotropic virus, 678
interferon score, 876
mastocytosis, 832
in next-generation sequencing (NGS) workflow, 1083

Protein kinase C (PKC), 351
Protein kinase C-ζ, 1103
Protein-losing enteropathy, electrophoresis pattern in, 82
Protein loss, electrophoresis patterns in, 82
Protein misfolding cyclic amplification (PMCA), 686–687, 693–692
Protein structure, 74–75
Proteome definition, 1140
low-molecular-mass, 1144
studies in transplant rejection, 1140–1145
top-down approach, 1140
bottom-up approach, 1140
capillary electrophoresis followed by mass spectrometry (CE-MS), 1142–1143
difference gel electrophoresis (DIGE), 1140, 1142–1143
gel-based studies, 1140, 1142, 1143
gel electrophoresis, 1140, 1142–1144
liquid chromatography coupled with mass spectrometry (LC-MS), 1142–1143
peptidomics, 1144
protein arrays, 1144–1145
surface-enhanced laser desorption ionization-time of flight mass spectrometry (SELDI-TOF MS), 1142–1143
top-down approach, 1140, 1142–1143
two-dimensional gel electrophoresis (2DE), 1140, 1142–1143

Proteomics, 3, 1140.
See also
Protein analysis

Immunologic monitoring, 1046
mass spectrometry, 34–42
published articles, rise in, 1145
strategy for biomarker discovery and validation, 1145
studies in transplant rejection, 1140–1145
top-down approach, 1140, 1142–1143
Prusiner, Stanley, 682

Pseudocytokines, 1103
Pseudocytokines, 1103

Pyroglobulins, 110
Pyroglobulinemia, 110

Pyridostimine, 957
Pyoderma, streptococcal, 394–395
Puumala virus, 660–661, 663

Q fever, 461–468
QILEME, 20
Quadrupole ion trap mass spectrometer, 36–37
Quadrupole time-of-flight (Q-TOF) mass spectrometer, 34, 38

Qualitative assays, 1181
Quality, definition, 1180
Quality assurance
celiac disease testing, 988
cellular immune response in transplantation, evaluation of, 1120
Clinical Laboratory Improvement Amendment (CLIA), 1171–1172, 1174–1175
electrophoresis, 76–77
inflammatory bowel disease testing, 988
polychromat flow cytometry, 163–164
protein analysis, 34

Quality control
antinuclear antibody tests, 855, 859
assays
delta checks, 1189
internal controls, 1189
Levey-Jennings charts, 1188–1189
materials, 1187–1188
result trending, 1189
tools to monitor, 1188–1189
cellular immune response in transplantation, evaluation of, 1120
Clinical Laboratory Improvement Amendment (CLIA), 1171–1172, 1174–1175
complement assays related to tissue biopsy specimens, 1126
electrophoresis, 76–77
external, 1180
HLA typing, 1075
humoral response in transplantation, evaluation of, 1095–1096
immunologic monitoring, 96
internal, 1180
polychromat flow cytometry, 163–164
protein analysis, 34

