CONTENTS

Editorial Board / xi
Contributors / xiii
Foreword: How It Began / xxiii
Preface / xxv
Author and Editor Conflicts of Interest / xxvii

section A
GENERAL METHODS / 1
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: THOMAS A. FLEISHER
1 Introduction / 3
THOMAS A. FLEISHER
2 Molecular Methods for Diagnosis of Genetic Diseases Involving the Immune System / 5
AMY P. HSU
3 The Human Microbiome and Clinical Immunology / 19
FREDERIC D. BUSHMAN
4 Protein Analysis in the Clinical Immunology Laboratory / 26
ROSHINI SARAH ABRAHAM AND DAVID R. BARNIDGE

section B
IMMUNOGLOBULIN METHODS =/ 47
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: DAVID F. KEREN
5 Introduction / 49
DAVID F. KEREN
6 Immunoglobulin Genes / 51
THOMAS J. KIPPS, EMANUELA M. GHIA, AND LAURA Z. RASSENTI
7 Immunoglobulin Quantification and Viscosity Measurement / 65
JEFFREY S. WARREN
8 Clinical Indications and Applications of Serum and Urine Protein Electrophoresis / 74
DAVID F. KEREN AND RICHARD L. HUMPHREY
9 Immunochemical Characterization of Immunoglobulins in Serum, Urine, and Cerebrospinal Fluid / 89
ELIZABETH SYKES AND YVONNE POSEY
10 Cryoglobulins, Cryofibrinogenemia, and Pyroglobulins / 101
PETER D. GOREVIC AND DENNIS GALANAKIS
11 Strategy for Detecting and Follow Monoclonal Gammopathies / 112
JERRY A. KATZMANN AND DAVID F. KEREN

section C
COMPLEMENT / 125
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: PATRICIA C. GICLAS
12 Introduction / 127
PATRICIA C. GICLAS
13 The Classical Pathway of Complement / 129
PATRICIA C. GICLAS
14 Analysis of Activity of Mannan-Binding Lectin, an Initiator of the Lectin Pathway of the Complement System / 133
STEFFEN THIEL
15 The Nature of the Diseases That Arise from Improper Regulation of the Alternative Pathway of Complement / 138
RICHARD J. H. SMITH
section D

FLOW CYTOMETRY / 145

VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITOR: MAURICE R. G. O'GORMAN

16 Introduction / 147
 MAURICE R. G. O'GORMAN

17 Polychromatic Flow Cytometry / 149
 ANGÉLIQUE BIANCOTTO AND J. PHILIP McCOY, JR.

18 High-Sensitivity Detection of Red and White Blood Cells in Paroxysmal Nocturnal Hemoglobinuria by Multiparameter Flow Cytometry / 168
 ANDREA ILLINGWORTH, MICHAEL KEENEY, AND D. ROBERT SUTHERLAND

19 Standardized Flow Cytometry Assays for Enumerating CD34+ Hematopoietic Stem Cells / 182
 D. ROBERT SUTHERLAND AND MICHAEL KEENEY

20 Functional Flow Cytometry-Based Assays of Myeloid and Lymphoid Functions for the Diagnostic Screening of Primary Immunodeficiency Diseases / 199
 MAURICE R. G. O'GORMAN

21 Acute Lymphoblastic Leukemia/Lymphoma: Diagnosis and Minimal Residual Disease Detection by Flow Cytometric Immunophenotyping / 207
 JOSEPH A. DiGIUSEPPE

22 Acute Myeloid Leukemia: Diagnosis and Minimal Residual Disease Detection by Flow Cytometry / 217
 BRENT WOOD AND LORI SOMA

23 Chronic Lymphocytic Leukemia, the Prototypic Chronic Leukemia for Flow Cytometric Analysis / 226
 HEBA DEGHEIDY, DALIA A. A. SALEM, CONSTANCE M. YUAN, AND MARYALICE STETLER-STEVENSON

24 Plasma Cell Disorders / 235
 JUAN FLORES-MONTERO, LUZALBA SANOJA, JOSÉ JUAN PÉREZ, FANNY POJERO, NOEMÍ PUIG, MARÍA BELÉN VIDRIALES, AND ALBERTO ORFAO

25 Future Cytometric Technologies and Applications / 251
 HOLDEN T. MAECKER

section E

FUNCTIONAL CELLULAR ASSAYS / 259

VOLUME EDITOR: BARBARA DETRICK
SECTION EDITOR: STEVEN D. DOUGLAS

26 Introduction / 261
 STEVEN D. DOUGLAS

27 Cryopreservation of Peripheral Blood Mononuclear Cells / 263
 ADRIANA WEINBERG

28 Lymphocyte Activation / 269
 ROSHINI SARAH ABRAHAM

29 Functional Assays for B Cells and Antibodies / 280
 MOON H. NAHM AND ROBERT L. BURTON

30 Methods for Detection of Antigen-Specific T Cells by Enzyme-Linked Immunospot Assay (ELISPOT) / 290
 BARBARA L. SHACKLETT AND DOUGLAS F. NIXON

31 Regulatory T Cell (Treg) Assays: Repertoire, Functions, and Clinical Importance of Human Treg / 296
 THERESA L. WHITESIDE

32 Measurement of NK Cell Phenotype and Activity in Humans / 300
 SAMUEL C. C. CHIANG AND YENAN T. BRYCESON

33 Functional Assays for the Diagnosis of Chronic Granulomatous Disease / 310
 DEBRA LONG PRIEL AND DOUGLAS B. KUHNS

section F

CYTOKINES AND CHEMOKINES / 321

VOLUME EDITOR: BARBARA DETRICK
SECTION EDITOR: JOHN J. HOOKS

34 Introduction / 323
 JOHN J. HOOKS

35 Multiplex Cytokine Assays / 324
 ELIZABETH R. DUFFY AND DANIEL G. REMICK

36 Cytokine Measurement by Flow Cytometry / 338
 HOLDEN T. MAECKER

37 Chemokine and Chemokine Receptor Analysis / 343
 SABINA A. ISLAM, BENJAMIN D. MEDOFF, AND
Contents

61 Human Herpesviruses 6, 7, and 8 / 578
RICHARD L. HODINKA

62 Parvovirus B19 / 591
STANLEY J. NAIDES

63 Respiratory Viruses / 598
DAVID J. SPEICHER, MOHSIN ALI, AND MAREK SMEJJA

64 Measles, Mumps, and Rubella Viruses / 610
DIANE S. LELAND AND RYAN F. RELICH

65 Viral Hepatitis / 620
HUBERT G. M. NIESTERS, ANNELIES RIEZEBOS-BRILMAN, AND CORETTA C. VAN LEER-BUTER

66 Viral Agents of Gastroenteritis / 639
GABRIEL I. PARRA AND KIM Y. GREEN

67 Arboviruses / 648
ROBERT S. LANCIOTTI AND JOHN T. ROEHRIG

68 Diagnosis of Hantavirus Infections / 658
WILLIAM MARCIEL DE SOUZA AND LUIZ TADEU MORAES FIGUEREIDO

69 Rabies Virus / 665
D. CRAIG HOOPER

70 Human T-Cell Lymphotropic Virus Types 1 and 2 / 674
BREANNA CARUSO, RAYA MASSOUD, AND STEVEN JACOBSON

71 Principles and Procedures of Human Immunodeficiency Virus Diagnosis / 696
KELLY A. CURTIS, JEFFREY A. JOHNSON, AND S. MICHELE OWEN

72 Neutropenia and Neutrophil Defects / 765
STEVEN M. HOLLAND

73 Neutropenia and Neutrophil Defects / 765
STEVEN M. HOLLAND

section L

ALLERGIC DISEASES / 781
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: PAMELA A. GUERRERIO

80 Introduction / 783
PAMELA A. GUERRERIO

81 Quantitation and Standardization of Allergens / 784
RONALD L. RABIN, LYNNSEY RENN, AND JAY E. SLATER

82 Immunological Methods in the Diagnostic Allergy Clinical and Research Laboratory / 795
ROBERT G. HAMILTON

83 Assay Methods for Measurement of Mediators and Markers of Allergic Inflammation / 801
JOHN T. SCHROEDER, R. STOKES PEEBLES, JR., AND PAMELA A. GUERRERIO

84 Tests for Immunological Reactions to Foods / 815
CARAH B. SANTOS, DAVID M. FLEISCHER, AND ROBERT A. WOOD

85 Diagnosis of Rare Eosinophilic and Mast Cell Disorders / 825
CEM AKIN, CALMAN PRUSSIN, AND AMY D. KLION

section M

SYSTEMIC AUTOIMMUNE DISEASES / 839
VOLUME EDITOR: BARBARA DETRICK
SECTION EDITOR: WESTLEY H. REEVES

86 Introduction / 841
WESTLEY H. REEVES

87 Antinuclear Antibody Tests / 843
ALESSANDRA DELLAVALANCE, WILSON DE MELO CRUVINEL, PAULO LUIZ CARVALHO FRANCESCANTONIO, AND LUIS EDUARDO COELHO ANDRADE

88 Detection of Autoantibodies by Enzyme-Linked Immunosorbent Assay and Bead Assays / 859
EDWARD K. L. CHAN, RUFUS W. BURLINGAME, AND MARVIN J. FRITZLER

89 Immunodiagnosis and Laboratory Assessment of
SECTION EDITORS: ELAINE F. REED AND QIUHENG JENNIFER ZHANG

112 Histocompatibility and Immunogenetics Testing in the 21st Century / 1065
QIUHENG JENNIFER ZHANG AND ELAINE F. REED

113 Molecular Methods for Human Leukocyte Antigen Typing: Current Practices and Future Directions / 1069
MARK KUNKEL, JAMIE DUKE, DEBORAH FERRIOILA, CURT LIND, AND DIMITRI MONOS

114 Evaluation of the Humoral Response in Transplantation / 1091
PAUL SIKORSKI, RENATO VEGA, DONNA P. LUCAS, AND ANDREA A. ZACHARY

115 Non-Human Leukocyte Antigen Antibodies in Organ Transplantation / 1103
ANNETTE M. JACKSON AND BETHANY L. DALE

116 Evaluation of the Cellular Immune Response in Transplantation / 1108
DIANA METES, NANCY L. REINSMOEN, AND ADRIANA ZEEVI

117 Complement in Transplant Rejection / 1123
CARMELA D. TAN, E. RENE RODRIGUEZ, AND WILLIAM M. BALDWIN III

118 Molecular Characterization of Rejection in Solid Organ Transplantation / 1132
DARSHANA DADHANIA, TARA K. SIGDEL, THANGAMANI MUTHUKUMAR, CHOLI HARTONO, MINNIE M. SARWAL, AND MANIKKAM SUTHANTHIRAN

119 Killer Cell Immunoglobulin-Like Receptors in Clinical Transplantation / 1150
RAJA RAJALINGAM, SARAH COOLEY, AND JEROEN VAN BERGEN

120 Chimerism Testing / 1161
LEE ANN BAXTER-LOWE

SECTION Q

LABORATORY MANAGEMENT / 1169

VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: RONALD J. HARBECK

121 Clinical Immunology Laboratory Accreditation, Licensure, and Credentials / 1171
LINDA COOK AND RONALD J. HARBECK

122 Validation and Quality Control: General Principles and Application to the Clinical Immunology Laboratory / 1180
VIJAYA KNIGHT AND TERRI LEBO

Author Index / 1193
Subject Index / 1195
EDITORIAL BOARD

C. LYNNE BUREK (section N)
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

PATRIZIO CATUREGLI (section N)
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

DANIEL CHAN (section O)
Department of Pathology, Johns Hopkins University, SOM, Clinical Chemistry, CRB 11 3M 05, Baltimore, MD 21287

STEVEN D. DOUGLAS (section E)
The Children's Hospital of Philadelphia, University of Pennsylvania, Suite 1208 Abramson Research Building, 34th & Civic Center Blvd., Philadelphia, PA 19104

THOMAS A. FLEISHER (section A)
Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bldg. 10 Rm. 2C306, 10 Center Drive, Bethesda, MD 20814

PATRICIA C. GICLAS (section C)
National Jewish Health, Diagnostic Complement Laboratory, 1400 N. Jackson St., Denver, CO 80206

PAMELA A. GUERRERIO (section L)
Food Allergy Research Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, 4 Memorial Dr., Building 4, Room 228B, MSC0430, Bethesda, MD 20892

RONALD J. HARBECK (section Q)
National Jewish Health, 1400 Jackson Street, Denver, CO 80206

RICHARD L. HODINKA (section J)
University of South Carolina School of Medicine Greenville and Greenville Health System, Room 210, Health Science Administration Building, 701 Grove Rd., Greenville, SC 2960

JOHN J. HOOKS (section F)
National Institutes of Health, Immunology & Virology Section, NEI, Bldg. 10 Rm. 10N248, 10 Center Dr, Bethesda, MD, 20814

DAVID F. KEREN (section B)
University of Michigan, 5228 Medical Science I, 1301 Catherine, Ann Arbor, MI 48109

HOWARD M. LEDERMAN (section K)
Pediatric Allergy & Immunology, Johns Hopkins Hospital - CMSC 1102, 600 N Wolfe St, Baltimore, MD 21287-3923

CHRISTINE M. LITWIN (section H)
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425

THOMAS B. NUTMAN (section I)
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425

MAURICE R. G. O’GORMAN (section D)
Keck School of Medicine, University of Southern California, and the Children’s Hospital of Los Angeles, Pathology and Pediatrics, 4650 Sunset Blvd #43, Los Angeles, CA 90027

ELAINE F. REED (section P)
UCLA, Pathology, Rehab 1520, 1000 Veteran Avenue, Immunogenetics Center, Los Angeles, CA 90095

WESLEY H. REEVES (section M)
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

R. NEAL SMITH (section G)
Massachusetts General Hospital, Pathology, 501B Warren Bldg., 14 Fruit St., Boston, MA 02114

LORI J. SOKOLL (section O)
Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205

KATHLEEN E. SULLIVAN (section K)
University of Pennsylvania, Division of Allergy and Immunology, Children’s Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104

QIUHENG JENNIFER ZHANG (section P)
UCLA Immunogenetics Center, Department Pathology & Laboratory Medicine, 15-20 Rehab, 1000 Veteran Ave., Los Angeles, CA 90024
Contributors

ROSHINI SARAH ABRAHAM
Mayo Clinic, Laboratory Medicine and Pathology, Hilton 210e, 200 1st St. SW, Rochester, MN 55905

MARIA E. AGUERO-ROSENFELD
NYU Langone Medical Center, Rm. H374A, 560 First Ave., New York, NY 10016

CEM AKIN
Brigham and Women’s Hospital, Department of Medicine, Rheumatology, Immunology, 75 Francis Street, Boston, MA 02115

MOHSIN ALI
Icahn School of Medicine at Mount Sinai, Department of Medical Education, One Gustave L. Levy Place, New York, NY 10029

BURT ANDERSON
Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612

GIUSEPPE BARBESINO
Thyroid Unit, Massachusetts General Hospital – Harvard Medical School, 15 Parkman St., Boston, MA 02114

DAVID R. BARNIDGE
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905

LEE ANN BAXTER-LOWE
Children's Hospital Los Angeles, 4650 Sunset Blvd., #32, Los Angeles, CA 90027

ANGELIQUE BIANCOTTO
CHI/NHLBI, National Institutes of Health, 10 Center Drive, Bldg. 10 Room 7N110a, Bethesda, MD 20892

LUCAS S. BLANTON
University of Texas Medical Branch-Galveston, Department of Internal Medicine, 301 University Blvd., Galveston, TX 77555

MARY B. BROWN
Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, 2015 S.W. 16th Ave., Gainesville, FL 32611

SARAH K. BROWNE
NIAID, NIH, Immunopathogenesis Section, Bldg. 10 - CRC Rm. B3-4233, 10 Center Drive, Bethesda, MD 20014

YENAN T. BRYCESON
Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden, and Institute of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway

MICHAEL RAYMOND BUBB
Division of Rheumatology, University of Florida, 1600 S.W. Archer Rd D2-39, P.O. Box 100221, Gainesville, FL 32610

C. E. BUCHNER
Genalyte, Inc., 10520 Wateridge Circle, San Diego, CA 92121
C. LYNN BUREK
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

RUFUS W. BURLINGAME
Genalyte, Inc., Diagnostic Assay Development, 10520 Wateridge Circle, San Diego, CA 92121

ROBERT L. BURTON
University of Alabama at Birmingham, 845 19th St. S, BBRB612, Birmingham, AL 35294

FREDERIC D. BUSHMAN
Perelman School of Medicine, University of Pennsylvania, Department of Microbiology, 3610 Hamilton Walk, Philadelphia, PA 19104

BREANNA CARUSO
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

PATRIZIO CATUREGLI
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

ANGELA CERIBELLI
Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Via A. Manzoni 56, 20089, Rozzano (Milan), Italy

CHI-CHAO CHAN
Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg. 10 Rm 10N109, 10 Center Drive, Bethesda, MD 20892

EDWARD K. L. CHAN
Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, FL 32610

ANITA CHANDRA
Department of Clinical Biochemistry and Immunology, Box 109, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom

ANN DUSKIN CHAUFFE
Division of Rheumatology, University of Florida, 1600 S.W. Archer Rd D2-39, P.O. Box 100221, Gainesville, FL 32610

SAMUEL C. C. CHIANG
Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden

A. BERNARD COLLINS
Massachusetts General Hospital, Pathology, 503 Warren Bldg., 14 Fruit St., Boston, MA 02114

LINDA COOK
University of Washington, Laboratory Medicine, 1616 Eastlake Ave. E, Suite 320, Seattle, WA 98102

SARAH COOLEY
University of Minnesota, Hematology, Oncology and Transplantation, 420 Delaware St. SE, Mayo Mail Code 806, Minneapolis, MN 55455

ROSS L. COPPEL
Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia 3800

WILSON DE MELO CRUVINEL
Pontificia Universidade Católica de Goiás, School of Medical, Pharmaceutical and Biomedical Sciences, Avenida Universitária 1440, Setor Universitário, Goiânia, GO, 74.605-010, Brazil

KELLY A. CURTIS
Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

DARSHANA DADHANIA
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065

BETHANY L. DALE
Immunogenetics Laboratory, Johns Hopkins University School of Medicine, 2041 E. Monument St., Baltimore, MD 21205

DANIEL C. DANILA
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

ALESSANDRA DE REMIGIS
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

WILLIAM MARCIEL DE SOUZA
Virology Research Center, School of Medicine of Ribeirao Preto of University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

LUDOVICA DE VINCENTIS
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

HEBA DEGHEIDY
FDA, Center for Biologics Evaluation and Research, WO52/72 RM 3209, 10903 New Hampshire Ave., Silver Spring, MD 20993

ALESSANDRA DELAVANCE
Fleury Laboratories, Research and Development Department, Avenida Valdomiro de Lima 508, São Paulo, SP 04344-070, Brazil

BARTBARA DETRICK
Immunology Laboratory, Department of Pathology, Johns Hopkins University, School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287

JOSEPH A. Digiuseppe
Hematopathology and Special Hematology Laboratory, Department of Pathology & Laboratory Medicine, Hartford Hospital, 80 Seymour St., Hartford, CT 06102
STEVEN D. DOUGLAS
The Children's Hospital of Philadelphia, University of Pennsylvania, Suite 1208 Abramson Research Building, 34th & Civic Center Blvd., Philadelphia, PA 19104

ELIZABETH R. DUFFY
Boston University School of Medicine, Pathology and Laboratory Medicine, 670 Albany St., Boston, MA 02118

JAMIE DUKE
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

BRUCE E. DUNN
Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226

GEORGE S. EISENBARTH
[Deceased]

MELISSA ELDER
University of Florida, Pediatrics, 1600 S.W. Archer Road, Gainesville, FL 32610

DEBORAH FERRIOLO
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

LUÍZ TADEU MORAES FIGUEREIDO
Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, São Paulo, Brazil

DAVID M. FLEISCHER
Children's Hospital Colorado, Pediatrics, Aurora, CO 80045

MARTIN FLEISHER
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

THOMAS A. FLEISHER
Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bldg. 10 Rm. 2C306, 10 Center Drive, Bethesda, MD 20814

JUAN FLORES-MONTERO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biomolecular de Salamanca (IBISAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

PAULO LUIZ CARVALHO FRANCESCANTONIO
Pontifícia Universidade Católica de Goiás, School of Medical, Pharmaceutical and Biomedical Sciences, Avenida Universitária 1440, Setor Universitário, Goiânia, GO, 74.605-010, Brazil

MARVIN J. FRITZLER
University of Calgary, Cumming School of Medicine, Calgary, Alberta T2N 4N1, Canada

DENNIS GALANAKIS
State University of New York, Stony Brook, NY 11794

M. ERIC GERSHWYN
Division of Rheumatology/Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility Suite 6510, School of Medicine, University of California at Davis, Davis, CA 95616

EMANUELA M. GHIA
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92037

PATRICIA C. GICLAS
National Jewish Health, Diagnostic Complement Laboratory, 1400 N. Jackson St., Denver, CO 80206

KIMBERLY C. GILMOUR
Immunology, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom

ELIZABETH A. GODBEY
Department of Pathology, Columbia University Medical Center, New York, NY 10032

PETER D. GOREVIC
Division of Rheumatology, The Mount Sinai Medical Center, Annenberg Building; Room 21-056, Box 1244, New York, NY 10029

KIM Y. GREEN
Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, 9000 Rockville Pike, Building 50, Room 6318, Bethesda, MD 20892

PAMELA A. GUERRERIO
Food Allergy Research Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, 4 Memorial Dr., Building 4, Room 228B, MSC0430, Bethesda, MD 20892

ROBERT G. HAMILTON
Johns Hopkins University School of Medicine, Dermatology, Allergy and Clinical Immunology Reference Library, 5501 Hopkins Bayview Circle, Baltimore, MD 21224

SHUHONG HAN
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

J. G. HANLY
Dalhousie University and Nova Scotia Health Authority (Central Zone), Departments of Medicine and Pathology, Nova Scotia Rehabilitation Center, 1341 Summer St., Halifax, NS B3H 4K4, Canada

RONALD J. HARBECK
National Jewish Health, 1400 Jackson Street, Denver, CO 80206
NEIL HARRIS
University of Florida, Department of Pathology, 1600 SW Archer Rd, Gainesville, FL 32610

CHOLI HARTONO
Weill Cornell Medical College, Nephrology, 505 E. 70th St., Helmsley 2nd Floor, New York, NY 10021

HARRY R. HILL
University of Utah, Department of Pathology, Pediatrics and Medicine, 50 N. Medical Drive, Room 5B-114, Salt Lake City, UT 84132

MICHITO HIRAKATA
Medical Education Center, Graduate Medical Education Center, Keio University School of Medicine, Tokyo, Japan

RICHARD L. HODINKA
University of South Carolina School of Medicine Greenville and Greenville Health System, Room 210, Health Science Administration Building, 701 Grove Rd., Greenville, SC 29600

KRISTIN A. HOGQUIST
Center for Immunology, University of Minnesota, 2-186 MBB, 2101 6th St. SE, Minneapolis, MN 55455

STEVEN M. HOLLAND
National Institutes of Health, LCID, CRC B3-4141, MSC 1684, Bethesda, MD 20892

JOHN J. HOOKS
National Institutes of Health, Immunology & Virology Section, NEI, Bldg. 10 Rm. 10N248, 10 Center Drive, Bethesda, MD 20814

D. CRAIG HOOPER
Thomas Jefferson University, Jefferson Center for Neurovirology, 1020 Locust St, Philadelphia, PA 19107

AMY P. HSU
National Institutes of Health, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bldg. 10 CRC Rm B3-4233, 10 Center Drive, Bethesda, MD 20892

RICHARD L. HUMPHREY
Johns Hopkins Hospital, Pathology, 600 North Wolfe St., Baltimore, MD 21287

ANDREA ILLINGWORTH
Dahl Chase Diagnostic Services, 417 State St., Suite 540, Bangor, ME 04401

SABINA A. ISLAM
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114

ANNETTE M. JACKSON
Immunogenetics Laboratory, Johns Hopkins University School of Medicine, 2041 E. Monument Street, Baltimore, MD 21205

STEVEN JACOBSON
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

ELAINE S. JAFFE
Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, 10 Center Dr./Rm. 3S235, MSC-1500, Bethesda, MD 20892

JEFFREY A. JOHNSON
Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

JERRY A. KATZMANN
Mayo Clinic and Mayo Foundation, Laboratory Medicine and Pathology, 200 First St. SW, Rochester, MN 55905

MICHAEL KEENEY
Hematology/Flow Cytometry, London Health Sciences Centre, Victoria Hospital, 800 Commissioners Road E, London, Ontario, N6A5W9 Canada

DAVID F. KEREN
University of Michigan, 5228 Medical Science I, 1301 Catherine, Ann Arbor, MI 48109

THOMAS S. KICKLER
Johns Hopkins University School of Medicine, 1800 Orleans Street, Sheikh Zayed B2-120Q, Baltimore, MD 21287

KAREN E. KING
Johns Hopkins Hospital, Transfusion Medicine, 1800 Orleans St., Baltimore, MD 21287

THOMAS J. KIPPS
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92093

AMY D. KLION
National Institutes of Health, Laboratory of Parasitic Diseases, NIAID, Bldg. 4, Rm. B1-28, Bethesda, MD 20892

VIJAYA KNIGHT
National Jewish Health, National Jewish Health Advanced Diagnostic Laboratories, Division of Pathology, Department of Medicine, 1400 Jackson St., Denver, CO 80206

DOUGLAS B. KUHNS
Clinical Services Program, P.O. Box B, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702

D.S. KUMARARATNE
Department of Clinical Biochemistry and Immunology, Box 109, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom

MARK KUNKEL
The Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104
MASATAKA KUWANA
Department of Allergy and Rheumatology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan

ROBERT S. LANCIOTTI
Arbovirus Diseases Branch, Centers for Disease Control & Prevention, 3150 Rampart Road (CSU Foothills Campus), Fort Collins, CO 80521

MARIE LOUISE LANDRY
Yale University, Laboratory Medicine and Internal Medicine, P.O. Box 208035, New Haven, CT 06520

TERRI LEBO
National Jewish Health, Advanced Diagnostic Laboratories, 1400 Jackson St., Denver, CO 80206

HOWARD M. LEDERMAN
Pediatric Allergy & Immunology, Johns Hopkins Hospital - CMSC 1102, 600 N Wolfe St, Baltimore, MD 21287-3923

DIANE S. LEELAND
Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IU Health Pathology Laboratory Building, Room 6027F, 350 W 11th St, Indianapolis, IN 46202

PATRICK S. C. LEUNG
Division of Rheumatology/Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility Suite 6510, School of Medicine, University of California at Davis, Davis, CA 95616

ARNOLD I. LEVINSON
Perelman School of Medicine, University of Pennsylvania School of Medicine, Room 316 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104

YI LI
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

CURT LIND
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

MARK D. LINDSLEY
Mycotic Diseases Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop G-11, Atlanta, GA 30333

ROBERT P. LISAK
Wayne State University Medical Center, Neurology, 4201 St. Antoine St., Detroit, MI 48201

CHRISTINE M. LITWIN
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425

SHELDON E. LITWIN
Department of Medicine, Medical University of South Carolina, 114 Doughty St., Charleston, SC 29425

DONNA P. LUCAS
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205

ANDREW D. LUSTER
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114

HOLDEN T. MAECKER
Stanford University, Institute for Immunity, Transplantation, & Infection, Stanford University Medical School, 299 Campus Drive, Stanford, CA 94305

CHERYL L. MAIER
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322

MICHAEL P. MANNIS
Department of Gastroenterology and Hepatology, Zentrum Innere Medizin, Medizinische Hochschule Hannover, Hannover, Germany

REBECCA MARSH
Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229

JOHN MASSINI
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

RAYA MASSOUD
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

J. PHILIP McCOY, JR.
National Institutes of Health, NHLBI, 10 Center Drive, Bethesda, MD 20892

BENJAMIN D. MEDOFF
Center for Immunology and Inflammatory Diseases, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114

DIANA METES
University of Pittsburgh Medical Center, Thomas E Starzl Transplantation Institute, BST E1549, 200 Lothrop St., Pittsburgh, PA 15213

DIMITRI MONOS
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

MARTINA MURPHY
University of Florida, Hematology/Oncology, 1600 SW Archer Rd., Gainesville, FL 32610

THANGAMANI MUTHUKUMAR
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065
ContRIButoRs

MOON H. NAHM
University of Alabama at Birmingham, 845 19th St. S, BBRB 614, Birmingham, AL 35294

STANLEY J. NAIDES
Immunology, Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92675

HUBERT G. M. NIESTERS
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

TIMOTHY B. NIEWOLD
Mayo Clinic, Department of Immunology and Division of Rheumatology, 200 1st Street SW, Rochester, MN 55905

DOUGLAS F. NIXON
Dept. of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Ross Hall 736, 2300 Eye Street, NW, Washington, D.C. 20037

ROBERT NUSSENBLATT
Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg. 10 Rm 10N109, 10 Center Drive, Bethesda, MD 20814

THOMAS B. NUTMAN
Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Room Bl 03, Bethesda, MD 20892

MAURICE R. G. O’GORMAN
Keck School of Medicine, University of Southern California, and the Children’s Hospital of Los Angeles, Pathology and Pediatrics, 4650 Sunset Blvd #43, Los Angeles, CA 90027

ALBERTO ORFAO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

S. MICHELE OWEN
National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

GABRIEL I. PARRA
Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, 9000 Rockville Pike, Building 50, Room 6316, Bethesda, MD 20892

R. STOKES PEEBLES, JR.
Vanderbilt University, Medicine, T-1218 MCN, Vanderbilt University Medical Center, Nashville, TN 37232

JOSÉ JUAN PÉREZ
Departamento de Hematología, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL); Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, 37007, Spain

ROBERT B. PETERSEN
Case Western Reserve University, Department of Pathology, 5-126 Wolstein Building, 2103 Cornell Road, Cleveland, OH 44106

SUHAS H. PHADNIS
Medical College of Wisconsin, Pathology, 9200 W. Wisconsin Ave., Milwaukee, WI 53205

FANNY POJERO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

YVONNE POSEY
Beaumont Hospital – Royal Oak, Clinical Pathology, 3601 W. 13 Mile Road, Royal Oak, MI 48073

DEBRA LONG PRIEL
Clinical Services Program, P.O. Box B, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702

CALMAN PRUSSIN
Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N238, Bethesda, MD 20892-1881

NOEMÍ PUIG
Departmento de Hematología, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL); Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, 37007, Spain

RONALD L. RABIN
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

MARK RAFFEL
Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, 10 Center Dr./Rm. 3S235, MSC-1500, Bethesda, MD 20892

ALEX J. RAI
Department of Pathology, Columbia University Medical Center, New York, NY 10032

RAJA RAJALINGAM
University of California at San Francisco, Immunogenetics and Transplantation Laboratory, Department of Surgery, 43 Castro St., Main Hospital Level B, CPMC Davis Campus, San Francisco, CA 94114

AMY RASLEY
Host-Pathogen Laboratory Group, Lawrence Livermore National Laboratory, Livermore, CA 94550
LAURA Z. RASSENTI
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92093

ELAINE F. REED
UCLA, Pathology, Rehab 1520, 1000 Veteran Avenue, Immunogenetics Center, Los Angeles, CA 90095

WESTLEY H. REEVES
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

NANCY L. REINSMOEN
HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars-Sinai Health Systems, HLA and Immunogenetics Lab-SSB 197, 8723 Alden Drive, Los Angeles, CA 90048

RYAN F. RELICH
Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IU Health Pathology Laboratory Building, Room 6027E, 350 W 11th St, Indianapolis, IN 46202

DANIEL G. REMICK
Boston University School of Medicine, 670 Albany St., Boston, MA 02118

LYNNSEY RENN
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

ADRIANA RICCIUTI
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

ANNE LIES RIEZEBOS- BRILMAN
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

KIMBERLY RISMA
Division of Allergy/Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229

E. RENE RODRIGUEZ
Department of Pathology, 9500 Euclid Ave., Cleveland, OH 44022

JOHN T. ROEHRIG
Centers for Disease Control and Prevention, Atlanta, GA (Retired)

NOEL R. ROSE
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Avenue, Baltimore, MD 21205

JOHN M. ROUTES
Department of Pediatrics and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226

RICHARD RUBENSTEIN
SUNY Downstate Medical Center, Departments of Neurology and Physiology/Pharmacology, 450 Clarkson Ave., Brooklyn, NY 11203

DALIA A. A. SALEM
CCR, NCI, NIH, Laboratory of Pathology, Building 10, Mail Stop 1500, Room 3S 241, Bethesda, MD 20892

LUZALBA SANOJA
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biocentro de Salamanca (IBSAL), Servicio General de Citometría (Nucleus Universidad de Salamanca), Salamanca, 37007, Spain

CARAH B. SANTOS
National Jewish Health, 1400 Jackson St., K731A, Denver, CO 80206

MINNIE M. SARWAL
University of California San Francisco, Division of Transplant Surgery, G893, 513 Parnassus Ave., San Francisco, CA 94143

MINORU SATOH
Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan

HOWARD I. SCHER
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

D. SCOTT SCHMID
Centers for Disease Control and Prevention, NCIRD/DVD/MMRHLB, 1600 Clifton Rd NE, Atlanta, GA 30333

JOHN L. SCHMITZ
University of North Carolina, Department of Pathology & Laboratory Medicine, School of Medicine, Rm. 1035 East Wing, UNC Hospitals, Chapel Hill, NC 27514

JOHN T. SCHROEDER
Johns Hopkins University, Medicine, Division of Allergy and Immunology, Unit Office 2, 5501 Hopkins Bayview Circle, Baltimore, MD 21224

H. NIDA SEN
Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg. 10 Rm 10N109, 10 Center Drive, Bethesda, MD 20814

CHRISTINE SEROOGY
University of Wisconsin, Pediatrics, 1111 Highland Ave., 4139 WIMR, Madison, WI 53705

BARBARA L. SHACKLETT
Dept. of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, 3146 Tupper Hall, 1 Shields Ave., Davis, CA 95616
ROSEMARY SHE
Keck Medical Center of USC, Pathology, 1441 Eastlake Ave., Suite 2424, Los Angeles, CA 90089

R. SUE SHIREY
Johns Hopkins Hospital, Transfusion Medicine, 1800 Orleans St., Baltimore, MD 21287

TARA SIGDEL
University of California San Francisco, Division of Transplant Surgery, 513 Parnassus Avenue, S-1268 Medical Sciences Building, San Francisco, CA 94143

PAUL SIKORSKI
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205

JERRY W. SIMECKA
Department of Cell Biology and Immunology, University of North Texas Health Science Center, RES 402A 3500 Camp Bowie Blvd., Fort Worth, TX 76107

JAY E. SLATER
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

MAREK SMIEJA
McMaster University, Department of Pathology & Molecular Medicine, L424-St. Joseph’s Healthcare Hamilton, 50 Charlton Ave E, Hamilton, ON L8N 4A6, Canada

RICHARD J. H. SMITH
Iowa Institute of Human Genetics, Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA 52242

R. NEAL SMITH
Massachusetts General Hospital, Pathology, 501B Warren Bldg., 14 Fruit St., Boston, MA 02114

MELISSA R. SNYDER
Mayo Clinic, Hilton 2-10D, 200 First St. SW, Rochester, MN 55905

LORI J. SOKOLL
Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205

JEREMY SOKOLOVE
VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304-1207, and Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305

LORI SOMA
University of Washington, Department of Laboratory Medicine, NW120, Box 357110, 1959 Pacific St., Seattle, WA 98195-7110

DAVID J. SPEICHER
Griffith University, Menzies Health Institute Queensland, Gold Coast Campus, Queensland 4222, Australia

ANDREA K. STECK
Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045

MARYALICE STETLER-STEVENSON
CCR, NCI, NIH, Laboratory of Pathology, Building 10, Mail Stop 1500, Room 3S 235G, Bethesda, MD 20892

JAMES R. STONE
Massachusetts General Hospital, Pathology, 185 Cambridge Street, Boston, MA 02114

JOHN H. STONE
Harvard Medical School, Division of Rheumatology, 25 Shattuck St, Boston, MA 02115

MANIKKAM SUTHANTHIRAN
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065

D. ROBERT SUTHERLAND
Laboratory Medicine Program, Toronto General Hospital/University Health Network, 200 Elizabeth St., Room 11E416, Toronto, Ontario, M5G2C4 Canada

ELIZABETH SYKES
Beaumont Hospital – Royal Oak, Clinical Pathology, 3601 W. 13 Mile Road, Royal Oak, MI 48073

CARMELA D. TAN
Department of Pathology, 9500 Euclid Ave., Cleveland, OH 44022

YI-WEI TANG
Memorial Sloan-Kettering Cancer Center, Clinical Microbiology Service, 1275 York Ave., S328, New York, NY 10065

STEFFEN THIEL
Aarhus University, Department of Medicine, Bartholin Building, Wilhelm Meyers Allé 4, Aarhus, 8000, Denmark

Renee Tsolis
Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616

JEROEN VAN BERGEN
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands

CORETTA C. VAN LEER-BUTER
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

PRIYANKA VASHISHT
Mayo Clinic, Department of Immunology and Division of Rheumatology, 200 1st St. SW, Rochester, MN 55905

RENATO VEGA
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205
Acknowledgment of Previous Contributors

The Manual of Molecular and Clinical Laboratory Immunology is by its nature a continuously revised work which refines and extends the contributions of previous editions. Since its first edition in 1976, many eminent scientists have contributed to this important reference work. The American Society for Microbiology and its Publications Board gratefully acknowledge the contributions of all of these generous authors over the life of this Manual.
Foreword:
How It Began

In 1971, I was working at the University of Oxford’s Sir William Dunn School of Pathology in the laboratory of James Gowans, the investigator who first definitively showed that the lymphocyte was the source of specific adaptive immunity. I was busily cannulating the thoracic ducts of rats in order to harvest T lymphocytes when I was informed that a transatlantic telephone call was coming in. My first reaction was fear of bad news. Rather, it was a phone call from Earle Spaulding. I knew Earle as the chairman of microbiology at Temple and active in the Eastern Pennsylvania branch of the American Society for Microbiology (ASM). He explained that he was calling as a member of the editorial group of the Manual of Clinical Microbiology (MCM), at that time in its first edition. His particular concern was the chapter on immunology, which devoted 100 pages to various serologic tests for infectious organisms with no mention of noninfectious diseases. Earle felt strongly that the field of immunologic diagnosis was growing exponentially and deserved a separate, companion manual. The MCM editorial board agreed, providing I was willing to accept the position of Editor-in-Chief.

I was delighted to receive the invitation. I had recently chaired a “blue ribbon” committee of the American Association of Immunologists (AAI) on the future of clinical immunology. We concluded that there was no space for a new patient-centered clinical specialty, but great need for improved, expanded laboratory support. A comprehensive manual would serve as a great stimulus to the whole field of laboratory-based clinical immunology. I accepted the offer with two qualifications. First, I needed a co-editor, particularly someone well versed at a practical level in immunology related to infectious diseases. Second, I asked that such a manual be cosponsored by the AAI. Both qualifications were agreed to by the ASM Publications Board.

The person I had in mind as co-Editor-in-Chief was Herman Friedman. I knew Herman from contacts arising from our joint interest in allergy research. I knew he understood the practice of laboratory immunology and was one of the few immunologists who actually researched the immunology of infection. Herman readily agreed to partner with me on the Manual, and so began a close collaboration that continued for three subsequent editions of the Manual, ended only by his untimely death. The AAI also accepted an offer of collaboration and appointed a liaison committee to work with us.

We were off and running, but we had no idea of how to proceed. There had never been a manual describing the entire laboratory practice of immunology. Part of our mission was to include the many applications of immunology devoted to detection and analysis of a wide variety of diseases, not only those induced by microorganisms. Should we approach the subjects disease by disease or method by method? We finally decided to compromise by beginning the book with invited chapters on the common methods used in the immunology laboratory, then continuing with sections covering their application to the main categories of disease. We included a final section on laboratory administration and quality control.

Having developed particular sections, we then sought the most experienced and highly qualified individuals to serve as section editors. Because of the cross-cutting matrix arrangement, there was major concern that some topics would be dealt with twice or even three times. We therefore decided to organize a “stakeholders meeting,” at which all of the section editors met at ASM in Washington, DC, with proposed outlines of their sections. Going through each one systematically, we identified topics where overlap occurred and ensured that everything important was included once, but not more. We also made a fundamental decision that the book would be complete and free-standing. The methods would be described in sufficient detail that the laboratory worker could actually prepare the materials, perform the tests, and interpret the results without consulting other references. It should be understood that, at that time, most laboratory reagents

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Sun, 08 Sep 2019 21:55:47
were prepared within the laboratory and were generally not available as commercial kits. This format required that we keep descriptions terse and the reference lists short.

When the first edition of the *Manual of Clinical Immunology* was published in 1976, we felt it warranted some type of celebration. Herman suggested that we should organize a meeting to mark the birth of the book and to bring together the leaders in clinical laboratory immunology, including our authors and section editors. Eventually, this led to the formation of the Association of Medical Laboratory Immunologists and the American Board of Medical Laboratory Immunology.

The *Manual* continues to be published at regular intervals to the present, as the editorial lineup has evolved. Barbara Detrick and Robert G. Hamilton joined me as Editors for the Sixth Edition, and Dr. Detrick has continued to lead the *Manual* for the Seventh and the present Eighth Edition. I hope the series will go on for many years. Although the *Manual’s* name has changed and the format is altered, the overall aim is still to improve the care of patients with infectious malignant inflammatory and immune-mediated disorders. With the ready availability of validated kits, the job of the clinical laboratory immunologist has shifted toward working with clinical colleagues on the significance and interpretation of laboratory tests.

I’m proud to have been involved in the genesis of this *Manual*. It would not have been possible without the continued support of ASM, the cooperation of AAI, the persistence of succeeding volume and section editors, the contributions of hundreds of practicing clinical laboratory immunologists, and the foresight of a few visionary microbiologists of the 1970 era who realized that immunology had become a discipline and specialty of its own. It never would have happened if Herman Friedman had not joined with me in accepting the challenge. I hope that he will long be remembered for his numerous contributions to immunology.

NOEL R. ROSE, MD, Ph.D.
For over 40 years, the Manual of Clinical Laboratory Immunology has been the leading reference source, both in the United States and abroad, to advance the field of laboratory immunology, to foster the best contemporary and most cutting-edge methodologies, and to translate basic immunologic principles into appropriate laboratory tests.

Since the publication of the 7th edition of this Manual, remarkable progress has been made in the field of immunology, and these notable advancements have been reflected in the clinical immunology arena as well. The scope of clinical immunology is exceptionally broad and encompasses nearly every medical specialty, including such areas as transplantation, rheumatology, oncology, infectious disease, allergy, hematology, and neurology, to name a few. Because of its strategic position in the hospital setting, it is critical that the clinical immunology laboratory should have a guide to follow with regard to accurate and appropriate laboratory procedures. As the field of clinical immunology continues to expand, we look to the laboratory director as a key person to gather the new basic information and integrate it into useful clinical procedures as well as to serve as a pivotal contact for communication with the various disciplines. In addition to keeping abreast with the most updated testing systems, the goal for this Manual is that it must not only serve the needs of today’s clinical immunology laboratory but also look to the future, where even more dramatic progress in diagnosis and treatment can be anticipated.

In an effort to capture the new dimensions in this field and to reflect the continuous evolution of clinical immunology, significant changes have been introduced into the 8th edition of the Manual of Molecular and Clinical Laboratory Immunology. Several sections of the Manual have been notably updated to reflect the latest laboratory approaches in molecular assays as well as the shift to automated testing, kit-based diagnostics, and new technical tools: themes that are carried throughout the book. New chapters have been introduced to highlight these changes. For example, section D, Flow Cytometry, describes the latest applications of these techniques, such as polychromatic flow cytometry and mass cytometry; section F reviews fresh information on the clinical applications of cytokines and chemokines; the infectious disease sections H, I, and J include the newest strategies used in infectious disease diagnosis and treatment, including the HIV and syphilis algorithms; section K, Immunodeficiency Diseases, presents the recent newborn screening programs for severe combined immune deficiency; and section P, Transplantation Immunology, outlines the usefulness of next-generation sequencing in the human leukocyte antigen (HLA) laboratory.

Once again, this Manual is offered not just in print but also electronically as either an EPUB file or a PDF. This special feature will allow a larger audience to review and use the Manual.

As we produce the 8th edition of this Manual, it is appropriate to celebrate its success. Noel Rose, the Manual’s first Editor-in-Chief, has provided a foreword reflecting on how the field has changed over the past 5 decades.

Since the publication of this Manual is a joint effort of many dedicated individuals, I wish to acknowledge the outstanding commitment and invaluable support of our volume editors, section editors, and chapter authors, all of whom, as internationally renowned experts in their areas, have contributed their extraordinary experience, energy, and time to the success of this edition. Also, I would like to extend my appreciation to the ASM editorial staff, in particular Ellie Tupper, Senior Production Editor, and Christine Charlip, Director, ASM Press, who have provided their valuable experience and support to complete this edition.