QUANTA Flash assay, 863–864
Quantiferon-CMV assay, 573
Quantiferon-TB Gold In- Tube assay (QFT- GIT), 435–437, 439–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and HIV-infected patients, 440–441
interpretation criteria, 436–437
method, 435–436
reproducibility, conversions, and reversions, 437
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
variability and quality control issues, 437
quantification, in junctional epitope (heavy/ light chain) assays, 69–70
Quantitative assays, 1181
in viral infections, 544–546
Quantitative PCR (qPCR)
adenviruses, 645
chimerism testing, 1165
gene expression profiles in allografts, 1133
human T-cell lymphotropic virus, 678
interferon score, 876
mastocytosis, 832
in next-generation sequencing (NGS) workflow, 1083
measles viruses, 611–612
mumps virus, 614–615
myeloproliferative hyper eosinophilic syndromes, 827
noroviruses, 641
rabies virus, 667–668, 671
rotaviruses, 640, 642
rubella virus, 616–617
sapoviruses, 642
T-cell receptor-excision circle (TREC) assay, 716–718
RF. See Rheumatoid factor
RFFIT (rapid fluorescent-focus inhibition test), rabies virus, 669–670
RFLP (restriction fragment length polymorphism), for Rickettsia identification, 467
Rhavilovirus (family), 665
Rhadinovirus, 579, 586
Rheumatic fever, acute, 394–395, 397–401
Rheumatoid arthritis, 897–902
antibodies associated with
antibodies against citrullinated proteins, 898–900
antibodies less specific for rheumatoid arthritis, 898–900
anti-calcipatin, 899
anti-RA33, 899
biomarkers, 922–924
chemokines in, 346–347
combined ACPA and RF testing, 902
diagnosis, 357
environmental triggers, 902
genes of, 902
rheumatoid factor (RF), 897–898, 902
testing methods, 902–903
agglutination, 900
addition, 901
comparison of assays, 900
ELISA, 903–901
multi-biomarker disease activity (MBDA), 897, 901
multiplex testing, 901
nephelometry, 900
treatment with cytokine inhibitors, 357, 359–362
IL-1 inhibition, 361–362
IL-6 inhibition, 361
table of commercial biologics, 361
TNF-α inhibition, 360–361
Rheumatoid factor (RF), 543–544
combined interpretation, 898
combined ACPA and RF testing, 902
crystoglobulins, 101–102, 105–106
treatment interfering with measurement, 901–902
in hepatitis C virus infection, 898
overview, 897–898
Rhinosinusitis, viral, 600
Rhinoviruses. See Human rhinovirus
Ribophlepsia sanguinea, 461
Rho, 351
RIA. See Radioimmunossay
Rubiconucleoprotein (RNP)
anti-RNP antibodies in SLE, 868–869, 873
anti-U1 RNP antibody, 891
anti-U3 RNP antibody, 890
anti-U1/U12 RNP antibody, 890–891
Rickettsia
epidemiology, 461–462
laboratory diagnosis, 465–468
immunodiagnosis, 465–466
interpretation, 468
molecular diagnosis, 467
pathobiology, 464
R. arieti, 461–464, 466
R. akari, 461
R. amblyommii, 468
R. australis, 461
R. conori, 463–466
R. felis, 461
R. parkeri, 461–464, 466
R. procoxii, 461–463, 465
R. rickettsii, 463–464, 468
R. slovaca, 461–464
R. typhi, 461–463, 465
taxonomy, 461–462
Rickettsiaceae, 461–462
Rickettsiales, 461–462
RID. See Radial immunodiffusion
RIDT (rapid influenza diagnostic tests), 503–505, 538, 543, 545
Rift Valley fever virus, 649, 651–652, 655, 663
Rimantadine, 602
Risk assessment, in humoral response in transplantation, 1101
Rituximab, 913, 1066, 1099, 1156
RMRF mutations, 722, 725
RNA concentration quantification, 1133
degradation/integrity, 1132–1133
detection
mumps virus, 614–615
rubella virus, 616–617
extraction
arboviruses, 653–654
total RNA standard preparation, 883–884
isolation, 5
RNA helicase autoantibodies, 870
RNA later, 1132
RNA polymerase III antibody, 889–890
RNases, 5, 1132
RNP. See Ribonucleoprotein
R. antibodies to, 869
ROAD (Read, Observe, Ask, Discover) inspection process, 1177
Roche 450 prosequencing, 7, 20
Rocio encephalitis, 649
Rocky Mountain spotted fever, 461, 463–466, 468
ROMA, 1012
ROS (reactive oxygen species), 310, 314–316
Rose Bengal test, for Brucella, 477–478
Roseola, 579
Roslovirus, 579, 585
Rossetta bacteria for production of large recombinant proteins, 861
Ross River virus, 648–649, 652–655
Rotaviruses, 639–640
detection and characterization, 639–640, 642
genome, 639
strains, 639, 641
vaccines, 639
RPR card test, 413–414
RREID (rapid rabies enzyme immunoassay), 666
RRNT (replication reduction neutralization test), for hantaviruses, 660
RSVO (reverse SSO), 1076–1077
RSV. See Respiratory syncytial virus
RT-LAMP. See Reverse transcription loop-mediated isothermal amplification

Thrombotic microangiopathy (TMA), 140 Th/Ti, antibody against, 890 3H-thymidine, measurement of T cell proliferation by using, 270 Thymoma, 957, 959 Thymopoesis abnormalities, 721–725 Thymus, role in myasthenia gravis, 957 Thymus and activation-regulated chemokine (TARC), 828–829 Thryoglobulin, antibodies to, 930–931 Thyroid antibodies, 930–931 Thyroid gland chronic thyroiditis, 930–931 hypothyroidism, 933–935 Thyroiditis, 79, 930–931 Thyroid-stimulating hormone receptor, 933–933

Downloaded from www.asmscience.org by
On: Thu, 08 Aug 2019 03:04:07
IP: 54.70.40.11

Urinary antigen testing for active TB infection, 441
Tuberculosis (TB), 433–441
Tuberculin skin test (TST), 433–434
Francisella
Tuberculin skin test
See TST.