BARBARA DETRICK, Ph.D.
Editor in Chief
Cem Akin (coauthor on chapter 85) has consultancy agreements with Novartis and Patara Pharma and receives research funding from Dyax.

Barbara Detrick (Editor in Chief, coauthor on chapter 106) serves as a consultant to Siemens Healthcare Diagnostics, Inc., Abbott Laboratories, and INOVA Diagnostics, Inc.

Deborah Ferriola (coauthor on chapter 113) receives royalties from Omixon. Omixon has licensed the protocol we developed for HLA typing by NGS from the Children's Hospital of Philadelphia and makes it available as a commercial product named “Holotype HLA.” Omixon is mentioned in this chapter as a company that provides software analysis tools for the genotyping of HLAs using NGS data. It is not mentioned as a company that commercializes HLA typing products/kits, because at the time of writing Omixon had not developed this activity.

Marvin J. Fritzler (coauthor on chapter 88) has been a consultant to or received research gifts in kind from Inova Diagnostics Inc., Euroimmun GmbH, Mikrogen GmbH, Dr. Fsoke Laboratorien GmbH, ImmunoConcepts, GSK Canada, Amgen, Roche, and Pfizer. He is the Director of Mitogen Advanced Diagnostics Laboratory.

Andrea Illingworth (coauthor on chapter 18) has received unrestricted Educational Grant funding and speaker honoraria from Alexion Pharmaceuticals.

Michael Keeney (coauthor on chapters 18 and 19) is a consultant for Beckman Coulter, Canada, and Alexion Pharma, Canada. He has received unrestricted Educational Grant funding and speaker honoraria from Alexion Pharmaceuticals.

Masataka Kuwana (chapter 91) holds a patent on an antirNA polymerase III antibody measuring kit.

Curt Lind (coauthor on chapter 113) receives royalties from a licensing agreement between Omixon Biocomputing and the Children's Hospital of Philadelphia and is an employee of Thermo Fisher Scientific, Transplant Diagnostics.

Robert P. Lisak (coauthor on chapter 99) is on an advisory board for Syntimmune.

Dimitri Monos (coauthor on chapter 113) receives royalties from Omixon. Omixon has licensed the protocol we developed for HLA typing by NGS from the Children's Hospital of Philadelphia and makes it available as a commercial product named “Holotype HLA.” Omixon is mentioned in this chapter as a company that provides software analysis tools for the genotyping of HLAs using NGS data. It is not mentioned as a company that commercializes HLA typing products/kits, because at the time of writing Omixon had not developed this activity.

Stanley J. Naides (chapter 62) is a full-time employee of Quest Diagnostics Nichols Institute and receives a salary, stock, and stock options from Quest Diagnostics.

Timothy Niewold (coauthor on chapter 38) has received research grants from Janssen Inc. and EMD Serono Inc.

Maurice R. G. O’Gorman (chapter 20) is a BD Biosciences consultant and contractee.

Paul Sikorski (coauthor on chapter 114) is an employee of One Lambda, Inc., a Thermo Fisher Scientific brand.

Marek Smieja (coauthor on chapter 63) has done small studies with Copan and GenMark.

Melissa R. Snyder (chapter 103) participates on the Strategic Advisory Committee with INOVA Diagnostics.

Kathleen E. Sullivan (section editor) is a Baxter grant recipient and an Immune Deficiency Foundation consultant.

D. Robert Sutherland (coauthor on chapters 18 and 19) has received speaker fees and consulting fees from Alexion Pharmaceuticals.
Yi-Wei Tang (coauthor on chapter 57) has received research funds from Roche Molecular Diagnostics and the Luminex Corporation.

Brent Wood (coauthor on chapter 22) has received research funding and honoraria for Advisory Board participation from Seattle Genetics and Amgen and honoraria from Abbvie for Advisory Board participation.

Andrea A. Zachary (coauthor on chapter 114) is a consultant for BiologicTx and Genentech and is a Scientific Advisory Board member for Immucor.
Author Index

Abraham, Roshini Sarah, 26, 269
Aguero-Rosenfeld, Maria E., 419
Akin, Cem, 825
Ali, Mohsin, 598
Anderson, Burt, 473
Andrade, Luis Eduardo Coelho, 843
Ansari, Aftab A., 975

Baldwin III, William M., 1123
Balfour, Jr., Henry H., 563
Barbesino, Giuseppe, 930
Barnidge, David R., 26
Baxter- Lowe, Lee Ann, 1161
Biancotto, Angélique, 149
Blanton, Lucas S., 461
Brown, Mary B., 444
Browne, Sarah K., 365
Bryceson, Yenan T., 300
Bubb, Michael Raymond, 897
Buchner, C. E., 909
Burek, C. Lynne, 929, 930, 975
Burton, Robert L., 280
Bushman, Frederic D., 19
Caruso, Breanna, 674
Caturegli, Patrizio, 930
Ceribelli, Angela, 878
Chan, Chi-Chao, 998
Chan, Edward K. L., 859, 878
Chandra, Anita, 737
Chauffe, Ann Duskin, 897
Chiang, Samuel C. C., 300
Collins, A. Bernard, 376, 385
Cook, Linda, 1169
Cooley, Sarah, 1150
Coppel, Ross L., 966
Cruvinel, Wilson de Melo, 843
Curtis, Kelly A., 696

Dalhania, Darshana, 1132
Dale, Bethany L., 1103
Dayla, Daniel C., 1051
De Remigis, Alessandra, 930
de Souza, William Marcel, 658
De Vincentiis, Ludovica, 930
Degheidy, Heba, 226

Dellavance, Alessandra, 843
Dettrock, Barbara, 998
DiGiuseppe, Joseph A., 207
Douglas, Steven D., 261
Duffy, Elizabeth R., 324
Duke, James, 1069
Dunn, Bruce E., 404

Eisenbarth, George S., 930
Elder, Melissa, 721

Ferriola, Deborah, 1069
Figuereido, Luiz Tadeu Moraes, 658
Fleisher, David M., 815
Fleisher, Martin, 1051
Fleisher, Thomas A., 3
Flores-Montero, Juan, 235
Francescantonio, Paulo Luiz Carvalho, 843
Fritzier, Marvin J., 859

Galanakis, Dennis, 101
Gershwin, M. Eric, 966
Ghia, Emanuela M., 51
Glices, Patricia C., 127, 129, 749
Gilmour, Kimberly C., 737
Godbey, Elizabeth A., 1008
Gorevic, Peter D., 101
Green, Kim Y., 639
Guerrero, Pamela A., 783, 801

Hamilton, Robert G., 375, 795, 1007
Han, Shuhong, 868
Hanly, J. G., 909
Harbeck, Ronald J., 1169
Harris, Neil, 905
Hartono, Choli, 1132
Hill, Harry R., 394
Hirakata, Michito, 878
Hodinka, Richard L., 578
Hogueist, Kristin A., 563
Holland, Steven M., 766
Hooks, John J., 323, 998
Hooper, D. Craig, 665
Hsu, Amy P., 5
Hughes, Richard L., 74

Illingworth, Andrea, 168
Islam, Sabina A., 343

Jackson, Annette M., 1103
Jacobson, Steven, 674
Jaffe, Elaine S., 1015
Johnson, Jeffrey A., 696

Katzmann, Jerry A., 112
Keeney, Michael, 168, 182
Keren, David E., 49, 74, 112
Kickler, Thomas S., 995
King, Karen E., 990
Kipps, Thomas J., 51
Kion, Amy D., 825
Knight, Vijaya, 1180
Kuhns, Douglas B., 310
Kumararatne, D. S., 737
Kunkel, Mark, 1069
Kuwana, Masataka, 888

Lanciotti, Robert S., 648
Landry, Marie Louise, 538
Lebo, Terri, 1180
Lederman, Howard M., 713
Leland, Diane S., 610
Leung, Patrick S. C., 966
Levinson, Arnold L., 954
Li, Yi, 868
Lind, Curt, 1069
Lindsley, Mark D., 503
Lisak, Robert P., 954
Litwin, Christine M., 393, 394, 433, 473
Litwin, Sheldon E., 394
Lucas, Donna P., 1091
Luster, Andrew D., 343

Maeccker, Holden T., 251, 338
Maier, Cheryl L., 975
Manns, Michael P., 966
Marsh, Rebecca, 775
Massini, John, 868
Massoud, Raya, 674
McCoy, Jr., J. Philip, 149
Medoff, Benjamin D., 343
Metes, Diana, 1108
Monos, Dimitri, 1069
Murphy, Martina, 905
Muthukumar, Thangamani, 1132
AUTHOR INDEX

Nahm, Moon H., 280
Naides, Stanley J., 591
Nieters, Hubert G. M., 620
Niewold, Timothy B., 357
Nixon, Douglas F., 290
Nussenblatt, Robert, 998
Nunan, Thomas B., 485, 486

O’Gorman, Maurice R. G., 147, 199
Orfao, Alberto, 235
Owen, S. Michele, 696

Parr, Gabriel I., 639
Peebles, Jr., R. Stokes, 801
Pérez, José Juan, 235
Petersen, Robert B., 682
Phadnis, Suhas H., 404
Pfister, Debra Long, 310
Prussin, Calman, 825
Puig, Noemi, 235

Rabin, Ronald L., 784
Raffeld, Mark, 1015
Rai, Alex J., 1008
Rajalingam, Raja, 1150
Rasley, Amy, 473
Rassenti, Laura Z., 51
Reed, Elaine F., 1065
Reeves, Westley H., 841, 868
Reinsmoen, Nancy L., 1108
Relich, Ryan F., 610
Remick, Daniel G., 324
Renn, Lynsey, 784
Ricciuti, Adriana, 930
Riezebos-Brilman, Annelies, 620

Risma, Kimberly, 775
Rodriguez, E. Rene, 1123
Roehrig, John T., 648
Rose, Noel R., 930, 975
Routes, John M., 715
Rubenstein, Richard, 682

Salem, Dalia A. A., 226
Sanoja, Luzlba, 235
Santos, Carah B., 815
Sarwal, Minnie M., 1132
Satoth, Minoru, 878
Schier, Howard E., 1051
Schmid, D. Scott, 550, 556
Schmitz, John L., 412, 537
Schoeder, John T., 801
Sen, H. Nida, 998
Sergooy, Christine, 721
Shacklett, Barbara L., 290
She, Rosemary, 453
Shixiong, R. Sue, 902
Sigdel, Tara K., 1132
Sikorski, Paul, 1091
Simecka, Jerry W., 444
Slater, Jay E., 784
Smieja, Marek, 598
Smith, Richard J. H., 138
Smith, R. Neil, 376, 385
Snyder, Melissa R., 983
Sokoll, Lori J., 1008
Sokolove, Jeremy, 922
Soma, Lori, 217
Speicher, David J., 598
Steck, Andrea K., 930
Sterling, Maryalice, 226
Stone, James R., 376
Stone, John H., 917
Suthanthiran, Manikam, 1132
Sutherland, D. Robert, 168, 182
Sykes, Elizabeth, 89

Tan, Carmela D., 1123
Tang, Yi-Wei, 538
Thiel, Steffen, 133
Tsotis, Renee, 473

Van Bergen, Jeroen, 1150
Van Leer-Bouter, Corretta C., 620
Vashisht, Priyanka, 357
Vega, Renato, 1091
Verbsky, James W., 715
Vergheese, Priya S., 563
Vidrias, Maria Belen, 235

Whiteside, Theresa L., 296, 1036
Wilkins, Patricia P., 486
Willison, Hugh J., 961
Wisniewski, Thomas, 682
Wood, Brent, 217
Wood, Robert A., 815

Yu, Liping, 930
Zachary, Andrea A., 1091
Zeevi, Adriana, 1108
Zhang, Quiheng Jennifer, 1065

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Sun, 08 Sep 2019 21:55:47
AABB (American Association of Blood Banks), 1172
AAE (acquired angioedema), 756–757
ABB (American Board of Bioanalysis), 1174
ABCC (American Board of Clinical Chemistry), 1174
ABFT (American Board of Forensic Toxicology), 1174
ABHI (American Board of Histocompatibility and Immunogenetics), 1172
ABI SOLiD system, 20
ABMG (American Board of Medical Genetics), 1172
ABMLI (American Board of Medical Laboratory Immunology), 1172
ABMM (American Board of Medical Microbiology), 1172
Absolute cell counting, in polychromatic flow cytometry, 155
ACA (anticentromere antibody), 888–889
Acanthamoeba, 489
Accreditation of clinical immunology laboratory, 1176–1177
Accuracy, 1183–1184
Acetylcholine, 954–956
Acetylcholine receptor, 954–958
Acetylcholine receptor antibodies, 954–958
Acetylcholinesterase, 957
aCGH (array comparative genomic hybridization), 745
ACIF (anticomplement immunofluorescence assay), for human herpesvirus-6, 582–583
Acoustic radiation, 151
ACPA. See Anti-cyclic citrullinated peptide antibody
Acquired angioedema (AAE), 756–757
Acrocyanosis, cryoglobulins and, 101–102
Acrodermatitis chronica atrophicans, Lyme, 421
Activated partial thromboplastin time (APTT), 906–907
Activation-induced deaminase (AID), 59, 740
Active cell movement, signal transduction and, 351
Acute erythroid leukemia, 220
Acute glomerulonephritis, poststreptococcal, 393–396, 397, 399–401
Acute lymphoblastic leukemia (ALL), 207–214, 1150
diagnosis, 207–212
flow cytometry immunophenotyping, 207–214
immunophenotypic-genotypic and prognostic correlations, 212
minimal residual disease (MRD), 207–209, 212–214
Acute megakaryoblastic leukemia, 220
Acute monocytic leukemia (AMoL), 220, 1028–1029
Acute motor axonal neuropathy (AMAN), 961–962, 964
Acute myeloid leukemia (AML), 147–148, 207, 209–210, 1066, 1150
antigens associated with diagnosis of, 218
biology of, 218
classification, 218–220
diagnostic sample preparation and evaluation, 220–222
data acquisition, 221
data analysis, 221
reagent panels, 221
reporting, 221–222
specimen requirements and processing, 220–221
epidemiology, 218
minimal residual disease, 222–223
data acquisition and evaluation, 222–223
reporting, 223
specimen requirements, processing, and reagent panels, 222
normal myeloid maturation and antigen expression, 217–218
overview, 217–220
Acute myocardial injury, 975–976
Acute-phase reaction, electrophoresis, 81–82
Acute promyelocytic leukemia (APL), 220
Acute respiratory tract infections, 598. See also Respiratory viruses
Acute rheumatic fever, 394–395, 397–401
ADA, 301, 306
Adalimumab, 361
ADCC (antibody-dependent cellular cytotoxicity), NK cell-mediated, 1156
ADGs (analog-to-digital converters), 153
Addison disease antibodies to adrenal antigens, 931–932
clinical manifestations, 931
indirect IF test for adrenal autoantibodies, 931–932
prevalence, 931
Addressable laser bead immunoassay (ALBIA), 862–863
Adenosine, extracellular, 298
Adenoviridae, 640
Adenoviruses, 598, 644–645
clinical significance, 600–602, 644
description of agents, 599
detection and characterization, 645
direct fluorescent antibody (DFA), 603
epidemiology, 600
gastroenteritis, 644
genome, 644
proteins, 644–645
rapid diagnosis, 539
species, 645
specimen collection, transport, and storage, 662–663
taxonomy, 599
transmission, 600
Adhesion assays, 350
Adhesion disorders, 767–771
Adhesion molecules, allograft rejection and, 1132
Adult T-cell leukemia/lymphoma, 1026
human T-cell lymphotropic virus, 674–675
immunophenotype of, 228
Affinity maturation, 59, 67
African sleeping sickness, 489
African tick bite fever, 463–464
African trypanosomiasis, 489
Agarose gel electrophoresis
CSF samples, 98–99
monoclonal gammopathies, 115
protein identification, 77
reference ranges, 77
serum proteins, 83
urine proteins, 85–86, 97
Age-related macular degeneration (AMD), 100, 127, 749
Agglutination, rheumatoid arthritis testing, 900
Agreement, 1184
Agrin, antibodies against, 958–959
AH50 assay, 749–751
analytical concerns, 753
controls, 752–753
interpretation, 754
materials and reagents, 752
pitfalls and troubleshooting, 753
Allergic diseases