Tumor necrosis factor-α (TNF-α), 360–361
inhibition in treatment of inflammatory bowel disease, 362
rheumatoid arthritis, 360–361
vasculitis, 913
inhibitors, 360–361
adverse effects, 360–361
clinical efficacy, 360
mechanism of action, 360
table of commercial biologics, 361
Tumor necrosis factor-β (TNF-β), 360
Two-color immunofluorescence, 378
Two-dimensional gel electrophoresis (2DE), 103, 1140, 1142–1143
Two-photon microscopy (2-PM), 352–353
Typhus epidemic, 461, 463
Indian tick, 461
Ibex tick, 461
Kenya tick, 461
murine, 463
scrub, 462–464, 466
sylvatic, 463
Tyrosine kinase inhibitors, 299
Tyrosine phosphorylation (phosphoepitope analysis), 732
Tzanck (Giemsas) smear
herpes simplex virus, 551
varicella-zoster virus, 558
UCSC Genome Browser, 16
UDP-glucuronosyltransferases, 969–970
Ultraviolet colitis, 362, 985–988
Umbilical cord blood, 182, 1066
UNC113D gene, 301, 306–307, 776, 778
Unc119 deficiency, 722, 727
UniFrac, 20
United Network for Organ Sharing (UNOS), 1065, 1075, 1097
Uracil-DNA glycosylase (UNG), 59, 740
Urea breath testing, Helicobacter pylori and, 405, 407, 410
Urea-PAGE, for immunoprecipitation analysis in autoimmune myopathies gel preparation, 84–85
procedure, 84–85
RNA sample preparation for, 884
Ureaplasm, 444, 449–451
molecular biology-based techniques, 449–450
recommended diagnostic approach, 450–451
serology, 449
U. parvum, 449–451
U. urealyticum, 449–451
Urine complement activation soluble products in, 1128
concentration, 97
immunochemical characterization of immunoglobulins, 96–98
monoclonal free light chains (MFLC) in, 84–85, 87, 96–98
Urinary proteins, electrophoresis of, 76–77, 84–86
immunofixation, 96–98
M protein detection, 84–85
sample requirements, 77
Urticaria pigmentosa, 831
USR test, 413
VacA (vacularizing cytotoxin) protein, Helicobacter pylori, 404–405, 407
Vaccine(s)
hepatitis A virus, 620
hepatitis B virus, 620
immunglobulin titers against vaccine antigens, 281
influenza virus, 601
MMR (measles/mump/rubella), 610–611, 614
antigens, 281
influenza virus, 601
MMR (measles/mump/rubella), 610–611
M protein detection, 84–85
varicella, 556–557
Validation, 1180–1187, 1190
assay classification, 1180–1182
according to performance characteristics, 1181–1182
according to regulatory status, 1183–1184
FDA-approved, modified assays, 1181
FDA-approved assays, 1181
laboratory-developed tests, 1181
quantitative assays, 1181
comparative assays, 1181
quasiquantitative assays, 1181
semiquantitative assays, 1181
assay development and validation CLIA requirements, 1181
considerations prior to validation, 1182
flowchart of steps, 1183
guidelines for, 1180
automated liquid-handling systems, 1189–1190
cellular immune response in transplantation, evaluation of, 1119–1120
Vasculitis

Vascular cellular adhesion molecule 1, as

Variation databases, 11

Variant Creutzfeldt-Jakob disease (vCJD),

Variable (V) region, immunoglobulin, 53,

Variable-number tandem repeat (VNTR),

Cryoglobulins and, 101–102, 104, 106,

cryofibrinogenemia and, 107

Antineutrophil cytoplasmic antibodies

time-resolved fluorescence immunoassay

serologic testing, 558–560

respiratory symptoms, 600

rapid diagnosis, 540

PCR, 556–558

neutralization assays, 559

overview, 556–557

PCR, 556–558

rapid diagnosis, 540

respiratory symptoms, 600

serologic testing, 558–560

specimen collection, 557

time-resolved fluorescence immunosassay

(TrFIA), 559

virus isolation, 557–558

Vascular cellular adhesion molecule 1, as biomarker of chronic myocardial injury, 977

Vasculitis

antineutrophil cytoplasmic antibodies

(ANCA)-associated, 909–914

disease diagnosis, 909

neutrophil extracellular traps and, 914

tests for ANCA, 909–911

treatment, 913–914

types, 911–913

cryofibrinogenemia and, 107

cryoglobulins and, 101–102, 104, 106,

911 nomenclature, 911

types

anti-glomerular basement disease, 911

drug-induced vasculitis, 913
eosinophilic granulomatosis with

polychondritis (EGPA), 913

giant cell arteritis, 911

granulomatosis with polyangiitis, 912–913

IgA vasculitis, 911

Kawasaki disease, 911

large vessel vasculitis, 911

medium vessel vasculitis, 911

microscopic polyangiitis, 913

polyarteritis nodosa, 911

small vessel vasculitis, 911

Takayasu’s arteritis, 911

VCF file, 8

Venerable Disease Research Laboratory

(VDRL) assay, 413–416

Venezuelan equine encephalitis (VVE), 650,

652, 656

Verification, 1181

Verruga peruana, 475

Viability dyes, in polychromatic flow
cytometry, 149–150, 158–160

Vimentin, 899, 1051, 1103

Viral infections, 537.

See also

Varicella-zoster virus

(VZV).

Voltage pulse, 152–153

See

Varicella-zoster virus

(VZV).

Waldenström’s macroglobulins, 89, 93, 235,

242–243

free light chain assay, 69

hyperviscosity and, 71–72

IgM gammapathy, 71, 113, 115

immunoglobulin measurement, 70

lymphoplasmacytic lymphoma, 1024

monoclonal gammopathy, 113, 115–116,

118, 121

pyroglobulins and, 110

wANNOVAR, 10–11

Washington state, clinical immunology

laboratory certifying program, 1175

WASP (Wiskott-Aldrich syndrome protein),

729, 731

WASPMAL (World Association of Societies of

Pathology and Laboratory Medicine), 1178

Wells-Brookfield viscometer, 71

Western blot

anti-glomerular basement membrane

(anti-GBM) antibodies, 385–387

anti-phospholipase A2 receptor antibodies,

387–388

antiretinal antibodies, 1000

Borreia burgdorferi, 422–423, 425

hantaviruses, 660–661

human herpesvirus-6, 583

human herpesvirus-7, 586

human immunodeficiency virus (HIV), 703

human T-cell lymphotropic virus, 676–677

Mycoplasma pneumoniae, 445

piritary antibodies, 947

prion diseases, 686, 690

Western equine encephalitis (WEE),

649–652, 654, 656

Westgard, James O., 1188

West Nile virus, 648–649, 652–656

WHIM (warts, hypogammaglobulinemia,

infections, and myelokathexis) syndrome, 763–767

White blood cells, paroxysmal nocturnal

hemoglobinuria (PNH), 168–180

WHO. See World Health Organization

Whole-exome sequencing, 1088

Whole-genome sequencing, 1088

Whole-lung antigen challenge, 811

Whooping cough, 602

Winter vomiting disease, 640

WISH cells, 358

Wiskott-Aldrich syndrome, 281, 713, 723,

729, 795–796

Wolbachia, 461–462

Woodchuck hepatitis virus, 624

World Association of Societies of

Pathology and Laboratory Medicine

(WASPMAL), 1178

World Health Organization (WHO)
classification of lymphoid neoplasms,

1015–1017

laboratory quality assurance, 1178

Nomenclature Committee for Factors of

the HLA System, 1072

Wuchereria bancrofti, 494

WU polyomavirus, 598, 600

X(C) chemokines, 343

Xenopsylla cheopis, 494

XIA/PBIR4C, 729, 775–776

X-linked chromosomal inactivation,

1018–1019
X-linked disorders
agammaglobulinemia, 32–33
anhidrotic ectodermal dysplasia with
immunodeficiency, 723, 728
antibody deficiency, 743–745
hyper IgM syndrome, 201, 281, 726,
742–744
lymphoproliferative disease, 724, 729,
775–776
lymphoproliferative syndrome 1, 743–745
lymphoproliferative syndrome 2, 743–745
X-linked inhibitor of apoptosis (XIAP), 724,
729, 731
Xpert Flu assay, 605
Xpert HIV-1 Qual, 702
Xpert HIV-1 viral load assay, 702
Xpert MTB/RIF assay, 433
xTAG Respiratory Virus Panel, 605–606
Yellow fever virus, 648–656
Zanamivir, 602
Zap-70 (zeta chain-associated protein kinase),
226–227, 229–232, 1024
ZAP-70 deficiency, 722, 727
Zinc transporter-8 (ZnT8) autoantibodies,
936–938, 941–942
Zombie stains, 149
Zone electrophoresis, 75–76
Zoonoses, hantaviruses as, 658
Zoster, 556. See also Varicella-zoster
virus