RAW_TEXT_START

Allergic diseases

RAW_TEXT_END
Antibody assays
aspergillosis, 515
blastomycosis, 517
candidiasis, 518
in cryoglobulinemia, 105
Antibody avidity
human herpesvirus-6, 583
variable-cortex virus, 559–560
Antibody deficiencies, 737–746
absent B cells, 738
clinical manifestations, 737
common variable immune deficiency (CVID), 740
defect in immunoglobulin isotope switching, 739–740
evaluation of patients, 737–741
genetic analysis, 745–746
direct sequencing, 745
MPLA and aCGH, 745–746
IgA deficiency, 740–741
IgG subclass deficiency, 741
inheritance of, 739
laboratory investigation, 741–745
CD40L (CD154) expression for diagnosis of X-linked antibody deficiency (XLA), 743–745
diagnosis of X-linked lymphoproliferative syndrome 1 (XLPI), 743–745
diagnosis of X-linked lymphoproliferative syndrome 2 (XLPL2), 743–745
extended B-cell immunophenotyping, 742–743
flow cytometry, 741
next-generation sequencing, 746
phenotypes, 738
Antibody-dependent cellular cytotoxicity (ADCC), NK cell-mediated, 1156
Antibody detection
African trypanosomiasis, 489
amebiasis, 489
arboviruses, 648, 650–652
babesiosis, 490–491
cryptosporidiosis, 491–492
cyclosporiasis, 492
cysticercosis, 492–493
cytomegalo virus, 572–573
echinococcosis, 493
Epstein-Barr virus, 567–568
fascioliasis, 494
fungal infections, 504–505
giardiasis, 495
human herpesvirus-6, 581–582
leishmaniasis, 495
paragonimiasis, 496
parasitic infections, 486–488, 492
schistosomiasis, 496
strongyloidiasis, 496–497
toxocariasis, 497
toxoplasmosis, 497–498
trichinellosis, 498
Antibody-mediated rejection (AMR), 1123–1129
Antibody microarrays, 29
Antibody screens, in evaluation of humoral response to transplantation advantages and disadvantages of, 1093
assay characteristics, 1097
interpretation, 1097
overview, 1093
quality control, 1095–1096
Antibody-secreting memory B cells, 615
Antibody titration, with polychromatic flow cytometry, 159, 161
Anti-C5a peptide antibodies, 401
Anti-calpain 2 antibody, 899
Anticardiolipin assay, 907
Anticellular antibody, 843
Anticomplement antibody to cryoglobulinemia, 108–109
Anticomplement immunofluorescence assay (ACIF), for human herpesvirus-6, 582–583
Anticyclic citrullinated peptide, in rheumatoid arthritis, 347
Anti-cyclic citrullinated peptide antibody (ACPA), 897–902, 923
clinical significance, 899
combined ACPA and RF testing, 902
Anticytokine autoantibodies, 323, 365–370
detection, 365–368
enzyme-linked immunosorbent assay (ELISA), 365, 367–368
immunoblotting, 367–368
luciferase immunoprecipitation systems (LIPS), 367–368
Luminox, 367–368
protein array, 367–368
radioimmunoassays (RIA), 367–368
diseases associated with, 365–366
functional assays, 369
isotype and subclass analysis, 369
titer, 369
Anti-deaminated glutamic acid antibodies, 984–985
Anti-ΔNp63 antibody, 399–400
Anti-dsDNA antibodies, 868, 873–874
Antierythropoietin autoantibodies, 323
Anti-GM-CSF (murine citrullinated vimentin), 899
Antifilaggrin antibody, 898–899
Anti-Granulocyte-Macrophage colony stimulating factor autoantibodies and pulmonary alveolar proteinosis, 323
Anti-Granzyme B antibody, 401
Anti-human herpesvirus-6, 580–582
Anti IFN-γ antibody, 385–387
Anti-IFN-γ autoantibodies and opportunistic infection, 323
Anti-keratin antibody, 898–899
Anti-Ku antibody, 891
Anti-La (SS-B) antibodies, 964
Anti MCV (murine citrullinated vimentin), 899
Antimitochondrial autoantibodies, 966–969
Anti-M-protein test, 401
Anti-myelinated-associated glycoprotein, 961
Anti-NADase test, 401
Anti-neutrophil cytoplasmic antibodies (ANCA), 386, 909–914
in inflammatory bowel disease, 987–988
tests for, 909–911
vaculitides associated with, 909–914
Antinuclear antibodies, 868
in scleroderma/systemic sclerosis, 888–895
Antinuclear antibody tests, 843–857
IFN-ANA patterns, 849–857
decision-tree algorithm for classification, 856
disease associations, 854
interpretation of IFN-ANA test, 852–857
LE cell test, 843–844
methodological platforms, 843–845
automated readers for IFN-ANA assay, 844
enzyme-based HEp-2 cell ANA, 844
indirect immunofluorescence assay on HEp-2 cells, 843–845
solid-phase ANA, 844–854
negative test, meaning of, 852
positive test meaning of, 852–853
without clinical evidence of systemic autoimmunity, 853–855
quality control, 855, 859
reading IFN-ANA slides, 849–852
report of IFN-ANA test, 849, 852–857
strategy for ordering, 855
technical recommendations, 846–849
assay procedure, 846–849
cell substrate, 846
controls, 846
dark room, 849
first washing, 847
incubation with conjugate, 847–848
microscopy, 848–849
primary antibody incubation, 847
sample dilution, 846
samples, 846
second washing and coverslip mounting, 848
standard operating procedure, 846
workspace, 846
when to order, 852
Rosetta bacteria for production of large recombinant proteins, 861
use of natural autoantigens, 860
use of peptide antigens, 860
Anti-glucocerebrosidase antibody, 984–985
Anti-glomerular basement disease, 911
Anti-glomerular basement membrane antibodies, Western blot analysis of, 385–387
Antiglycolipid antibodies, 961–964
Anti-GMI ganglioside IgM antibodies, 961–962, 964
Antigen assay, 141
Antigen assays
influenza virus, 604
respiratory syncytial virus, 604
Antigen-binding site, 67
Antigen capture ELISA, for arboviruses, 652
Antigen detection
adenoviruses, 645
arboviruses, 652–653
aspergillosis, 515–516
candidiasis, 492–493
in cryoglobulinemia, 105
cryptosporidiosis, 491
cysticercosis, 493
cytomegalovirus, 572
fungal infections, 506
hepatitis C virus, 628–629
histoplasmosis, 523–526
human herpesvirus-6, 580–582
noroviruses, 642
parasitic infections, 488, 489, 490
rotaviruses, 640
saposin, 642
Antigen-driven proliferation, immunologic monitoring and, 1044
Antigen microarrays, 29–10
Antigen-presenting cells (APCs), 1028
alloreactive T lymphocytes, 1132
intracellular cytokine staining (ICS) assay, 338–339
T cell activation, 269
Antigens, for autoantibody detection, 860–861
production of recombinant proteins, 860–861
purification of autoantigens, 860
purification of recombinant proteins, 861
Biosafety, hantaviruses and, 658, 660–661
Birbeck granule, 1028
Birdshot chorioretinopathy, 998
Bisalbuminemia, 77
BK virus nephropathy, 347, 1135, 1143
Bland-Altman plots, 1184
Blastosomycosis, 504, 516–517
Bocaparvovirus (genus), 599
Bluetongue virus, 653
B lymphocyte. See B cell
BLyS, 923
Bocavirus, 591, 640. See also Human bocavirus
Bone marrow
in myeloproliferative hypereosinophilic syndromes, 827
plasma cells, 235–238, 240–247
Bone marrow transplantation for mastocytosis, 834
for myeloproliferative hypereosinophilic syndromes, 828
Borrelia pertussis, 600
Borrelia
B. afzelii, 419–422
B. baltimorei, 420
B. bavariensis, 419–420
B. bissetii, 419–420
B. burgdorferi, 419–426
B. canicola, 420
B. coryaeae, 420, 426
B. crocidurae, 420, 427
B. duttonii, 420, 426–427
B. garnii, 419–420, 422
B. griinieri, 420
B. hermsi, 420, 426–427
B. hispanica, 420, 426–427
B. larsiheuei, 420
B. lonestari, 420, 426
B. lusitaniae, 419–420
B. mazzotti, 420
B. miyacoi, 426
B. miyamotoi, 420, 426–427
B. moorei, 426
B. parkeri, 420, 427
B. persica, 420, 427
B. recurrentis, 420, 426–427
B. spielmanni, 419–420
B. turicatae, 420, 427
B. valaisiana, 419–420
B. venezuelensis, 420
Lyme disease, 419–426
relapsing fever, 420, 426–428
taxonomy, 419
Borrelia burgdorferi
clinical manifestations, 421
epidemiology, 419, 421
laboratory diagnosis, 421–426
antigens important in immunodiagnosis, 421–422
clinical applications and limitations, 424
direct detection, 424
ELISA, 422–423
indirect fluorescent antibody (IFA), 422
recombinant or peptide antigen use in serology, 423
test interpretation and practical considerations, 425–426
two-tier serologic testing algorithm, 423
Western blots, 422–423, 425
taxonomy of Lyme Borrelia, 419–420
transmission, 421
Borrelia, 1066, 1099
Bovine spongiform encephalopathy (BSE), 682, 684–686, 691
Bowie alignment program, 1086
Boydern chamber, 349
B-proliferative leukemia, 226
Brachyspiraceae, 419
BRAF gene, 1028
Brain-abundant membrane-attached signal protein 1 (BASP1), 1137–1138
Breast cancer biomarkers, 922
 circulating tumor cells, 1052, 1054, 1056–1057
Breastfeeding, human T-cell lymphotropic virus transmission by, 673
Breelfeldin A, 160, 339
Brevirubusataeae, 419
Bril-Zinsser disease, 462
Bromochloritis, viral, 601
Bronchitis, viral, 601
Bronchoaveolar lavage fluid, complement activation soluble products in, 1127–1128
Brucella
B. abortus, 473–475, 477–478
B. canis, 473, 475
B. ceti, 473
B. inopinata, 473
B. melitensis, 473–475, 478
B. micropati, 473
B. ovis, 473
B. pintoedalisus, 473
B. suis, 473–475, 478
clinical manifestations, 475
epidemiology, 474
laboratory diagnosis, 477–478
culture, 477
molecular diagnosis, 478
serology, 477–478
serology, 477–478
Coombs test, 478
ELISA, 478
Rose Bengal test, 477–478
serum agglutination test (SAT), 477
taxonomy, 473–474
Brucellacapt, 478
Brucellaceae, 473–474
Brugia, 494
Bruton’s agammaglobulinemia, 65, 70
Bruton’s tyrosine kinase, 32–33
BSE (bovine spongiform encephalopathy), 682, 684–686, 691
BTB deficiency, 738
B-type natriuretic peptides, 976
Bungarotoxin, 955, 958
Bunyaviridae, 638
Bunyaviruses, 649, 653, 656
Burkholderia cepacia, chronic granulomatous disease (CGD) and, 770
Burkitt’s lymphoma, 227, 563, 1017, 1020, 1025
BWA alignment program, 1086
C1 complex, 129
C1-INH, 129–130, 134, 138
deficiency, 127, 132, 754, 757–758
recombinant, 761
C1q, 129–131, 133–134, 749, 1100
antibodies to, in transplant rejection, 1123
deficiency, 755–756
C1r, 129–132, 749
deficiency, 755
C1s, 129–132, 749
deficiency, 755
C2, 129–133, 749
deficiency, 132, 755–756
C2a, 130–131, 755
C2b, 131, 755
C3, 133, 138–143, 749, 760
antibodies to, in transplant rejection, 1124–1126
bypass mechanism for cleavage of, 128
deficiency, 760
electrophoresis, 75–76, 79, 82–83, 86
glomerulopathy, 142–143
receptor for, 749
C3a, 131, 138, 142
C3b, 131, 133, 138–140, 749, 758, 1124–1125, 1128
C3c, 142, 1126
C3d, 142, 758, 1124–1129
C4, 129–134, 137, 749
antibodies to, in transplant rejection, 1123–1124
anti-C4 antibodies, 135
deficiency, 754–755
receptor for, 749
C4a, 129–131, 755
C4b, 129–131, 134, 755, 1123–1124, 1128
C4BP (C4 binding protein), 130–131, 138, 758, 1124
C4BP deficiency, 758
C4c, 131
C4d, 131, 758, 1100
antibodies to, in transplant rejection, 1123–1124, 1126
staining of renal allografts, 377–378, 1137
C5, 131–132, 138–140, 142–143, 749, 760
deficiency, 132, 760
monoclonal anti-C5 antibody, 127
C5a, 131, 138–139, 142–143
anti-C5a peptide antibodies, 401
C5b, 131, 139, 142
antibodies to, in transplant rejection, 1126
C6, 131, 142, 749
deficiency, 760
C7, 131, 142, 749
deficiency, 760
C8, 131, 142, 749
deficiency, 761
C9, 131, 142, 749
antibodies to, in transplant rejection, 1126
deficiency, 760–761
Ca2+ flux assays, in combined immunodeficiency (CID), 732–733
flow cytometry, 733
fluorometric assay, 733
protein tyrosine phosphorylation by immunoblotting, 733
CA125, 1012
Cag A protein, Helicobacter pylori, 404–405, 407–409
Cage effects in mouse models, 22
Calculated panel-reactive antibody (cPRA), 1065
Caliciviridae, 632, 640
Calicivirus (genus), 632
California, clinical immunology laboratory certifying program, 1176
Calpastatin, 899
Calprotectin, 987
SUBJECT INDEX

CD81, 298
chronic lymphocytic leukemia (CLL), 226, 229
plasma cells, 239, 242
CD90, 1022
CD107b, 275
CD107, detection in intracellular cytokine staining (ICS), 338
NK cell defects, 779
as surrogate of degranulation in T cell and NK cell cytotoxicity, 204–205
CD107e, 275
CD117
CD123, acute myeloid leukemia, 217–218
CD127, 1027
CD95, in lymphocytic variant of chronic lymphocytic leukemia (CLL), 226, 229
pathology, 983
epidemiology, 983–984
diagnosis, 984–986
HLA typing, 984, 986
summary of tests, 985
CD10, 217
CD127, plasma cells, 239–240, 242, 244, 246–247
CD128, acute lymphoblastic leukemia, 211
cD157, in assays for PNH, 172–173, 175, 176
plasma cells, 239, 242–244
CD157, in assays for PNH, 172–173, 175, 176
plasma cells, 239–240, 242–244
CD220, chronic lymphocytic leukemia (CLL), 226, 229
plasma cells, 239–240, 242–244
CD220C, as basophil surface activation marker in allergy, 791, 806, 821
CD229, plasma cells, 236, 238–240, 239
CD235 (glycoporphin A), 169–171, 220
CD279, T-cell lymphomas, 1026
CD307, plasma cells, 239–240
CD319, plasma cells, 236, 238–240
CD49 (gold-dependent activation of complement), 348
CDC. See Centers for Disease Control and Prevention
CDC assay. See Complement-dependent cytotoxicity (CDC) assay
cDNA, 8, 335
cDNA microarray
lymphoma, 1020, 1024–1025
transplant rejection, 1134, 1137
CDR3, 57
Celiac disease, 983–986, 988
clinical manifestation, 984
diagnosis, 984–986
anti-deaminated gliadin antibodies, 984–985
anti-gladin antibodies, 984–985
anti-TG antibodies, 984–985
biopsy, 984
endomyosal antibodies, 984–985
HLA typing, 984, 986
summary of tests, 985
epidemiology, 983–984
monitoring patients, 986
pathology, 983
quality assurance for clinical testing, 988
testing recommendations, 986
Cell culture. See Culture
Cell death, measuring, 1042
Cell-mediated immunity
food allergy, 815–816
human herpesvirus-6, 580
Cell Quest software, 1044
CellSearch immunomagnetic isolation, 1052–1053, 1056
Cell surface markers, on T cells after activation with mitogenic stimuli, 274, 277
Cellular immune response in transplantation, evaluation of, 1108–1121
cell division and precursor frequency analysis using multiparameter flow cytometry, 1111–1112
data analysis and interpretation, 1112
pitfalls and troubleshooting, 1112
procedure, 1111–1112
clinical applications, 1120–1121
cytokine measurements, 1113–1116
ELISPOT assay, 1113–1114
cellular significance, 1114
pitfalls and troubleshooting, 1114
procedure, 1113–1114
flow cytometry, 1111–1112, 1114–1116
immune cell function assay, 1116–1119
intraacellular ATP synthesis assay, 1116–1119
expected values, 1119
interpretation of results, 1118–1119
overview, 1116–1117
procedure, 1117–1118
intraacellular cytokine staining (ICS), 1114–1116
data acquisition, 1116
data analysis, 1116
procedure, 1114–1116
troubleshooting, 1116
mixed lymphocyte culture (MLC) assay, 1108–1110
concept, 1108
equipment and instrumentation, 1109
interpretation, 1109
materials and reagents, 1109
mechanics and controls, 1109
MTT method, 1109–1110
pitfalls and troubleshooting, 1109
procedure, 1108–1109
sample requirements, 1108–1109
propagation of lymphocyte cultures from allograft biopsy specimens, 1112–1113
concept, 1112–1113
pitfalls and troubleshooting, 1113
procedure, 1113
T-cell precursor frequency determination by limiting dilution assays, 1110–1111
validation of assays, 1119–1120
analysis of patient and healthy control subject data, 1119–1120
proficiency testing, 1120
quality assurance, 1120
quality control, 1120
statistical evaluation of data, 1119–1120
Cellular infiltrate, chemokine assays, 348
Center for Clinical Standards and Quality (CCSQ), 1172
Centers for Disease Control and Prevention (CDC)
CDC-ELISPOT (CDC-enzyme-linked immunoenlectrotransfer blot) assay for cytotoxicity, 492–493
guidelines for flow cytometry, 1180
Model Performance Evaluation Program (MPEP), 1177
Centers for Medicare & Medicaid Services (CMS), 1171–1175
Centroin (cP) unit, 71
Cerebral spinal fluid (CSF)
cysticercosis, 492–493
herpes simplex virus, 505
immunochromelchemical characterization of immunoglobulins, 98–99
measles viruses, 612
transferrin in, 79
Treponema pallidum, 413–416
Trypanosoma cruzi, 491
Ceruloplasmin, 361
CFB (complement factor B), 140, 142
CFH receptors, 138, 140, 142
CFS (cytokine fluorescence substrate), 204
HIGM screening, 731–732
validation of assays, 1119–1120
quality control, 1120
quality assurance, 1120
proficiency testing, 1120
analysis of subject data, 1119–1120
statistical evaluation of data, 1108–1121
subject data, 1119–1120
overview, 1108–1110
for chemokine expression in disease, 347–348
in vivo chemotaxic response:
chemotactic response: in vitro assays, 348–351
chemotactic response: in vivo assays, 351–353
imaging, in vivo, 351–353
trentigrin conformation change, 350–351
overview, 348
recombinant assays, 351
signal transduction and active cell movement, 351
Chlamydia, biliary. See Biliary cholangitis
Chorea, streptococcal, 395
Chromatogram, 1080
Chromatographic assay, for prion diseases, 686
Chromobacterium violaceum, chronic granulomatous disease (CGD) and, 767
Chromatin in situ hybridization (CISH), for lymphoma, 1019–1020
Chronic ataxic neuropathy, 961–962, 964
Chronic granulomatous disease (CGD), 14
diagnosis, 772–774
chemiluminescence, 773–774
DHR (dihydrorhodamine) oxidation, 772–773
myeloperoxidase, 774
NBT (nitroblue tetrazolium) test, 772
functional cellular assays for diagnosis, 262, 310–320
analysis of gg91thεs surface expression by flow cytometry, 316–317
analysis of PMN H2O2 production by flow cytometry of dihydrorhodamine 123 staining, 310–312
analysis of PMN ROS generation by luminol-enhanced chemiluminescence, 316
histochemical staining of PMN with NBT, 313–314
immunoblot analysis of phox subunits of NOX2, 317–319
isolation and characterization of PMN, 312–313
quantitative analysis of O2– generation using SOD-inhibitable ferricytochrome c reduction, 314–315
interferon-γ (IFN-γ) for, 323
neutrophil dysfunction, 767, 772–774
oxidative burst assay screen for, 204
Chronic lymphocytic leukemia (CLL), 148,
226–232, 1020, 1023–1024
CLL–Z index, 230
diagnosis, 228–229
flow cytometry, 226–232
minimal residual disease, 232
role in diagnosis, 226
role in prognostication, 226–227
sample preparation, 227–228
ZAP-70 analysis, 229–232
minimal residual disease, 227, 232
overall, 226
Chronic motor neuropathy, 961–962
Chronic myocardial injury, 975–977
Chronic necrotizing pulmonary aspergillosis, 513
Chronic obstructive pulmonary disease (COPD), 601
Chronic sensorimotor demyelinating neuropathy, 961–962
Chronic thyroiditis, 930–931
autoantibodies, 930
clinical manifestations, 930
prevalence, 930
Chronic wasting disease (CWD), 682, 684–685, 687, 691–692
CHSI, 771, 767
Churg–Strauss syndrome, 829, 913
CIA. See Chemiluminescence immunoassay CID. See Combined immunodeficiency CIE/CRIE (crossed immunoelectrophoresis/ crossed radioimmunoelctrophoresis), 790
Circulating tumor cells, 1051–1057
clinical utility, 1055–1057
analytical validation, 1056
biomarkers predictive of tumor sensitivity, 1057
clinical qualification, 1056
type of use, 1055–1056
future in the clinic, 1057
molecular characteristics of CTCs, 1056–1057
prognostic and response biomarker, 1056
detection methods, 1052–1055
agnostic methods, 1054–1055
CellSearch immunomagnetic isolation, 1052–1053, 1056
filtration assays, 1054
flow cytometry, 1054
functional assays, 1054
genome-, transcription-, and translation-based assays, 1054
microfluidic capture, 1054
metastatic process, 1051–1052
morbidity and characteristics, 1051–1052
shedding of, 1051
Cirrhosis, electrophoresis pattern in, 80–82
CISH (chemoimmunohybridization), for lymphoma, 1019–1020
Citrate, in cryobiohemigreminemia testing, 108–109
Citrullinated proteins, antibodies against, 898–899
Citrullination, 898
CJD. See Creutzfeldt–Jakob disease
Cladribine, for mastocytosis, 834
Classical NK cell deficiency, 300, 305
Classical pathway, complement, 129–132
Class switching, heavy-chain, 58–59
Class switch recombination (CSR), 58–59
CLEP (Clinical Laboratory Evaluation Program), New York State, 1176
CLIA (Clinical Laboratory Improvement Amendment), 1092, 1171–1172,
1174–1175
Clinical and Laboratory Standards Institute (CLSI), 1174, 1178, 1180, 1186
Clinical immunology laboratory accreditation and licensure, 1176–1177
American Society for Histocompatibility and Immunogenetics (ASHH), 1177
College of American Pathologists, 1176–1177
The Joint Commission, 1177
proficiency testing, 1177
credentialing agencies and programs, 1178–1179
federal government agencies and regulatory issues, 1171–1175
analyte specific reagents regulation, 1175
Clinical Laboratory Improvement Amendment (CLIA), 1171–1172,
1174–1175
Good Laboratory Practices (GLP) Regulations, 1175
laboratory-developed tests regulation, 1175
website addresses of governmental agencies, 1173
international issues and agencies, 1177–1179
quality control, 1187–1189
state certifying programs, 1175–1176
California, 1176
New York State, 1176
Washington State, 1175
validation, 1180–1187, 1190
Complement activation (continued)
- polyclonal and monoclonal antibodies to C5b-9, 1124–1126, 1126
- quality control of complement assays, 1126
- soluble complement products in body fluids, 1127–1128
- specific organ transplants, 1126–1127
- types of injury, 1128–1129

Complement activation-related pseudoallergy (CARPA), 127

Complement control protein (CCP), 757

Complement deficiency, 749–761

Complement deficiency algorithm for testing, 754
- alternative pathway, 756
- C1-INH, 756–758
- C1q, 754–755
- C1r, 755
- C1s, 755
- C2, 755–756
- C3, 756
- C4, 754–755
- C4BP, 757–758
- C5, 760
- C6, 760
- C7, 760
- C8, 760
- C9, 760–761
- CD59, 761
- lectin pathway proteins, 754–756
- Mn (clusterin), 761
- CR1 (CD35), 759
- factor B, 758
- factor D, 758
- factor H, 759–761
- ficolins, 756
- lectin pathway, 758–759
- lectin pathway components, 760–761
- therapy, 761
- VN (vitronectin), 761

Complement-dependent cytotoxicity (CDC)
- assay, 1065
- advantages and disadvantages, 1094–1095
- assay characteristics, 1093
- general principles, 1094
- quality control, 1095–1096
- complement factor B (CFB), 140, 142
- Complement factor H, 127, 138–141
- Complement factor I, 130–131, 138–141

Complement fixation
- advantages, 509
- arboviruses, 651
- aspergillosis, 515
- blastomycosis, 517
- Chlamydia pneumoniae, 455
- Chlamydia trachomatis, 456–457
- coccidioidomycosis, 521
- Coxiella, 466
- disadvantages, 509
- equipment, 510
- fungal infections, 509–512
- histoplasmosis, 524–525
- IgG and IgM, 66
- latex, 510
- measles viruses, 611–613
- mumps virus, 615

Mycoplasma pneumoniae, 445
- paracoccidioidomycosis, 526
- procedure, 510–512
- reagent preparation and standardization, 510
- titration of guinea pig complement, 510–511
- reading and interpretation of reactions, 511–512
- rubella virus, 616–617
- sample requirements, 510
- theory, 509–510

Trypanosoma cruzi, 491

Complement receptor 1 (CR1), 130–131, 138–139, 749, 759, 761, 1124–1125

Complement receptor 3 (CR3), 749

Comprehensive leukocyte immunophenotyping panel (CLIP), 160–162

Complementary approach

Congenital rubella syndrome, 616

Coronavirus
- Genus), 599
- Coronavirus
- Enterovirus

Coxiella burnetti

Crimean-Congo hemorrhagic fever virus, 599

Creutzfeldt-Jakob disease
- genetic (gCJD), 682, 687–690
- sporadic (sCJD), 682, 687, 691

Crigler disease

Cryptococcus, 506, 522–523

Cryptosporidiosis, 491–492

CSF. See Cerebrospinal fluid

CSR (class switch recombination), 58–59

Crossmatching, 1065, 1128

advantages and disadvantages of, 1093
- assay characteristics, 1093
- endothelial cell (EC), 1105
- interference, 1099–1100
- overview, 1093
- quality control, 1095–1096
- reactivity strength, 1099
- test interpretation, 1099

virtual, 1065, 1097–1099

Crow-Fukase syndrome, 115. See also POEMS syndrome

Cryocytoglobulin, 102

Cryoglobulinemia, 106–110

anticoagulant choice, 108–109

description, 106–107

disease association, 106–108

examples, 107–108

testing considerations, 107

testing procedures, 108–110

 Cryogel formation, 107–108

Cryoglobulin(s), 101–106

classification of, 101–102

clinical significance, 101–102

electrophoresis, 76

mixed, 101–102

monoclonal, 101–102

polyclonal, 101–102

simple, 101–102

testing, 102–106

antibody assays, 105

antigen assays, 105

complement measurement, 105–106

concentration determinations, 103

isolation, quantitation, and characterization, 102–105

nucleic acid detection, 105

procedure, 102–106

Cryoglobulinemia, 95, 101–106

complement measurement, 105–106

description, 101

diseases associated with, 101–102

laboratory abnormalities in, 101, 103

monoclonal gammopathy, 113

testing for, 102–106

types, 101

Cryopreservation of peripheral blood mononuclear cells, 261, 263–267

cellular uses, 263

functional assays using cryopreserved PBMC, 264–265

cytokine-based assays, 264–265

cytotoxic assays, 264

proliferative assays, 264–265

surface markers on cryopreserved PBMC, 265–267

B-cell functional assays, 266–267

immunophenotyping by flow cytometry, 265–266

mRNA quantification assays, 267

TCR VB repertoire, 266

technical aspects, 263–264

thawing of frozen PBMC, 263–264

transportation of frozen PBMC, 263

Cryptococcosis, 506, 522–523

clinical indications and diagnostic rationale, 522

eume immunomass (EIA), 523

lateral flow assay, 523

latex agglutination, 522

Cryopreservation, 506

Cryoglobulinemia, 95, 101–106

complement measurement, 105–106

description, 101

diseases associated with, 101–102

laboratory abnormalities in, 101, 103

monoclonal gammopathy, 113

testing for, 102–106

types, 101

Cryopreservation of peripheral blood mononuclear cells, 261, 263–267

cellular uses, 263

functional assays using cryopreserved PBMC, 264–265

cytokine-based assays, 264–265

cytotoxic assays, 264

proliferative assays, 264–265

surface markers on cryopreserved PBMC, 265–267

B-cell functional assays, 266–267

immunophenotyping by flow cytometry, 265–266

mRNA quantification assays, 267

TCR VB repertoire, 266

technical aspects, 263–264

thawing of frozen PBMC, 263–264

transportation of frozen PBMC, 263

Cryptococcosis, 506, 522–523

clinical indications and diagnostic rationale, 522

eume immunomass (EIA), 523

lateral flow assay, 523

latex agglutination, 522

Cryopreservation, 506
Ctenocephalides felis
Bartonella henselae, 473
Rickettsia typhi, 462
Culture
adenoviruses, 645
astroviruses, 643
Bartonella, 475
Brucella, 477
Chlamydia trachomatis, 454
Chlamyphila pneumoniae, 456
Chlamyphila psittaci, 457–458
cytomegalovirus, 572
Epstein-Barr virus, 569
Franciella, 478
group A streptococci, 395–396
human herpesvirus-6, 581
human herpesvirus-7, 581
human herpesvirus-8, 581, 587
influenza virus, 603, 606
Leptospira, 555
Penicillium marneffei, 527
parovirus B19, 593
rabies virus, 669
relapsing fever, 427
rubella virus, 616
viral, 541, 543
Cutaneous vasculitis, cryoglobulins and, 101, 104
CWD (chronic wasting disease), 682, 684–685, 687, 691–692
CXC chemokines, 343
CXCL9
atorvastatin modulation of, 1138
rejection and, 1137–1138
CXCL10
atorvastatin modulation of, 1138
rejection and, 1137–1138
CXCR2, in rheumatoid arthritis, 346
CXCR3, in rheumatoid arthritis, 346
CXCR4
HIVceptor tropism, 707
WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, 765–767
CXCR4 chemokine receptor antagonists, 196, 580
CXCR5, in cryoprotected peripheral blood mononuclear cells, 260
CXCR13, 1026
CYBB gene, 14
Cyclical hematopoiesis, 767
Cyclic neutropenia, 767
Cyclin D1, 229, 1011, 1023–1024
Cyclophosphamide, 299
Cyclosporine, 1121
Cytochrome P450 supergene family, 969–972
Cytobank, 257
Cytokine chemokine receptor antagonists, 196–199
Cytokine signaling pathway defects
CD25 deficiency, 723, 727–728
combined immunodeficiency (CID), 723, 727–728
JAK3 deficiency, 723, 727
partial common γ-chain defects, 723, 727
STAT3 deficiency, 723, 727
STAT5b deficiency, 723, 728
Cytomegalovirus, 570–573
antibody testing, 572–573
antigen testing, 572
biology, 570
clinical relevance, 570–571
culture, 543, 572
discovery, 570
ELISPOT, 573
genome, 570
histopathology, 572
IgG avidity assay, 572–573
IgM detection, 543–544, 572
immunohistochemistry, 572
in situ hybridization (ISH), 572
kidney transplantation, 1156–1157
natural killer (NK) cell control of
in hematopoietic stem cell transplantation, 1155–1156
nucleic acid amplification tests, 571–572
PCR, 571–572
Quantiferon-CMV assay, 573
quantitative assays, 546
rapid diagnosis, 539
respiratory symptoms, 600
serology, 572–573
Cytometric bead assay, for rheumatoid arthritis, 901
Cytotoxic effect (CPE)
adenviruses, 645
hantaviruses, 660
varicella-zoster virus, 557
viral infections, 543
Cytoreductive therapy, for mastocytosis, 834
Cytoskeletal and migration pathway defects
Cytoskeletal and migration pathway defects
Cytotoxic chemotherapy, 767
Cytotoxicity assays
cryopreserved peripheral blood mononuclear cells (PBMC), 264
diagnostic and clinical applications, 324
flow cytometry, 1042
multiplex cytokine assays, 29–31, 324–336
molecular methods for measuring cytokine- based assays, cryopreserved peripheral blood mononuclear cells (PMBC), 260
immunologic monitoring and, 1044–1045
in transplantation evaluation. See Complement-dependent cytotoxicity (CDC) assay
Cytotoxic T lymphocytes (CTLs)
activity in cryoprotected PBMC, 264
CD4+ cells, 919
cytotoxicity assays, 1044–1045
limiting dilution assay (LDA), 1110–1111
NK cell defects and, 775–779
NK cells compared, 300
precursor (CTLp), 1120–1121
Daclizumab, 299
DAF (decay-accelerating factor), 131, 138, 141
Dane particle, 624
Dark-field microscopy, of Treponema pallidum, 412–413
Dasatinib, 1138
dbNSFP, 10–11
dbSNP, 13
Deamidated gliadin, antibodies against, 984–985
Decay accelerating factor, 749
Decay-accelerating factor (DAF), 131, 138, 141
Dedicator of cytokinesis 8 (DOCK8) deficiency, 10, 724, 729
Degranulation assay, NK cell defects assessed by, 779
Delayed-type hypersensitivity, 1039
Delta checks, 1189
Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Sun, 08 Sep 2019 21:55:47
Delta heavy chain, 66–67
Delta 2 (HERV) (genus), 674
Dendritic cells, 1023
in allergic conditions, 801, 807
follicular, 1028
interdigitating, 1028
interferon alpha production, 807
Langerhans cells, 1028
proliferative histiocytic lesions, 1028
Dengue virus, 648–653
Denileukin diftitox, 299
Dense deposit disease, 140, 142–143
Density gradients, in polychromatic flow
cytometry, 153
Dermatitis herpetiformis, 984
Desensitization protocols, monitoring,
1100–1101
Detectory efficiency, 153–154
Development, animal models of chemokines
and chemokine receptors in,
353
DFA, See Direct fluorescent antibody
DHR, See Dihydrothoradine
Diabetes mellitus
assays
clinical application, 946
electrochemiluminescence (ECL),
942–945
ELISA, 945
epitope assays, 945
interpretation, 945–946
radio assay, 939–942
autoantibodies, 935–946
carboxypeptidase H autoantibodies,
936–937
glutamic acid dehydrogenase
autoantibodies, 936–946
insulin autoantibodies (IAA), 935–938,
941–945
insulinaemia antigen-2 (IA-2)
autoantibodies, 936–941
insulinaemia antigen-2B (IA-2B)
autoantibodies, 936–937
islet cell autoantibodies (ICA), 935–939
subclass and isotope determination, 945
tin transporter-8 (Znt8)
autoantibodies, 936–938, 941–942
categories, 935–936
Diagnostic accuracy, 1183–1184
Diagnostic (clinical) sensitivity, 1186–1187
Diagnostic (clinical) specificity, 1187
Dichlorofluorescein diacetate, 204
Dideoxynucleotides (ddNTPs), 5
Disulfide bonds, immunoglobulin, 66–67
Disseminated tumor cells, 1051–1052
Disulfide bonds, immunoglobulin, 66–67
DLCL, See Diffuse large B-cell lymphoma
D-L test, for immune hemolytic anemia, 993
DMSO (dimethyl sulfoxide), as
cryoprotectant, 263
DNA
ccDNA (covalently closed circular DNA),
624
cDNA, 8, 335. See also cDNA microarray
concentration measurement, 1074
detection
Epstein-Barr virus, 569
parvovirus B19, 595
double stranded (dsDNA), antibodies to,
873–874
isolation, 5
DNA barcoding. See Barcoding
DNA-dependent protein kinase (DNA-PK),
58
DNA microarray
cDNA microarray in transplant rejection,
1134, 1137
lymphoma, 1020, 1024–1025
DNA polymerase, 1132–1133
DNA repair and recombination, T-cell defects
in, 725
ataxia telangiectasia, 722, 725
Omenn syndrome, 722, 725
DNase(s), 264
DNase B
anti-DNase B test, 399–400
DNA sequencing. See Sequencing
Dobrava-Belgrade virus, 660–661, 663
DOCK8 deficiency, 10, 724, 729
Donor-specific antibodies, 1091, 1097,
1100–1101, 1126–1127
Dot ELISA, for arboviruses, 651
Double-blind, placebo-controlled food
challenges, 815–822
Double gammopathy, 93
Double-strand breaks (DSBs), 57–58
Double-stranded DNA
anti-dsDNA antibodies, 873–874
preparation, 874
Doublet exclusion, 163
Downey cells, 564, 566
DQ8, 1071, 1081
DRB1 locus, 1066
Droplet digital PCR, for human T-cell
lymphotropic virus, 678
Drug-induced vasculitis, 913
Duck hepatitis virus, 624
DuraClone, 159
Dystrophin, 978
Early T-cell precursors (ETPs), 207, 210–211
Eastern equine encephalitis (EEE), 648–656
EBERs (Epstein-Barr virus-encoded RNA
transcripts), 567
EBNA (Epstein-Barr virus nuclear antigens),
563–564, 566–567
Ebola virus, 651
EBV. See Epstein-Barr virus
E-cadherin, 1051
EC (endothelial cell) crossmatch, 1105
Echinococcosis, 493
Echinococcus
diagnosis, 486–487, 493
E. granulosus, 493
E. multilocularis, 493
ECL assay, See Electrochemiluminescence
(ECL) assay
Ecukizumab, 169, 761
Edrophonium, 957
EDTA, in cryofibrinogenemia testing,
108–109
Edu (5-ethynyl-2'-deoxyuridine), 270, 271, 277
EEE (eastern equine encephalitis), 648–656
EFI (European Federation of
Immunogenetics), 1075
EFLM (European Federation of Clinical
Chemistry and Laboratory Medicine), 1179
EGID. See Eosinophilic gastrointestinal
diseases
EGPA (eosinophilic granulomatosis with
polyangiitis), 829
Ehrlichia, 461–468
E. chaffeensis, 462–464, 466, 468
E. ewingii, 462–463, 468
E. muris-like agent, 462–463, 468
epidemiology, 462
laboratory diagnosis, 465–468
immunodiagnosis, 466
interpretation, 468
molecular diagnosis, 467–468
pathobiology, 464
taxonomy, 461–462
ELA. See Enzyme immunoassay
EITB (enzyme-linked immunocytocentransfer
blot), for cisticercosis, 492–493
Electrochemiluminescence (ECL) assay,
942–945
glutamic acid dehydrogenase autoantibodies,
944–945
insulin autoantibodies (IAA), 943–944
protein biomarker validation, 1145
Electron microscopy
amebiasis, 489
astroviruses, 642
herpes simplex virus, 551
parvovirus B19, 593–594
rotaviruses, 639
varicella-zoster virus, 558
Electropherogram, 75–76, 90–93, 115–117,
119–120
Electrophoresis, 74–87
acute-phase reaction, 81–82
agarose gel. See Agarose gel electrophoresis
Entamoeba histolytica, 489
Entamoeba dispar, 489
Enolase, 1000
α
Endothelial cell (EC) crossmatch, 1105
Endoplasmic reticulum aminopeptidase
Endocrinopathies, 930–949
EMT (epithelial-mesenchymal transition), 396
typing, 396
Emerin, 978
ELISPOT. Enzyme-linked immunosorbent
See ELISA inhibition assay, 791
Elimination diets, 818
ELISA. See Enzyme-linked immunosorbent assay
ELISA inhibition assay, 791
ELISPOT. See Enzyme-linked immunosorbent spot (ELISPOT) assay
Emerin, 978
enn typing, 396
EMT (epithelial-mesenchymal transition), 1051–1052
Endocanpathies, 930–949
Endomsial antibodies, 984–985
Endoglin polycystin-1 polypeptide (EAP) 2 gene, 998
Endosmosis, 945
Endothelial cell (EC) crossmatch, 1105
Endothelial cells, 1103–1105
Enhancers, immunoglobulin, 59
α-Enolase, 1000
Entamoeba dispar, 489
Entamoeba histolytica, 489
Entanercept, for vasculitis, 913
Entersopathy type T-cell lymphoma, immunophenotype of, 228
Enterovirus
clinical significance, 600–602
description of agents, 599
direct fluorescent antibody (DFA), 603
epidemiology, 600
EV-D68, 601–602
rapid diagnosis of, 599
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600
Enterovirus (genus), 599
Enzyme immunoassay (EIA)
adenvirovirus, 645
antifungal antibody detection, 513–514
antiretroviral antibodies, 1000
aspeilergi, 515–516
astroviruses, 644
blastomyces, 517
Borrelia burgdorferi, 422–423
candidiasis, 518–519
Chlamydia trachomatis, 455
Chlamyphila pneumoniae, 456–457
coccidioidomycesis, 521–522
cryptococcosis, 523
cryptosporidiosis, 491–492
echinococcosis, 493
Entamoeba histolytica, 489
Epstein-Barr virus, 564, 567–568
gliosarcreation, 494
fungal antigen detection, 514
fungal infections, 513–514
giardiasis, 495
hantaviruses, 661
hepatitis C virus, 628–629
hepatitis E virus, 633
herpes simplex virus, 552–553
histamine, 801–802
histoplasmosis, 525–526
human herpesvirus-6, 581, 583
human herpesvirus-7, 586
human herpesvirus-8, 587
human immunodeficiency virus (HIV), 698–701
leishmaniasis, 495
measles virus, 611–612
mumps virus, 615
Myocopus genitalium, 448
Myocopus pneumoniae, 445–446
paragonimiasis, 496
rubella virus, 616–617
strongyliodiasis, 497
systemic sclerosis-related antinuclear antibodies, 891–893
toity, 513 toxaocciitis, 497
toxtaplasmosis, 497
Treponema pallidum, 414–417
trichinellosis, 498
Trypanosoma cruzi, 491
variella-zoster virus, 559
viral infections, 541–542
Enzyme-linked immunoelectrotransfer blot (EITB), for cisticercosis, 40–42
Enzyme-linked immunoelectrotransfer blot assay (ELISA) allergen potency testing, 791
allergen testing, 789–790
anticytokine autoantibody detection, 365, 367–368
anti-dsDNA antibodies, 874
antiganglioside antibodies, 963–964
anti-MCV (mutated citrullinated vimentin), 899
antimitochondrial autoantibodies, 967–968
antineutrophil cytoplasmic antibodies
(ANCA), 911
antiphospholipid antibody testing, 907
arboviruses, 648, 650–653
automated liquid-handling systems, 1189–1190
Bartonella, 476
blocking reagent selection, 325–326
Borreia burgdorferi, 422–423
Brucella, 478
chemokine/chemokine receptor assays, 348
Chlamyphila pneumoniae, 457
Costiella, 466
cytokine assays
plate-based micro-ELISAs, 330–331
sequential ELISA, 326–327
traditional ELISA, 324–326
direct, 325
Francisella, 479
glutamic acid decarboxylase autoantibodies, 945
group A streptococci, 401
hantaviruses, 661
Helicobacter pylori, 407–408, 409
herpes simplex virus, 552
histamine, 801–802
human T-cell lymphotropic virus, 676
humoral response in transplantation, 1093
IgE, 799
IgG4-related disease, 920
immunologic monitoring, 1040, 1045
direct (sandwich), 325
insulin autoantibodies (IAA), 945
interferon alpha, 807
Leptospira, 429–430
leukotriene C4, 804
liver kidney microsomal antibodies, 970–972
myasthenia gravis, 958–959
non-HLA antibody testing, 1104–1105
parvovirus B19, 594–595
pituitary antibodies, 947
pneumococcal, 283
prion diseases, 686
protein analysis, 28
protein biomarker validation, 1145
rabies virus, 666–667, 670–671
recombinant myositis autoantigens, 885–887
rheumatoid arthritis testing, 900–901
rheumatoid factor measurement by, 898
Rocky Mountain spotted fever, 465
sensitivity and specificity, 325
systemic sclerosis-related antinuclear antibodies, 892
thyroglobulin antibodies, 930–931
thioperoxidase antibodies, 930–931
tryptase, 806–807
tuberculosis, 441
validation, 1185
varicella-zoster virus, 558–560
Wuchereria bancrofti, 494
zinc transporter-8 (ZnT8) autoantibodies, 945
Enzyme-linked immunosorbent spot (ELISPOT) assay
applications of, 292
automated liquid-handling systems, 1189–1190
B-cell functional assays, 266–267
Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Sun, 08 Sep 2019 21:55:47
Fixation, for immunofluorescence, 377
FLAER (fluorescent derivative of bacterial pro-acetylase), in PNH detection assays, 169, 172–178, 180
Flagellin, Borrelia burgdorferi, 421–422
Flaviviridae, 626–627
Flavivirus (genus), 627
Flagellins, 648–655
FlowCAP, 164
Flow cytometry. See also Polychromatic flow cytometry
acute lymphoblastic leukemia/lymphoma immunophenotyping, 207–214
Fluorescent-antibody virus neutralization (FANV), for rabies virus, 669–670

Fluorescent in situ hybridization (FISH) chimerism testing, 1164–1165

lymphoma, 1019–1020, 1024–1025, 1027 myeloproliferative hypereosinophilic syndromes, 827

Fluorescent treponemal antibody absorption (FTA-ABS) test, 414–417

Fluorography, in immunoprecipitation analysis in autoimmune myositis, 882

FMO (fluorescence-minus-one), 164, 1185–1187

FNKD (functional NK cell deficiency), 300, 306

Focus reduction neutralization test (FRNT), for bartonviruses, 660

Follicular lymphoma, 227, 1017, 1023–1024

Food allergy, 783, 815–822

Focus reduction neutralization test (FRNT), for bartonviruses, 660

Food and Drug Administration (FDA) skin testing, 808–809

Food allergy, 783, 815–822

atopic dermatitis and, 815–819, 821

cell-mediated disorders, 815–816

disorders, 816

foods commonly associated with, 815

IgE-mediated, 815–816

foods, 815

IgE, 815

IgE-mediated, 815–816

multiple myeloma, 113

Food allergy, 783, 815–822

basophil responses, 821

component resolved diagnostics, 820–821

quantification of food-specific IgE antibodies, 819–820

quantification of food-specific IgG antibodies, 821

specific epitope analysis, 821–822

total IgE, 821

tryptase, serum, 821

in vitro tests, 816–819

atopy patch tests, 817–818

elimination diets, 818

fresh food skin prick tests, 817

intradermal skin tests, 817

oral food challenges, 818–819

skin prick tests, 816–817

Food and Drug Administration (FDA)

analyte specific reagents regulation, 1175

Good Laboratory Practices (GLP) Regulations, 1175

laboratory-developed tests regulation, 1175

test system premarket approval process, 1172

Food challenges

double-blind, placebo-controlled, 815–822

oral, 818–819

Forced expiratory volume in 1 second (FEV1), 810–811

Fourier transform ion cyclotron resonance (FTICR) MS, 1143

FOX3, 13, 275, 296, 1046

CD25 deficiency and, 727

detection in intracellular cytokine staining (ICS) assay, 339

flow cytometry, 731

Franciscella clinical manifestations, 475

epidemiology, 474

F. novicida, 473

F. philomiragia, 473–474, 479

F. tularensis, 473–475, 479

F. tularensis subsp. holarctica, 473–475

F. tularensis subsp. mediastina, 473–474

F. tularensis subsp. novicida, 473–474, 479

F. tularensis subsp. tularensis, 473–475

immunological methods, 479

laboratory diagnosis, 478–479

culture, 478

immunological methods, 479

monoclonal, 473–474

serology, 478–479

serology, 478–479

ELISA, 479

microagglutination, 478–479

tube agglutination, 478–479

taxonomy, 473–474

Franciscella, 473–474

Free light chain(s)

testing, 94

direct quantification of, 94

direct quantification of, 94

Fraction of free light chain, 306

Gain-of-function variants, in interferon regulatory factors, 359

Gajdusek, Carlton, 687

Gamma interferon (IFN-γ)

GTG (Gene Therapy Group), 1132–1135

absolute quantification of mRNA levels by PCR, 1133

competitive quantitative PCR, 1133

microarray assays, 1134

next-generation sequencing, 1134–1135

PCR, 1132–1133

preamplification-enhanced real-time PCR assay, 1133–1134

real-time quantitative PCR, 1133

Gene therapy, for severe combined immunodeficiency (SCID), 715

Genetic diseases, molecular methods of diagnosis, 5–17

analysis of variations, 9–11

arrays, 8–9

diagnosis process, 12–17

framework for diagnosis in immunocompromised patients, 16–17

next-generation sequencing, 7–8

PCR, 5–6

quantitative RT-PCR (qPCR), 8–9

RT-PCR, 8

samples, 5

Sanger sequence analysis, 6–7

TagMan, 8

T-cell excision circles (TREC), 8

Genetic prion diseases, 690–691

Genome Analysis Toolkit (GATK), 7–8, 1087

Genome size, 19

Genomics, 3

See also Metagenomics

immunologic monitoring, 1046

Genotyping

HLA typing, 1074

human immunodeficiency virus (HIV), 706

killer cell immunoglobulin-like receptors (KIRs), 1154, 1157–1158

mumps virus, 614

viral infections, 544, 546

German measles, 615

Gerstmann-Sträussler-Scheinker (GSS) syndrome, 682, 687, 690

Giant cell arteritis, 911
Hematopoietic stem cell transplantation (HSCT), 182–183
chimerism testing after, 1161–1165
Epstein-Barr virus and, 563–564
graft assessment by CD34+ cell enumeration, 183
killer cell immunoglobulin-like receptors (KIRs) in, 1154–1156
augmenting NK cell-mediated benefits after transplant, 1156
control of viral infections after transplant, 1155–1156
determination of donor NK cell alloreactivity, 1154–1155
donor selection based on KIR genotype, 1155
mismatching, 1155
measuring graft adequacy, 182
mismatching, 1066, 1155
for severe combined immunodeficiency (SCID), 715
Hemoglobinuria, see Paroxysmal nocturnal hemoglobinuria
Hemolysin, 510
Paroxysmal nocturnal hemoglobinuria, see Hemoglobinuria.
Hemolytic anemia, autoimmune, 990–993
Hemolytic uremic syndrome, atypical, 755
Hemolysis, 510
Hepatitis A virus, 622–624
Hepatitis, 620–635
Hepadnavirus, 624
Hepadnaviridae (genus), 626
Hepatitis C virus, 626–630
Hepatitis delta virus, 630–632
Hepatitis E virus, 632–634
Hepatitis delta virus, 630–632
Hepatitis C virus, 626–630
Hepatitis delta virus, 630–632
Hepatitis E virus, 632–634
lgM detection, 543
measurement of HBV DNA, 625–626
molecular detection methods, 625–626
mutation detection, 626
polyarteritis nodosa, 911
prevalence, 620, 624
quantitative assays, 546
rapid diagnosis, 539
sequencing, 626
serology, 625
transmission, 624
typing, 626
vaccine, 620
virological profiles, 625
Hepatitis C virus, 626–630
after liver transplantation, 1157
algorithm for detection, 629
antigen detection, 628–629
antiviral resistance, 630
characteristics, 621
copy number, 105
cryoglobulinemia and, 107
cryoglobulins and, 101, 105–106, 911
discovery, 626
genome, 624
otypes, 629–630
onyotyping, 546
lgM detection, 543
interferon-\(\alpha\) (IFN-\(\alpha\)) treatment for, 323,
357, 362
lipoprotein association, 627
pathogenesis, 627–628
prevalence, 620
prevention, 628
quantitative assays, 546
rapid diagnosis, 539
rheumatoid factor (RF) and, 898
serology, 628–629
testing for viral RNA, 629
treatment, 630
viral load, 629
virological profile, 627
Hepatitis delta virus, 630–632
algorithm for detection, 632
characteristics, 621, 632
course of virological and immunological manifestations of, 622
epidemiology, 623–624
genome, 622
lgM detection, 543–544
molecular detection methods, 623–624
pathogenesis, 622
prevalence, 620
rapid diagnosis, 539
serology, 622–623
transmission, 622–624
vaccine, 620
Hepatitis B virus, 624–626
algorithm for detection, 626
characteristics, 621, 624
clinical parameters, 624–625
discovery, 624
epidemiology, 626
genome, 624
genotypes, 625–626
HBsAg, 624–626
Herpes simplex virus, 550–553
clinical indications, 550–551
commercially available type-specific assays, 552–553
direct detection methods, 551–552
direct fluorescent antibody (DFA) assay, 552
electron microscopy, 551
ELISA, 552
ELISpot assay, 553
enzyme immunoassay (EIA), 552–553
lgG avidity, 553
immunoblotting, 552
immunodot EIA, 552
neutralization assay, 553
overview, 550
PCR, 544, 551
rapid diagnosis, 539
serodiagnosis, 552–553
specimen collection, 551
Tranck (Giemia) smear, 551
virus isolation, 551
HES, see Hemoperesinophilic syndromes
Heterophile antibody test, for Epstein-Barr virus, 565–567
H-ficolin, 113
HFRS, see Hemorrhagic fever with renal syndrome
HAE, 127, 749, 754, 756–757
HGAM, 202
HiSeq instruments, 20
Histamine, basophil histamine release, 799, 802–803, 808
commercial and laboratory assays ELISA, 801–802
enzyme immunoassay (EIA), 801–802
fluorometric assays, 801–802, 811–812
radioenzymatic assay (REA), 802
standards for fluorometry, 812
Histiocytic cells
proliferative histiocytic lesions, 1028–1029
subsets, 1028
Histiocytic sarcoma, 1028–1029
Histocompatibility, 1063–1067
Histocompatibility testing standards, American Society for Histocompatibility and Immunogenetics (ASHI), 1177
Histograms, 153
Histopathology, of cytomegalovirus, 572
Histoplasmosis, 505, 524–526
clinical indications and diagnostic rationale, 524
complement fixation, 524–525
diagnosis, 523–526
enzyme immunoassay (EIA), 524–526
immunodiffusion, 524
latex agglutination, 525
HIV, see Human immunodeficiency virus
HLA, see Human leukocyte antigen
gene polymorphism, 1065
humoral response in transplantation, 1091–1101
mismatching, 1066
natural killer cell receptor ligands, 1150–1158
nomenclature, 1072
relevance in transplantation, 1091–1092
HLA Caller software, 1087
HLA-DR, 208, 211, 217–220, 1125
HLA genes
organization/structure, 1069–1071
polymorphic nature of, 1069
publication of data, 1071
role of, 1069
HLA Twin software, 1087
HLA typing
in celiac disease, 984, 986
contamination prevention, 1075–1076
future of, 1087–1088
nanopore technology, 1088
Pacific Biosciences, 1088
sequence-specific oligonucleotide probes
Sanger sequence-based typing (SBT)
sample management, 1075–1076
regulatory and reporting requirements, 1087
real-time PCR, 1077–1079
overview, 1072–1073
process, 1074–1075
next-generation sequencing (NGS), 1069,
1073–1075, 1077, 1081–1087, 1089
applications, 1081–1082
data analysis, 1085–1087
gene coverage strategies, 1084
platforms, 1077, 1079, 1085
potential impact on HLA typing,
1073–1074
principle of the technology, 1081–1082
strengths and weaknesses, 1077, 1084–1085
workflow, 1082–1084
process of DNA-based HLA typing,
1074–1075
analysis, 1074–1075
genotyping, 1074
sample preparation, 1074
template amplification, 1074
quality control and quality assurance, 1075
real-time PCR, 1077–1079
analysis of data, 1079
applications, 1078
interpretation of results, 1079
principle of the technology, 1078
strengths and weaknesses, 1077–1079
troubleshooting and technical issues, 1079
regulatory and reporting requirements, 1075
sample management, 1075–1076
Sanger sequence-based typing (SBT)
analysis of data, 1081
applications, 1079–1080
interpretation of results, 1081
principle of the technology, 1079–1080
strengths and weaknesses, 1077, 1080
troubleshooting and technical issues, 1081
sequence-specific oligonucleotide probes
(SSOs), 1069, 1072–1074, 1076–1077
analysis of data, 1076
applications, 1076
interpretation of results, 1076
principle of the technology, 1076
reverse SSO (RSSO), 1076–1077
strengths and weaknesses, 1076–1077
troubleshooting and technical issues, 1076–1077
sequence-specific primers (SSPs), 1069, 1072–1074, 1071–1078
analysis of data, 1078
applications, 1077–1078
interpretation of results, 1078
principle of the technology, 1077–1078
strengths and weaknesses, 1077–1078
troubleshooting and technical issues, 1078
software packages, 1087
using bead array assays, 332
HLC (heavy-light chain) assays, 69–70
HLH (hemophagocytic lymphohistocytosis), 204
HME (human monocytotropic ehrlichiosis), 462–464, 466, 468
HMG (high-mobility group) proteins, 58
Hodgkin’s lymphoma
classical, 1027–1028
nodular lymphocyte-predominant, 1025, 1028
Hook effect, 68–69
Horizon stains, 149
Horseshoe crab, 127, 129, 514
HSCT. See Hematopoietic stem cell
transplantation
hsSLAM (human signaling lymphocyte
activation molecule) protein, 611
HTLV. See Human T-cell lymphotropic virus
HTLV-1-associated myelopathy/tropical
spastic paraparesis (HAM/TSP), 675
Human bocavirus
description of agents, 599–600
new species, 598
specimen collection, transport, and storage,
602–603
taxonomy, 599
Human Cell Differentiation Molecules
(HCDM), 158
Human coronaviruses
clinical significance, 600–602
description of agents, 599
epidemiology, 600
Middle East respiratory syndrome (MERS)
coronavirus, 538, 598–599, 602–603
new species, 598
rapid diagnosis of, 539
severe acute respiratory syndrome (SARS)
coronavirus, 538, 599, 602
specimen collection, transport, and storage,
602–603
taxonomy, 599
transmission, 600
Human Genome Variation Society
nomenclature, 6
Human granulocytic anaplasmosis
(HGA), 462–463, 466, 468
Human herpesvirus-6, 578–585
antibody avidity assay, 583
antibody detection, 581–582
anticomplement immunofluorescence assay
(ACIF), 582–583
antigen detection, 580–582
antiviral susceptibility testing, 584–585
biological characteristics, 579
clinical manifestations, 579
collection and storage of specimens, 582
culture, 581
diagnostic methods, 581
enzyme immunoassay (EIA), 581, 583
epidemiology and clinical characteristics, 580
genetic polymorphism, 578
genome, 578
immunohistochemistry (IHC), 580–581
immunologic diagnosis, 580–583
immunology of infection, 580
indirect fluorescent antibody (IFA), 582
molecular diagnosis, 583–584
morphology, 578
neutralization test, 583
nucleic acid detection, 581, 583–584
PRC, 583–584
radioimmunoprecipitation assay (RIA), 583
rapid diagnosis, 539
reactivation, 579–580
respiratory symptoms, 600
serology, 583
spin amplification shell vial assay, 581–582
transmission, 579–580
Western blot, 583
Human herpesvirus-7, 585–586
antigenemia assay, 586
biological characteristics, 579
clinical disease, 581
culture, 581
diagnostic methods, 581
enzyme immunoassay (EIA), 586
epidemiology and clinical characteristics, 580
genome, 585
immunologic and molecular diagnosis,
585–586
indirect fluorescence antibody (IFA), 586
nucleic acid detection, 581
reactivation, 585
serology, 586
Western blot, 586
Human herpesvirus-8, 586–588
biological characteristics, 579
culture, 581, 587
diagnostic methods, 581, 587–588
disease associations, 586
enzyme immunoassay (EIA), 587
epidemiology and clinical characteristics, 580
genetic diversity, 586
genome, 586
HIV coinfection, 586–588
immunoblot, 587–588
indirect fluorescence antibody (IFA),
587–588
nucleic acid detection, 581
PCR, 587
respiratory symptoms, 600
serology, 587–588
transmission, 587
Human herpesvirus 8, lymphomas and, 1020,
1025
Human Immune Monitoring Center, 148
Human immunodeficiency virus (HIV)
antiviral susceptibilities, 726–727
genotyping assays, 706
phenotyping assays, 706–707
tropism assays, 707
assay result trending, 542
chemiluminescence immunoassay (CLIA),
698–700
chemiluminescence immunoassay (CLIA), 542
circulating recombinant forms, 699
coinfections/codisorders
Baronella, 474
Epstein-Barr virus, 567
human herpesvirus-6, 578–579
human herpesvirus-8, 586–588
lymphoma, 1025
strongyloidiasis, 497
syphilis, 412
toxoplasmosis, 498
Human T-cell lymphotropic virus (HTLV), 674–678
discovery, 674
epidemiology, 674
genealogic distribution, 674
indicators for testing, 675
laboratory assays, 675–678
ELISA, 676
line immunoassay, 676–677
particle agglutination, 675–676
PCR, 677–678
western blotting, 676–677
lymphoma, 1020, 1026
pathogenesis, 675
transmission, 674–675
HUMARA assay, 1018–1019
Humoral immunity
associations with deficiencies, 281
infectious diseases, 486
Humoral response in transplantation,
evaluation of, 1091–1091
desensitization protocols, monitoring,
1100–1101
goals and aims, 1092
how to test, 1100
interference, 1099–1100
assessment of antibody function, 1100
autoantibodies, 1099
prognostic treatment of patients, 1099
in solid-phase immunoassays, 1099–1100
therapeutic antibodies, 1099
methods, 1092–1096
antibody screens, 1093
assay characteristics, 1093
crossmatches, 1093
patient profile, 1092
quality control, 1095–1096
techniques for testing antibody,
1093–1095
tests, 1092–1093
relevance, 1091–1092
risk assessment, 1101
test interpretation, 1097–1101
antibody screen, 1097
calculated PRA (panel-reactive
antibody screen, 1097
crossmatch test, 1097
phenotype panel, 1097–1098
single-antigen panel, 1098–1099
virtual crossmatching, 1097–1099
test validation, 1096–1097
when to test, 1100
whom to test, 1100
HUHS (hyaplocomplementemicrticarial
vasculitis), 875
Hybridization protection assay, for human
immunodeficiency virus (HIV), 701
Hydatid cysts, 943
Hydrogen peroxide, analysis of PMN H2O2
production by flow cytometry of
dihydrorhodamine 123 staining,
310–312
interpretation and limitations, 312
principle, 310
procedure, 311–312
reagents, 310–311
results and normal range, 312
Hypermastocytosis (HME), 788–789
Hyperesinophilic syndromes (HES), 783,
825–829
clinical manifestations, 825
definition, 825
diagnosis, 825–826
eosinophilic granulomatosis with
polyangiitis (EGPA), 829
Gleich's syndrome, 829
lymphocytic variant HES, 828–829
diagnosis, 828–829
epidemiology and clinical features, 828
treatment, 829
myeloproliferative HES, 826–828
diagnosis, 827–828
epidemiology and clinical features,
826–827
therapy, 828
patient evaluation, 826
subtypes, classification of, 826
Hyperimmunoglobulinemia E syndrome,
795–796
Hyper-IgM syndromes, 722, 726
Hypertrophic cardiomyopathy, 977–978
Hyperviscosity
cryoglobulins and, 101
monoclonal gammapathy, 115
pyroglobulins and, 110
symptoms, 71–72
viscosity measurement, 71
Hypopallxbunemia
in liver disease, 81
in nephrotic syndrome, 82
Hypocomplementemicrticarial vasculitis
(HUVS), 875
Hypogammaglobulinemia
exophoresis, 82
immunoglobulin measurement, 70
nonsecretory multiple myeloma, 94
Hypoparathyroidism, 933–935
IAA (insulin autoantibodies), 935–938,
941–945
Iatrogenic Creutzfeldt-Jakob disease (iCJD),
682, 687, 691
ICCS (International Clinical Cytometry
Society), 169, 171–173, 1185
ICS. See Intracellular cytokine staining (ICS)
assay
ICSH (International Council for
Standardization in Hematology),
1180, 1185
IEF (isoelectric focusing), 98–99, 791–792
IEMA (immunoenzymatic assay), 797,
799–800
IFA. See Indirect fluorescent antibody
IFCC (International Federation of Clinical
Chemistry and Laboratory Medicine),
1178–1179
IEF. See Immunoxtoration electrophoresis
IFTTI, 358
IFN. See Interferon
IFN-γ release assays, tuberculosis and,
435–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and
HIV-infected patients, 440–441
interpretation, 439
QuantIFERON-TB Gold In-Tube assay
(QFT-GIT), 435–437, 439–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and
HIV-infected patients, 440–441
interpretation criteria, 436–437
method, 435–436
reproducibility, conversions, and
reversions, 437
role in active TB diagnosis, 440
sensitivity and specificity, 439–440
variability and quality control issues, 437
role in active TB diagnosis, 440
sensitivity and specificity, 439–440

T-SPOT.TB assay, 435, 437–441
advantages and disadvantages, 439
in children, 441
costs, 439
in immunocompromised people and
HIV-infected patients, 440–441
interpretation criteria, 439
method, 435, 437–439
role in active TB diagnosis, 440
sensitivity and specificity, 439–440

IgA
antimitochondrial autoantibodies, 96
characteristics, 66–67
class switching, 58–59
cryoglobulins, 101–102, 105
deficiency, 70, 740–741, 984
electrophoresis, 80
Epstein-Barr virus, 568
function, 280
heavy-chain disease, 94
hyperviscosity and, 71
immunofixation electrophoresis, 90–91
immunosubtraction, 91–92
measurement of, 67–68
in monoclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
polyclonal, 93
pyoglobulins, 110
structure, 52, 66–67
subclasses, 67
IgA vasculitis, 911

IgD
characteristics, 66–67
class switching, 58–59
electrophoresis, 80
in monoclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
polyclonal, 93
pyoglobulins, 110
structure, 52, 66–67
surface, 280–281
IgD myeloma, 85

IgE
allergen potency testing, 790–791
in allergic diseases
allergen-specific IgE, 795–798
total serum IgE, 796–797, 799–800
basophil histamine release assay for
demonstration of activity, 802
characteristics, 66–67
class switching, 58–59
electrophoresis, 80
in eosinophilic gastrointestinal diseases (EGID), 829–830
food allergy, 815–816
quantification of food-specific IgE antibodies, 819–820
specific epitope analysis, 821–822
total IgE, 821
function, 280
hyperviscosulbulinaemia E syndrome, 795–796
in lymphocytic variant hypereosinophilic syndrome, 828
measurement of, 68
monoclonal, 93–94
omalizumab (anti-IgE), 795
pyoglobulins, 110
structure, 52, 66–67
total serum IgE assay, 796–797, 799–800
IgE myeloma, 80, 85

IgG
allergen-specific, 796–797, 799
anti-acetylcholine receptor antibodies, 955
anticytokine autoantibodies, 369
antimitochondrial autoantibodies, 966
Bartonella, 476
Brugia, 494
characteristics, 66–67
class switching, 58–59
complement activation, 129
Cowden, 466–467
cryoglobulins, 101–102
cryoglobulins, 101–102
echinococcosis, 493
electrophoresis, 79
Epstein-Barr virus, 565–569
food-specific IgG antibodies, quantification of, 821
function, 280
hantaviruses, 658, 660–662
heavy-chain disease, 94
hepatitis delta virus, 631
hepatitis E virus, 633
herpes simplex virus, 553
human herpesvirus-6, 584
human herpesvirus-8, 587–588
hyperviscosity and, 71
immunofixation electrophoresis, 79, 90–91
immunosubtraction, 91–92
Loa, 495
measles viruses, 611–614
measurement of, 67–68
in monoclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
mumps virus, 614–615
onchocerciasis, 494
polyclonal, 79, 92–93
pyoglobulins, 110
Rocky Mountain spotted fever, 465
rubella virus, 616–617
structure, 51–52, 66–67
subclass deficiency, 741
subclasses, 51–52, 66–68, 79, 92–93
toxoplasmosis, 497–498
trichinellosis, 498
varicella-zoster virus, 557, 559–560
IgG4
allergen-specific, 797, 799
characteristics of molecule, 918
food-specific antibodies, 821
serum concentrations in IgG4-related
disease, 919–920
IgG4-related disease, 917–920
clinical features, 917–918
abdomen, 917
chest, 917
head and neck, 917
retroperitoneum, 917–918
flow cytometry, 920
immunodiagnosis, 919
pathology, 918
physiopathology, 918–919
B-cell lineage, 918
CD4 killer cell, 919
IgG4 molecule, 918
immunoglobulin class switch, 918–919
T-cell pathways, 919
serum IgG4 concentrations, 919–920
treatment, 919
IgG anti-HIV, 587–588
hepatitis E virus, 633
human herpesvirus-6, 580, 584
hypermament mgus, 114
IgG-associated chronic granulomatous disease (CGD), 829–830
IgG index, 99
IgG myeloma, 89
IgGELISA, 457
IgG gene, 1024, 1028
IgM
Bartonella, 476
class switching, 58–59
characteristics, 66–67
Chlamydia pneumoniae and, 457
complement activation, 129
Cowden, 466
cryoglobulins, 101–103, 105
cytomegalovirus, 543–544, 572
electrophoresis, 80
Entamoeba histolytica, 489
Epstein-Barr virus, 565–569
function, 280
hantaviruses, 658, 660–662
heavy-chain disease, 94
hepatitis A virus, 623
hepatitis B virus, 624
hepatitis E virus, 633
human herpesvirus-6, 580, 584
hyper-IgM syndrome type I, 58
hyper-IgM syndrome type II, 59
hyperviscosity and, 71
immunofixation electrophoresis, 90–91
immunosubtraction, 91–92
measles viruses, 611–613
measurement of, 67–68
in monoclonal gammopathies, 114
monoclonal, 93
monoclonal gammopathy of undetermined significance (MGUS), 114
M protein electrophoresis, 82–83
in multiple myeloma, 113–114
mumps virus, 614–615
parvovirus B19, 543, 592
polyclonal, 93
pyoglobulins, 110
response measurement to viral infection, 541, 543–544
Rocky Mountain spotted fever, 465
rubella virus, 616–617
structure, 52, 66–67
surface, 280–281
toxoplasmosis, 497–498
varicella-zoster virus, 560
Waldenström's macroglobulinemia and, 71, 113, 115
X-linked hyper IgM syndrome (XHIM), 201, 281
IgM autoantibodies, 96
hemolytic anemia and, 990, 993
IgM capture ELISA, 497
IgM capture ELISA (MAC-ELISA)
arteritis, 468, 650–651, 655
hantaviruses, 661
IgM ELISA, 457
arteritis, 468, 650–651
Bartonella, 476
Leptospira, 429–430
IgM paraproteinemic neuropathy, 961, 964
IHA. See Indirect hemagglutination assay
subject index

structures
- basic structure, 51
- heavy-chain isotypes, 51–52
- quantification and, 65–67
- titers against vaccine antigens, 281
- viscosity measurement, 71–72

Immunoglobulin class switch, 918–919

Immunoglobulin genes, 53–60

antibody diversity generation, 59

heavy-chain gene complexes, 53–54

light-chain gene complexes, 53–56

rearrangement, 56–60

- detection of, 60

- genetic basis for, 57–58

- heavy chain class switching, 58–59

- ontogeny expression and, 56–57

Immunoglobulin isotype switching, defect in,

739–740

Immunohistochemistry (IHC)

- antimitochondrial autoantibodies, 966–967
- currently available assays, 941
- functional assays, 944–946
- immune cells, 941

- immunologic therapies, monitoring, 1036–1048
- challenges, 1036–1037
- clinical trials with biologic agents, 1037–1038
- rationale for, 1038

- currently available assays, 1041

- functional assays, 1043–1046

- antigen-driven proliferation, 1044

- cytokine production and levels, 1045

- cytotoxicity assays, 1044–1045

- signaling pathways, 1045–1046

- suppressor cell functions, 1046–1047

- genomics, 1046

- phenotypic assays, 1040–1043

- epitope-specific T cells, 1042

- immune score and monitoring, 1043

- intracellular staining for flow cytometry, 1042

- measuring cell death, 1042

- multiparameter flow cytometry, 1042–1043

- neutrophil-to-lymphocyte ratio, 1041–1042

- percentages versus absolute numbers of immune cells, 1041

- selection of markers, 1040–1041

- subtyping of T cells, 1042

- proteomics, 1046

- quality control, 1046–1047

- rationale, 1038

- statistical data analysis, 1047

- strategy, 1038–1040

Immunoperoxidase assay (IPA)

- amebiasis, 489

- Orientia tsutsugamushi, 465

Immunophenotyping

- extended B-cell, 742–743

by flow cytometry

- acute lymphoblastic leukemia/lymphoma, 207–214
- acute myeloid leukemia (AML), 217–223

- B-cell chronic lymphoproliferative disorders, 227

- chronic lymphocytic leukemia (CLL), 226–232, 235–247

- cryopreserved peripheral blood mononuclear cells (PBMC), 265–266

- plasma cell disorders, 235–247

- T-cell chronic lymphoproliferative disorders, 228

Immunoprecipitation. See also

Radioimmunoprecipitation

- autoimmune myopathies

- analysis of proteins, 878–883

- analysis of small RNAs, 883–886

- in immunofixation electrophoresis, 89–90

- in immunosubtraction electrophoresis, 89, 91

- LIPS (luciferase immunoprecipitation system) assay for anti-RNP, 873

- pituitary antibodies, 947

- systemic lupus erythematosus (SLE), 870–873

- Immunopurification, for mass spectrometry, 41

- Immunoreceptor tyrosine-based activation motifs (ITAMs), 726

- ImmunoSORbent Allergen Chip (ISAC), 798

- Immunostaining of tissue, in IgG4-related disease, 919

- Immunosubtraction (ISUB) electrophoresis

- advantages and disadvantages, 92

- to avoid false-positive results, 86

- in clinical disorders, 92–95

- description, 91–92

- immunoprecipitation and, 89, 91

- monoclonal immunoglobulin increases, 93–94

- M protein detection, 76, 82–84, 86

- oligoclonal banding, 94–95

- polyclonal immunoglobulin increases, 92

- Immunosubtraction (ISUB/ISE) electrophoresis, 112, 120

- Immunoturbidimetric assays, for

- immunoglobulin measurement, 67–68

- in NAT Flu A/B assay, 605–606

- Indels (insertions/deletions), 7

- Indian tick typhus, 461

- Indirect fluorescent antibody (IFA)

- antineutrophil cytoplasmic antibodies (ANCAs), 909–911

- antirenal antibodies, 999–1001

- arboviruses, 651

- babesiosis, 490–491

- Bartonella, 475–476

- Borrelia burgdorferi, 422

- candidiasis, 518

- Costella, 466

- Epstein-Barr virus, 564

- hantaviruses, 660

- human herpesvirus-6, 582

- human herpesvirus-7, 586

- human herpesvirus-8, 587–588

- human immunodeficiency virus (HIV), 703

- leishmaniasis, 495

- malaria, 496

- measles viruses, 611–612

- monoclonal antibody-enhanced IFA (mIFA), 587–588

- mumps virus, 615

- Mycoplasma pneumoniae, 446

- Orientia tsutsugamushi, 465

- Pneumocystis jiroveci, 527

- Rocky Mountain spotted fever, 465

- rubella virus, 616–617

- toxoplasmosis, 497

- Trypanosoma cruzi, 491

- Indirect hemaggltination assay (IHA)

- Entamoeba histolytica, 489

- Trypanosoma cruzi, 491

- Indirect immunofluorescence

- gasric parietal cell antibodies, 932–933

- islet cell autoantibodies (ICA), 938–939

- liver kidney microsomal antibodies, 970–971

- pituitary antibodies, 947–949

- thyroglobulin antibodies, 930

- Indirect immunofluorescence antigenic antibody (IIF-ANA) assay, 843–857

- Inducible costimulating receptor (ICOS), 740

- Infectious mononucleosis, 563–564

- Inflammation, allergic, 783, 801–812

- assays for measurement of mediators/markers, 801–812

- airway challenges, 810–811

- basophil IL-4 and IL-13 secretion, 804–806

- basophil surface activation markers, 806–808

- dendritic cells, 807

- histamine, 801–803

- interferon alpha production, 807

- leukotriene C4, 803–804

- mast cell specific, 806–807

- prostaglandin D2, 807

- quality assurance of in vitro assays, 807–808

- skin testing, 808–810

- tryptase, 806–807

- Inflammatory bowel disease, 985–988

- clinical characteristics, 987

- diagnosis, 985, 987–988

- epidemiology, 987

- pathology, 986–987

- quality assurance for clinical testing, 988

- treatment with cytokine inhibitors, 357, 362

- Infliximab, 361

- Influenza-like illness, 600–601

- Influenza virus, 598–607

- antigen assays, 604

- antiviral susceptibility testing, 606

- avian influenza, 538

- biohazard, 603

- clinical significance, 600–602

- culture, 603, 606

- description of agents, 599

- direct fluorescent antibody (DFA), 603

- epidemiology, 600

- H1N1, 538, 601, 604–606

- H3N2, 601, 606

- H5N1, 538, 602

- H7N9, 538, 602

- immunochromatography, 603–605

- molecular tests, 605–606

- pathogenesis, 600

- rapid influenza diagnostic tests (RIDT), 538–539, 543, 545, 604–605

- taxonomy, 599

- transmission, 600

- vaccination, 601

- viremia, 602

- when to test, 602

- whom to test, 602

- InMAD (in vivo microbial antigen discovery), 479

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Sun, 08 Sep 2019 21:55:47
Interferon-stimulated exonuclease gene 20

Leukemia (continued)
 myelogenous leukemia, BCR-ABL
 translocation in, 922
 plasma cell, 235–237, 240
 IMWG diagnostic criteria, 237
 monoclonal gammopathy, 113
 pyroglobulins and, 110
Leukotriene C4, assays for, 803–804
Levey-Jennings chart, 77–78, 153–154, 1188–1189
L-ficolin, 133
Liat HIV Quant VL assay, 702
Licensure of clinical immunology laboratory, 1176–1177
Light- chain deposition disease, in monoclonal
 immunoglobulin
Light chains, immunoglobulin
 pyroglobulins and, 110
 monoclonal gammopathy, 113
 IMWG diagnostic criteria, 237
 related antinuclear antibodies, 367–368
 anticytokine autoantibody detection, 367–368
 for anti-RNP, 873
 hantaviruses, 663
 HLA typing, 1076
 non-HLA antibody testing, 1104–1106
 Luminol-enhanced chemiluminescence,
 analysis of PMN ROS generation by,
 316
 Lyme disease, 419–426
 laboratory diagnosis, 421–426
 antigens important in immunodiagnosis,
 421–426
 direct detection, 424
 indirect fluorescent antibody (IFA), 422
 recombinant or peptide antigen use in
 serology, 423
 test interpretation and practical
 considerations, 425–426
 two-tier serologic testing algorithm, 423
 Western blot, 422–423, 425
 taxonomy of Lyme Borrelia, 419–420
 Lymphatic filariasis, 494
 Lymphoblastic lymphoma, 207–214, 1020–1022
 Lymphochip cDNA, 1137
 Lymphocyte activation, 261, 269–278
 assessment of Treg function, 275
 methodology for measuring, 275–278
 assessment of cell surface markers on
 T cells after activation with mitogenic
 stimuli, 274, 277
 lymphocyte proliferation assay using
 Edu-based flow cytometry, 271, 277
 measurement of diploid T cells after
 stimulation with mitogens, 273, 277–278
 T cell activation and function, 269–275
 cytokine production, 270–275
 cytokotoxicity assays, 275
 direct measurement of T cell activation by
 using functional assays, 270–275
 flow cytometric measurement of T cell
 proliferation, 270
 Ki-67 assay, 270, 272
 measurement of T cell proliferation by
 using 3H-thymidine, 270
 Lymphocyte cultures from allograft biopsy
 specimens, 1112–1113
 concept, 1112–1113
 pitfalls and troubleshooting, 1113
 procedure, 1113
 Lymphocyte proliferation assay (LPA), 732
 for B-cell analysis, 281–282
 cryopreserved peripheral blood
 mononuclear cells (PBMC), 264–265
 secretion of soluble mediators, 282
 stimulation index, 282
 using Edu-based flow cytometry, 271, 277
 in vitro whole-blood, 283–284
 Lymphocyte separation medium, 1109
 Lymphocyte-specific protein kinase (LCK), 1138
 Lymphogranuloma venereum, 453–455
 Lymphoma, 1015–1029.
 See also specific types
 of lymphoma
 adult T-cell leukemia/lymphoma, 1026
 anaplastic large-cell lymphoma (ALCL),
 1026, 1027
 Burkitt's, 227, 1017, 1020, 1027
 diagnostic tests, 1015–1017
 clonal assays, 271, 277
 flow cytometry, 1017
 immunohistochmistry, 1017–1018
 in situ hybridization, 1019
 molecular cytogenetics, 1019–1020
 PCR, 1018–1020
 diffuse large B-cell lymphoma (DLBCL),
 226–227, 1020, 1024–1025
 Epstein-Barr-associated, 1020
 follicular, 227, 1017, 1023–1024
 human herpesvirus 8-associated, 1020
 human T-cell leukemia virus-associated,
 1020
 immunophenotypes of T-cell chronic
 lymphoproliferative disorders, 228
 lymphoblastic, 1020–1022
 lymphoplasmyacytic, 226, 1023–1024
 MALI (mucosa-associated lymphoid
 tissue), 404, 1017, 1020
 mantle cell lymphoma (MCL), 226–227, 229, 1017, 1023
 marginal zone, 1023
 markers, 1020–1028
 multiple myeloma, 1024
 NKT/T-cell, 1020, 1026–1027
 nodular lymphocyte-predominant
 Hodgkin's lymphoma, 1025, 1028
 peripheral T-cell lymphoma, 1020
 small lymphocytic, 226, 1023–1024
 small mature B cell lymphoma, 1023–1025
 splenic marginal zone, 227, 1023
 T-cell-rich large B-cell lymphoma, 1025
 translocations in, 1019–1020, 1022–1024
 Lymphoplasmyacytic lymphoma, 226,
 1023–1024
 Lymphoproliferative disease
 Epstein-Barr virus-associated, 567
 monoclonal gammopathy, 113
Minimal residual disease (MRD), 147–148
acute lymphoblastic leukemia/lymphoma, 207–209, 212–214
acute myeloid leukemia (AML), 222–223
chronic lymphocytic leukemia (CLL), 227, 232
plasma cell disorders, 235–236, 238, 242–247
miRNAs. See MicroRNAs
MiSeq, 7
Missense mutation, 10
Mitochondria
autoantibodies against, 966–969
preparation from mammalian liver, 967
Mitogens
assessment of cell surface markers on T cells after activation with mitogenic stimuli, 274, 277
measurement of polyclonal T cells after stimulation with mitogens, 273, 277–278
used to drive T cell proliferation, 273, 277–278
Mixed connective tissue disease (MCTD), 947
Microparticles (MPs), 1038
Microimmunofluorescence (MIF)
Microangiopathic hemolytic anemia
1224
Microchimerism, 1165
Microbiome
Human Microbiome Project, 22
metagenomics
artifacts in research, 20–22
description, 19
disease states, investigation of, 22–23
methods of research, 19–20
viruses, 22
Microbiomics, 3
Microfluidic capture, for circulating tumor cell analysis, 1054
Microhemagglutination test for Treponema pallidum, 415
Microimmunofluorescence (MIF)
Chlamydia trachomatis, 457
Chlamydia pneumoniae, 456–457
Chlamydia psittaci, 458
Coxiella, 466
MicroRNAs (miRNAs)
chronic lymphocytic leukemia and, 1024
Microscopic agglutination test (MAT), for
Leptospira, 429
Microscopy. See also Electron microscopy
amebiasis, 489
circulating tumor cells, 1054–1055
cyclosporiasis, 492
fluorescence microscope, 379
intravital microscopy (IVM), 350, 352–354
myasthenia gravis, 956
provider-performed, 1172
trichomoniasis, 498
Microsomal antibodies, liver kidney, 969–972
Middle East respiratory syndrome (MERS) coronavirus, 538, 598–599, 602
MIF See Microimmunofluorescence
mIFA (monoclonal antibody-enhanced IFA), 587–588
Mikulicz disease, 79, 917
Miller Fisher syndrome, 961–962, 964
Molecular analysis. specific methods
MMR (measles/mumps/rubella) vaccination, 587–588
MLC assay. See Mixed lymphocyte culture (MLC) assay
MLPA (multiplex ligation-dependent probe amplification), 745
MMN (multifocal motor neuropathy), 961–962, 964
MMR (measles/mumps/rubella) vaccination, 610–611, 614
Model Performance Evaluation Program (MPEP), CDC, 1177
Monoclonal antibodies (MAbs)
arboviruses, 648, 650
in flow cytometry assays, 350
human herpesvirus-6, 578
integrin confirmation change, measurement of, 350–351
monoclonal antibody-specific immobilization of platelet antigen (MAIPA) assay, 995–997
prion diseases, 686
rabies virus characterization, 668
targeting IL-6 receptor, 361
tests for individual allergens, 789
tumor necrosis factor-α (TNF-α) inhibition, 360–362
varicella-zoster virus, 558–559
Monoclonal antibody-enhanced IFA (mIFA), 587–588
Monoclonal antibody-specific immobilization of platelet antigen (MAIPA) assay, 995–997
Monoclonal B-cell lymphocytosis, 226
Monoclonal free light chains (MFLC) electrophoresis, 77, 84–85, 87, 94
immunofixation and, 94
immunosubtraction and, 94
measurement, 68–69, 71, 87
in urine, 84–85, 87, 96–98

SUBJECT INDEX
Monoclonal gammopathy, 89–90, 112–121.
See also specific disorders
classification, 112–115
malignant plasma cell proliferative
disorders, 112–114
premalignant plasma cell proliferative
disorders, 114
protein (or low-tumor-burden) diseases, 114–115
diagnostic testing strategy, 115–116
electropherograms, 116–117, 119–120
free light chains, 112–116, 118–121
monitoring M proteins, 119–121
M-spike measurement/quantification, 119–121
ordering patterns, 121
response to therapy, criteria for, 121
screening panels for M protein detection, 116, 118
stratification of risk, 118–119
Monoclonal gammopathy of undetermined
significance (MGUS), 71, 84, 87, 89–90, 94, 97, 235–237, 239–240, 242–244, 247
diagnosis, 114, 118
immunofixation electrophoresis, 118–119
immunoglobulin types, 114
IMWG diagnostic criteria, 237
incidence, 114
percentage of plasma cell proliferative
disorders, 90
progression, 114, 118
progression to multiple myeloma, 236
Monoclonal proteins
disorders associated with, 89–90, 93–94
diversity of, 112
electrophoresis
biclonal pattern, 93–94
clinical applications, 85–87
detection in serum, 82–85
detection in urine, 84–85
immunoaffinity and
immunosubtraction, 93–94
immunoglobulin G, 75–76
principles, 75–76
quantification in serum, 83–84
quantification in urine, 97
sample requirements, 75–76
immunoelectrophoretic characterization, 89–99
monitoring, 119–121
screening panels for M protein detection, 116, 118
Monocytes
flow cytometry for detection/monitoring of
PNH, 171–179
malignancies of, 1028–1029
MonoMAC syndrome, 10, 15–16
Mononegavirales, 665
Monoplex assays, for viral infections, 544–545
MOPA4. See Multiplexed opsonophagocytic
killing assay (MOPA4) for functional antibodies
against Streptococcus pneumoniae
Morbillivirus (genus), 610
Mother-to-child transmission
hepatitis C virus, 629–630
human T-cell lymphotropic virus
infection by, 675
Mounting medium, for immunofluorescence,
378
Mouse models, cage effects in, 22
MPEP (Model Performance Evaluation
Program), CDC, 1177
MPN. See Myeloproliferative neoplasm
M protein. See also Monoclonal proteins
anti-M-protein test, 401
detection, 82–83
quantification, 83–84
M protein serotyping, streptococci, 396
MRD. See Minimal residual disease
mRNA
absolute quantification of mRNA levels by
PCR, 1133
cancer-specific, 1054
cytokine, detection with in situ
hybridization, 335
gene expression profiles in allografts,
techniques for characterization,
1132–1135
profiles in tissue rejection, 1135–1138
mRNA quantitation assays, in cryopreserved
peripheral blood mononuclear cells
(PBMC), 267
MS. See Multiple sclerosis
MS2 phage, 606–607
MS/MS analysis
of intact proteins, 39–40
of proteolytic peptides to quantify proteins
by SRM, 38–39
of tryptic peptides to identify proteins, 38
M-spike, 1009.
See also Monoclonal proteins
capillary electrophoresis, 79–80
cryoglobulins and, 101–103
measurement/quantification, 119–121
multiple myeloma and, 70
pyroglobulins and, 110
MST1 mutation, 725
MTT reduction assay, 1109–1110
Mucin 1, 1054
Mucocutaneous T-cell lymphomas, immunophenotype of, 228
Mucormycosis, 528
M protein.
incidence, 112
free light chain assay, 69, 113
hyperviscosity and, 71
cryoglobulins and, 101
HL-60 cell differentiation, 286
primary inclusion body viral disease (PIBD)
prognosis, 89
spleenomegaly, 101
urokinase-type plasminogen activator
receptor (uPAR) expression in
plasma cell disorders, 112
percentage of plasma cell proliferative
disorders, 90
progression to multiple myeloma, 236
Monoclonal proteins
disorders associated with, 89–90, 93–94
diversity of, 112
Neurocysticercosis, 492–493
Neuropathy
cryoglobulins and, 101–102
peripheral, 961–964
Neurophysiological testing, in myasthenia gravis, 957
Neurosyphilis, 413–414
Neuritensis
adrenoviruses, 645
arboviruses, 651–652
Epstein-Barr virus, 569
hantaviruses, 660
herpes simplex virus, 553
human herpesvirus-6, 583
measles viruses, 611–613
mumps virus, 615
varicella-zoster virus, 559
Neutropenia, 765–767
antineutrophil antibodies, 765, 767
causes, 767–768
clinical approach to, 262
Neutrophil(s)
adherence to nylon wool, 771
antineutrophil cytoplasmic antibodies (ANCA), 909–914
flow cytometry for detection/monitoring of PMN, 171–179
Neutrophil defects, 767–774
adhesion disorders, 767–771
chemotaxis, 771–772
clinical approach to, 262
diseases, 771
granule disorders, 771
oxidative metabolism disorders, 772–774
chemiluminescence, 773–774
DHR (dihydrorhodamine) oxidation, 772–773
myeloperoxidase, 774
NBT (nitroblue tetrazolium) test, 772
Neutrophil extracellular traps, 914
Neutrophil-to-lymphocyte ratio, 1041–1042
Newborn screening, for severe combined immunodeficiency (SCID), 261, 715–719
New York state, clinical immunology laboratory certifying program, 1176
Next-generation sequencing (NGS), 7–8
antibody deficiencies, 746
chimerism testing, 1165
data analysis, 7–8
gene expression profiles in allografts, 1134–1135
HLA (human leukocyte antigen) alleles, 1065
HLA gene coverage strategies, 1084
exons only (amplicon sequencing), 1084
whole genome (overlapping short amplicon sequencing), 1084
whole genome (shotgun sequencing by LR-PCR), 1084
HLA typing, 1069, 1073–1075, 1077, 1081–1087, 1089
applications, 1081–1082
data analysis, 1085–1087
genome coverage strategies, 1084
platforms, 1077, 1079, 1085
potential impact on HLA typing, 1074
principle of the technology, 1081–1082
strengths and weaknesses, 1077, 1084–1085
workload, 1082–1084
platforms, 7
respiratory viruses, 607
workflow, 1082–1084
clonal amplification, 1083
indexing, 1082–1083
library preparation, 1082
quantitation, 1083
sequencing, 1083–1084
template generation, 1082
NF-kB
activation, defects in, 723, 728
immunologic biomarker for cancer survival, 1046
NF-kB essential modulator (NEMO), 725, 740
deficiency, 12–13, 723, 728
NGS. See Next-generation sequencing
NGSengine software, 1087
Optimal biologic dose, 1037–1038,
Optical filters, in polychromatic flow cytometry, 152–153
Optimal biologic dose, 1037–1038,
molecular tests, 605–606
rapid detection, 603–604
rapid diagnosis, 540
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600
Respiratory viruses, 598–607. See also specific viruses
biohazard, 603
clinical significance, 600–602
description of agents, 599–600
diagnostic testing
antiviral susceptibility testing, 606
collection of samples, 602–603
direct fluorescent antibody (DFA), 603
future of, 607
immunochromatography, 603–605
improvement in, 598
molecular tests, 605–606
phenotyping and genotyping, 606
pneumocystis, 602
pre-analytic quality control, 603
rapid shell vial culture, 603
results evaluation, interpretation, and reporting, 606–607
specimen choice, 602
swab type choice, 602
test ordering, 603
test utility, 603
when to test, 602
whom to test, 602
epidemiology, 600
new species, 598
overview, 598–599
pathogenesis, 602
taxonomy, 599–600
transmission, 600
Respiratory virus (genus), 599
Responder cell frequency (RCF), 264
Restriction fragment length polymorphism (RFLP), for Rickettsia identification, 467
Rhodovirus (family), 665
Rhadinovirus, 579, 586
Rheumatic fever, acute, 394–395, 397–401
Rheumatoid arthritis, 897–902
antibodies associated with antibodies against citrullinated proteins, 898–900
antibodies less specific for rheumatoid arthritis, 899–900
anti-calpastatin, 899
anti-RA33, 899
biomarkers, 922–924
chemokines in, 346–347
combined ACPA and RF testing, 902
diagnosis, 357
environmental triggers, 902
genetics of, 902
rheumatoid factor (RF), 897–898, 902
testing methods, 902–901
agglutination, 900
comparison of assays, 900
ELISA, 903–901
multi-biomarker disease activity (MBDA), 897, 901
multiplex testing, 901
nephelometry, 900
treatment with cytokine inhibitors, 357, 359–362
IL-1 inhibition, 361–362
IL-6 inhibition, 361
table of commercial biologics, 361
TNF-α inhibition, 360–361
Rheumatoid factor (RF), 543–544
clinical interpretation, 898
combined ACPA and RF testing, 902
cryoglobulins, 101–102, 105–106
treatment interfering with measurement, 901–902
in hepatitis C virus infection, 898
overview, 897–898
Rhinosinusitis, viral, 600
Rhinoviruses. See Human rhinovirus
Rhinoviruses
Rho, 351
Ria. See Radioimmunoassay
Ribonucleoprotein (RNP)
ant-RNP antibodies in SLE, 868–869, 873
anti-U1 RNP antibody, 891
anti-U3 RNP antibody, 890
anti-U1/U2 RNP antibody, 890–891
Rickettsia
epidemiology, 461–462
laboratory diagnosis, 465–468
immunodiagnosis, 465–466
interpretation, 468
molecular diagnosis, 467
pathobiology, 464
R. africae, 461–464, 466
R. akari, 461
R. amblyommii, 468
R. australis, 461
R. conori, 463–466
R. felis, 461
R. parkeri, 461–464, 466
R. prowazekii, 461–463, 465
R. rickettsii, 463–464, 468
R. slovaca, 461–464
R. typhi, 461–463, 465
taxonomy, 461–462
Rickettsiaceae, 461–462
Rickettsiales, 461–462
RID. See Radial immunodiffusion
RIDT (rapid influenza diagnostic tests), 503–505, 538, 543, 545
Rift Valley fever virus, 649, 651–652, 655, 663
Rimantadine, 602
Risk assessment, in humoral response in transplantation, 1101
Rituximab, 913, 1066, 1099, 1156
RMIPR3 mutations, 722, 725
RNA
centrifugation, 461–463, 465
centrifugation, 461–463, 466
centrifugation, 461–464, 468
concentration quantification, 1133
degradation/integrity, 1132–1133
detection
mumps virus, 614–615
rubella virus, 616–617
extraction
arboviruses, 653–654
for immunoprecipitation analysis in autoimmune myositis, 884
total RNA standard preparation, 883–884
isolation, 5
RNA helicase autoantibodies, 870
RNA polymerase III antibody, 889–890
RNAs, 5, 1132
RNP. See Ribonucleoprotein
Ro, antibodies to, 589
ROAD (Read, Observe, Ask, Discover) inspection process, 1177
Roche 454 pyrosequencing, 7, 20
Rocio encephalitis, 649
Rocky Mountain spotted fever, 461, 463–466, 468
ROMA, 1012
ROS (reactive oxygen species), 310, 314–316
Rose Bengal test, for
Roseola, 579
Roseolovirus, 579, 585
Rossetta bacteria for production of large recombinant proteins, 861
Ross River virus, 648–649, 652–655
Rotaviruses, 639–640
detection and characterization, 639–640, 642
gene, 639
strains, 639, 641
vaccines, 639
RPR card test, 413–414
RREID (rapid rhabdovirus enzyme immunoassay) assay, 666
RRNT (replication reduction neutralization test), for hantaviruses, 660
RSSO (reverse SSO), 1076–1077
RSV. See Respiratory syncytial virus
RT-LAMP. See Reverse transcription loop-mediated isothermal amplification
RT-PCR. See Reverse transcription-PCR (RT-PCR).
Rubella virus, 615–616
clinical manifestations, 615–616
complement fixation, 616–617
culture, 616
diagnostic strategies, 616
enzyme immunoassay (EIA), 616–617
false-positives, 617
hemagglutination inhibition, 616–617
indirect fluorescence antibody (IFA), 616–617
interpretation of testing, 617
latex agglutination, 616–617
molecular methods, 616–617
multiplex bead fluorescence immunoassays (FIA), 616–617
passive hemagglutination inhibition, 616–617
rapid diagnosis, 540
reverse-transcription (RT)-PCR, 616–617
reverse transcription-loop-mediated isothermal amplification (RT-LAMP), 616
serology, 616–617
technology for testing, 617
transmission, 615
vaccination, 616
virus isolation, 616
Rubeola, 610.
See also Measles virus
Rubivirus (genus), 599, 610
Runt-related transcription factor 3 (RUNX3), 599, 610
See also Measles virus

S100 protein, 1028
Sa antigen, antibodies against, 898–899
Saaremma virus, 660
Sa antigen, antibodies to, 898–899
S100 protein, 1028
S100 protein, 1028
Scrub typhus, 462–464, 466
Scrapie, 685
Scrapie-associated fibrils, 685
Scrapie, 682, 685
Scrapie-associated fibrils, 685
Scrub typhus, 462–464, 466
SDF1 (stromal cell-derived factor 1), 765
Scrub typhus, 462–464, 466
toxic shock syndrome, 880–881

SAP (SLAM-associated protein), 629–630
SARS (severe acute respiratory syndrome) coronavirus, 538, 599, 602
SARS (severe acute respiratory syndrome) coronavirus, 538, 599, 602
SAT (serum agglutination test), for Brucella, 477
Scarlet fever, 394
Schistosomiasis, 496
SCID. See Severe combined immunodeficiency
Scleromyxedema, 113
Sclerosis cholangitis, 79
Scapic, 682, 685
Scapic-associated fibrils, 685
Scrub typhus, 462–464, 466
SDF1 (stromal cell-derived factor 1), 765
SRD-PAGE, for immunoprecipitation analysis
Selected reaction monitoring (SRM), 1144–1145
Semi-quantitative assays, 1181
Sensitivity, 1181
analytical, 1186
clinical (diagnostic), 1186–1187
SensTrop II HIV coreceptor tropism assay, 707
Seoul virus, 660–661, 663
Sequence Alignment/Map (SAM) format, 7
Sequencing, 5–7, 20
Sequence analysis, 6–7
Sequence-specific oligonucleotide probes (SSOs), HLA typing, 1069, 1072–1074, 1076–1077
analysis of data, 1076
applications, 1076
interpretation of results, 1076
principle of the technology, 1076
reverse SSO (RSSO), 1076–1077
strengths and weaknesses, 1076–1077
troubleshooting and technical issues, 1076–1077
Sequence-specific primers (SSPs), HLA typing, 1069, 1072–1074, 1077–1078
analysis of data, 1076
applications, 1077–1078
interpretation of results, 1078
principle of the technology, 1077–1078
strengths and weaknesses, 1077–1078
troubleshooting and technical issues, 1078
Sequencing
antibody deficiencies, 745
capillary, 1078
chimerism testing, 1165
clinical application of molecular characterization of human allografts, 1140
dep deep sequencing, 19–20
hepatitis B virus, 626
hepatitis C virus, 628–629
hepatitis delta virus, 631
hepatitis E virus, 633
herpes simplex virus, 552–553
human herpesvirus-6, 583
human herpesvirus-7, 586
human herpesvirus-8, 587–588
human immunodeficiency virus (HIV), 698–701
Leptospira, 429–430
Loa loa, 495
measles viruses, 612–613
mumps virus, 615
Mycoplasma genitalium, 448
Mycoplasma hominis, 449
Mycoplasma pneumoniae, 444–446
parasitic infections, 486–487
Pneumocystis jirovecii, 527
rabies virus, 660–670
relapsing fever, 427
rubella virus, 616–617
sporotrichosis, 528
strongyloidiasis, 497
syphilis, 413–415
toxoplamosis, 497–498
Treponema pallidium, 413–415
trichinellosis, 498
Trypanosoma cruzi, 491
tuberculosis, 441
Ureaplasma, 449
varicella-zoster virus, 558–560
viral hepatitis, 621
Serratia marcescens, in chronic granulomatous disease (CGD), 767
Serum, complement activation soluble products in, 1127–1128
Serum agglutination test (SAT), for Brucella, 477
Serum bactericidal assay in development of meningococcal vaccine, 282
for functional antibodies against
Haemophilus influenzae type b, 284
overview, 282
Serum carboxypeptidase N, 131
Serum free light chain (sFLC) assay, 69, 71
electrophoresis of, 82, 86, 94
Serum neutralization test. See Neutralization assay
Serum proteins, electrophoresis of, 65–66, 69–71, 76–84
M protein detection, 82–83
M protein quantification, 83–84
pattern interpretation, 80–84
proteins identified, 77–80
specimen requirements, 76–77
Severe acute respiratory syndrome (SARS) coronavirus, 538, 599, 602
Severe combined immunodeficiency (SCID) genetic molecular analysis, 12–13
leaky, 13, 716, 725
newborn screening, 261, 715–719
criteria for screening, 716
follow-up algorithm, 717
limitations with SCID and non-SCID identification, 718
purpose and benefit of screening, 715
results of screening in Wisconsin, 717–718
T-cell receptor-excision circle (TREC), 715–719
NK cells, 701
CD3 treatment, 715
SH2D1A, 729, 775–776
Shadow artifact, immunofixation, 95–96
Shell vial centrifugation culture, 541
Short pass filter, 152–153
Shingles, 556
Shewart control chart, 1188
Shigella, 556
Short-pyrite filter, 152–153
Short tandem repeat (STR), 1161–1164
Short pass filter, 152–153
Shingles, 556
Short-pyrite filter, 152–153
Short tandem repeat (STR), 1161–1164
Shotgun sequencing, 20
HLA typing, 1082, 1084
viral respiratory, 607
Shwachman-Diamond syndrome, 767
sICAM-1 (soluble intercellular adhesion molecule) 11, 977
Sicca syndrome, 869
SLE. See Systemic lupus erythematosus (SLE)
Serum proteins, electrophoresis of, 65–66, 69–71, 76–84
Sm antigen, antibodies to, 868–869
Smad, 98, 99, 101
Smad, 101–102, 106
Smad, 103–1024
Smallpox, 557
Small intestinal transplantation, complement activation products in, 1127
Small lymphocytic lymphoma (SLL), 226, 1023–1024
Smallpox, 557
Small RNAs, immunoprecipitation analysis in N-ethylmaleimide-sensitive factor inhibition, 883–886
Sm antigen, antibodies to, 868–869
Smad, plasma cells, 109, 202
Small RNA, 237–237, 242–244, 247
IMWG diagnostic criteria, 237
progression to multiple myeloma, 236
Smoldering myeloma, 89–90
SMAPs (soluble membrane-related peptides), 1013
Small molecule. See Single molecule real time (SMRT) chip
SMRT (Single Molecule Real Time) chip, 1088
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), 305
SNP. See Single nucleotide polymorphism
SOAP-HLA software, 1087
SOD (speroxida dismutase), 314, 316
SNAF (surround optical fiber immunoassay), 686, 690, 692
Solexa/Illumina sequencing, 20
Solid organ transplantation demand for, 1065–1066
Epstein-Barr virus, 563–564
human herpesvirus-7, 585
killer cell immunogolubulin-like receptors (KIRs) in, 1156–1157
kidney transplantation, 1156–1157
liver transplantation, 1157
rejection, molecular characterization of, 1132–1146
Solid-phase immunoassay, for evaluation of humoral response to transplantation advantages and disadvantages, 1094–1095
assay characteristics, 1094
general principles, 1094
interference in, 1099–1100
interpretation, 1097–1099
quality control, 1095–1096
Soluble intercellular adhesion molecule 1 (sICAM-1), 977
Soluble membrane-related peptides (SMAPs), 1013
Somatic hypermutation, 59
SPADE, 253, 255
Specificity, 1008
analytical, 1186
clinical (diagnostic), 1187
Specimen collection. See specific tests
Spectra Analyser tools, 1116
SPEP (serum protein electrophoresis), 65–66, 69–71
Spin amplification shell vial assay, for human herpesvirus-6, 581–582
Sphingobacteriaceae, 419
Sprochetes, 419–430
Splenomegaly, 419
Splenic marginal zone lymphoma, 227, 1023
Splicing alternative, 58
analysis programs, 11
conserved splicing motifs, 10
Splicing regulatory elements (SREs), 10
Streptococci, group A, 394–401
Streptococcus pneumoniae
C-reactive protein and, 79
multipeaked opsonophagocytic killing assay (MOPAA) for functional antibodies against, 285–288

subject index

struTr/vntr methods, in chimerism testing, 1161–1164

Sugar-hemolysis test, 168

Subacute sclerosing panencephalitis (SSPE), 301, 306–307, 776, 778–779

STXBP2, 301, 306–307, 776, 778–779

Striational antibody assays, 959

Streptozyme screening test, 398

Streptococcus pneumoniae (continued)

Systemic lupus erythematosus (SLE), 868–876

Syphilis, 412–417

Sympathetic ophthalmia, 998

SYBR Green dye, 8

SureTyper software, 1079

Surface-enhanced laser desorption ionization-time of flight mass spectrometry (Seldi-ToF-MS), 1142–1143

Surround optical fiber immunoassay (SOFA), 896, 900, 902

SYBR Green dye, 8

Sylvatic typhus, 463

Syphillis, 412–417

clonal manifestations, 412–413

gonocital, 412–414

epidemiology, 412

incidence, 412

microbiology, 412

natural history, 412–423

testing algorithms, 416–417

direct detection, 413

indications for, 413

nontreponemal tests, 413–414

quality control and assurance, 415–416

rapid point-of-care tests, 415

serology, 413–415

treponemal antibody tests, 414–415

Systemic lupus erythematosus (SLE), 868–876

autoantibodies, 359

autoantibody detection and quantification, 868–874

anti-dsDNA antibodies, 873–874

anti-La (SS-B) antibodies, 869

anti-proliferating cell nuclear antigen (PCNA) antibodies, 870

anti-ribosomal P antibodies, 870

anti-RNA helicase A autoantibodies, 870

anti-RNP antibodies, 868–869

anti-Ro (SS-A) antibodies, 869

anti-Sm antibodies, 868–869

LIPS (luciferase immunoprecipitation system) assay for anti-RNP, 873

prevalence by disease, 870

radioimmunoprecipitation, 870–873

complement deficiency and, 754–755, 761

complement evaluation, 874–875

acquired deficiency in SLE, 875

assays of function, 875

classical pathway, importance of, 874–875

lab collection techniques, 875

levels of individual components, 875

monitoring activation in SLE, 875

testing for activation products, 875

diagnosis, 358

interferon-α (IFN-α) in, 323, 358–359

secondary antiphospholipid antibody syndrome, 905

type 1 interferon gene expression signature, 875–876

Systemic-onset juvenile idiopathic arthritis, 359

Systemic sclerosis, 868–869, 888–895

TACI (transmembrane activator and calcium modulator and cyclophilin ligand interactor), 745

Tacrolimus, 1121

Taenia solium, 412

Tafazzin, 978

Takeyasi’s arteritis, 911

TAPI, 1138

TaqMan, 8

TaqMan Low Density Array, 1134

TARC (thymus- and activation-regulated chemokine), 828–829

TB. See Tuberculosis

T cell(s)

autoimmune retinopathy, 1001–1002

CD107a as surrogate of degranulation process in T cell cytotoxicity, 204–205

differentiation stages, 1021

early T-cell precursors (ETPs), 207, 210–211

Epstein-Barr virus-specific, 569

human herpesvirus-6, 580

human herpesvirus-7, 585

IgG4-related disease, 919

immunologic monitoring epitope-specific T cells, 1042

subtyping of T cells, 1042

immunophenotypic patterns of maturation, 207, 209

lymphomas

adult T-cell leukemia/lymphoma, 1026

angioimmunoblastic T-cell lymphoma (AILT), 1020, 1026

lymphoblastic lymphoma, 1020–1022

peripheral T-cell lymphoma, 1020, 1025–1026

subtyping, 1042

T-cell excision circles (TRECs), 8.713, 715–719

Th17 cells, in autoimmune retinopathy, 207, 209–2010

Termination codon, 10

Testis, antibiotics to, 932

Thyroid gland

Thyroid antibodies, 930–931

Thyroglobulin, antibodies to, 930–931

Thymus- and activation-regulated chemokine (TARC), 828–829

Thymectomy, 933–935

Thymic lymphoproliferative diseases, Epstein-Barr virus-associated, 567

Thymoma, 957, 959

Thymopoiesis abnormalities, 721–725

Thymus, role in myasthenia gravis, 957

Thymus- and activation-regulated chemokine (TARC), 828–829

Thyroglubulin, antibodies to, 930–931

Thyroid antibodies, 930–931

Thyroid gland chronic thyroiditis, 930–931

Thyroiditis, 79, 930–931

Thyroid-stimulating hormone receptor, 933–933

Ki-67 assay, 270, 272

measurement of T cell proliferation by using 3H-thymidine, 270

T-cell defects

development defects, 721–722, 725

cartilage hair hypoplasia, 722, 725

CORA mutation, 725

MHC class I and II deficiencies, 721–722

MST1 mutation, 725

in DNA repair and recombination, 725

ataxia telangiectasia, 722, 725

Omenn syndrome, 722, 725

in proximal T-cell activation, 722, 726

in signal transduction pathways, 722, 726–727

Lck deficiency, 722, 726–727

Unc119 deficiency, 722, 727

ZAP-70 deficiency, 722, 727

in survival, 723, 728

TNP deficiency, 723, 728

T cell lymphoproliferative diseases, Epstein-Barr virus-associated, 567

T-cell precursor frequency determination by limiting dilution assays, 1110–1111

T-cell proliferation assays, 732

T cell receptor (TCR) defects, 726

rearrangement, 828–829, 1026

T cell activation, 269

Vβ repertoire assay in cryopreserved peripheral blood mononuclear cells (PMBC), 266

T-cell receptor-excision circle (TREC), 8, 713, 715–719, 725

T-cell-rich large B-cell lymphoma, 1025

TCR. See T cell receptor

Teff cells, 298

Terminal deoxynucleotidyl transferase (TdT), 207, 209–210

Termination codon, 10

TESA blotting, 491

Tests, antibodies to, 932

Thetoxoid, T cell response to, 272, 275

T follicular helper (Tfh) cells, 1026

TOB (transforming growth factor β), 339

Th17 cells, in autoimmune retinopathy, 998

Thawing of frozen PBMC, 263–264

T helper cells

limiting dilution assay (LDA), 1110

T follicular helper (Tfh) cells, 1026

Thin-layer chromatography, in ganglioside studies, 962, 964

Thrombocytopenia. See Immune thrombocytopenia

Thrombotic microangiopathy (TMA), 140

Th/Tio, antibody against, 890

TH-17 antibody, measurement of T cell proliferation by using, 270

Thymoma, 957, 959

Thymopoiesis abnormalities, 721–725

Thymus, role in myasthenia gravis, 957

Thymus- and activation-regulated chemokine (TARC), 828–829

Thyroglobulin, antibodies to, 930–931

Thyroid antibodies, 930–931

Thyroid gland chronic thyroiditis, 930–931

Thyroiditis, 930–931

Thyroid-stimulating hormone receptor, 933–933

Downloaded from www.asmscience.org by IP: 54.70.40.11 On: Sun, 08 Sep 2019 21:55:47
large vessel vasculitis, 911
medium vessel vasculitis, 911
microscopic polyangiitis, 913
polyarteritis nodosa, 911
small vessel vasculitis, 911
Takayasu's arteritis, 911

VCF file, 8
Venereal Disease Research Laboratory (VDRL) assay, 413–416
Venezuelan equine encephalitis (VEE), 650, 652, 656
Verification, 1181
Verruca peruana, 475
Viability dyes, in polychromatic flow cytometry, 149–150, 158–160
Vimentin, 899, 1051, 1103
Viral infections, 537. See also specific viruses
ViroSeq HIV-1 genotyping system, 706–707
Viremic hepatitis virus, 624
Vitronectin, 138, 761
VDJ recombination, 8, 56–58
VN (vitronectin) deficiency, 761
VNTR (variable-number tandem repeat), 1161–1164
Voltage pulse, 152–153
VpreB protein, 57
VZV. See Varicella-zoster virus

Vasculitis

Vascular cellular adhesion molecule 1, as
Varicella-zoster virus, 556–560

Variation databases, 11

Variant Creutzfeldt-Jakob disease (vCJD), 911
Variable (V) region, immunoglobulin, 53, 66–67

Varianta, 564

Varicella-zoster virus, 556–560
antibody avidity, 559–560
cytopathic effect (CPE), 557
direct examination from skin lesions, 558
direct fluorescent antibody (DFA), 558
electron microscopy, 558
ELISA, 558–560
enzyme immunoassay (EIA), 559
fluorescent antibody to membrane antigen (FAMA assay), 558–559
genetic stability, 557
lateral flow assay, 558–559
latex agglutination, 558–559
neutralization assays, 559
overview, 556–557
PCR, 556–558
rapid diagnosis, 540
respiratory symptoms, 600
serologic testing, 558–560
specimen collection, 557
time-resolved fluorescence immunoassay (TRFIA), 559
VCF file, 8
Vchy virus, 624

Vascular cellular adhesion molecule 1, as biomarker of chronic myocardial injury, 977

Vasculitis

antineutrophil cytoplasmic antibodies (ANCA)-associated, 909–914
disease diagnosis, 909
neutrophil extracellular traps and, 914
tests for ANCA, 909–911
treatment, 913–914
types, 911–913
cryoablation and, 107
cryoglobulins and, 101–102, 104, 106, 911
nomenclature, 911
types
- anti-glomerular basement membrane (anti-GBM) antibodies, 385–388
- anti-phospholipase A2 receptor antibodies, 387–388
- antiretinal antibodies, 100
- Borrelia burgdorferi, 422–423, 425
- hantaviruses, 660–661
- human herpesvirus-6, 683
- human herpesvirus-7, 586
- human immunodeficiency virus (HIV), 703
- human T-cell lymphotropic virus, 676–677
- Mycoplasma pneumoniae, 445
- pityriatric antibodies, 947
- prion diseases, 686, 689
- Western equine encephalitis (WEE), 649–652, 654, 656
- Westgard, James O., 1188
- West Nile virus, 648–649, 652–656
- WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, 765–767
- White blood cells, paroxysmal nocturnal hemoglobinuria (PNH), 168–180
- WHO. See World Health Organization
- Whole-exome sequencing, 1088
- Whole-genome sequencing, 1088
- Whole-lung antigen challenge, 581
- Whooping cough, 602
- Winter vomiting disease, 640
- WISH cells, 358
- Wiskott-Aldrich syndrome, 1178
- Wiskott-Aldrich syndrome, 1178
- WPSALM (World Association of Societies of Pathology and Laboratory Medicine), 1178
- Wells-Brookfield viscometer, 71
- Western blot
- anti-glomerular basement membrane (anti-GBM) antibodies, 385–388
- anti-phospholipase A2 receptor antibodies, 387–388
- antiretinal antibodies, 100
- Borrelia burgdorferi, 422–423, 425
- hantaviruses, 660–661
- human herpesvirus-6, 683
- human herpesvirus-7, 586
- human immunodeficiency virus (HIV), 703
- human T-cell lymphotropic virus, 676–677
- Mycoplasma pneumoniae, 445
- pityriatric antibodies, 947
- prion diseases, 686, 689
- Western equine encephalitis (WEE), 649–652, 654, 656
- Westgard, James O., 1188
- West Nile virus, 648–649, 652–656
- WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, 765–767
- White blood cells, paroxysmal nocturnal hemoglobinuria (PNH), 168–180

WHO. See World Health Organization
Whole-exome sequencing, 1088
Whole-genome sequencing, 1088
Whole-lung antigen challenge, 581
Whooping cough, 602
Winter vomiting disease, 640
WISH cells, 358
Wiskott-Aldrich syndrome, 281, 713, 723, 729, 795–796
Wolbachia, 461–462
Woodchuck hepatitis virus, 624
World Association of Societies of Pathology and Laboratory Medicine (WASPMAL), 1178
World Health Organization (WHO) classification of lymphoid neoplasmia, 1015–1017
laboratory quality assurance, 1178
Nomenclature Committee for Factors of the HLA System, 1072

Wuchereria bancrofti, 494

WU polyomavirus, 598, 600

X(C) chemokines, 343
Xenotyrella chotopis, 462
XAPI/BBRC4, 729, 775–776
X-linked chromosomal inactivation, 1018–1019
X-linked disorders
 agammaglobulinemia, 32–33
 anhidrotic ectodermal dysplasia with immunodeficiency, 723, 728
 antibody deficiency, 743–745
 hyper IgM syndrome, 201, 281, 726, 742–744
 lymphoproliferative disease, 724, 729, 775–776
 lymphoproliferative syndrome 1, 743–745
 lymphoproliferative syndrome 2, 743–745

X-linked inhibitor of apoptosis (XIAP), 724, 729, 731
Xpert Flu assay, 605
Xpert HIV-1 Qual, 702
Xpert HIV-1 viral load assay, 702
Xpert MTB/RIF assay, 433
xTAG Respiratory Virus Panel, 605–606

Yellow fever virus, 648–656

Zanamivir, 602
Zap-70 (zeta chain-associated protein kinase), 226–227, 229–232, 1024
ZAP-70 deficiency, 722, 727
Zinc transporter-8 (ZnT8) autoantibodies, 936–938, 941–942
Zombie stains, 149
Zone electrophoresis, 75–76
Zoonoses, hantaviruses as, 658
Zoster, 556. See also Varicella-zoster virus