Contents

Editorial Board / xi
Contributors / xiii
Foreword: How It Began / xxiii
Preface / xxv
Author and Editor Conflicts of Interest / xxvii

section A
GENERAL METHODS / 1
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: THOMAS A. FLEISHER
1 Introduction / 3
THOMAS A. FLEISHER
2 Molecular Methods for Diagnosis of Genetic Diseases Involving the Immune System / 5
AMY P. HSU
3 The Human Microbiome and Clinical Immunology / 19
FREDERIC D. BUSHMAN
4 Protein Analysis in the Clinical Immunology Laboratory / 26
ROSHINI SARAH ABRAHAM AND DAVID R. BARNIDGE

section B
IMMUNOGLOBULIN METHODS / 47
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: DAVID F. KEREN
5 Introduction / 49
DAVID F. KEREN
6 Immunoglobulin Genes / 51
THOMAS J. KIPPS, EMANUELA M. GHIA, AND LAURA Z. RASSENTI
7 Immunoglobulin Quantification and Viscosity Measurement / 65
JEFFREY S. WARREN
8 Clinical Indications and Applications of Serum and Urine Protein Electrophoresis / 74
DAVID F. KEREN AND RICHARD L. HUMPHREY
9 Immunochemical Characterization of Immunoglobulins in Serum, Urine, and Cerebrospinal Fluid / 89
ELIZABETH SYKES AND YVONNE POSEY
10 Cryoglobulins, Cryofibrinogenemia, and Pyroglobulins / 101
PETER D. GOREVIC AND DENNIS GALANAKIS
11 Strategy for Detecting and Following Monoclonal Gammopathies / 112
JERRY A. KATZMANN AND DAVID F. KEREN

section C
COMPLEMENT / 125
VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: PATRICIA C. GICLAS
12 Introduction / 127
PATRICIA C. GICLAS
13 The Classical Pathway of Complement / 129
PATRICIA C. GICLAS
14 Analysis of Activity of Mannan-Binding Lectin, an Initiator of the Lectin Pathway of the Complement System / 133
STEFFEN THIEL
15 The Nature of the Diseases That Arise from Improper Regulation of the Alternative Pathway of Complement / 138
RICHARD J. H. SMITH
section D

FLOW CYTOMETRY / 145

VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITOR: MAURICE R. G. O’GORMAN

16 Introduction / 147
MAURICE R. G. O’GORMAN

17 Polychromatic Flow Cytometry / 149
ANGÉLIQUE BIANCOTTO AND J. PHILIP McCOY, JR.

18 High-Sensitivity Detection of Red and White Blood Cells in Paroxysmal Nocturnal Hemoglobinuria by Multiparameter Flow Cytometry / 168
ANDREA ILLINGWORTH, MICHAEL KEENEY, AND D. ROBERT SUTHERLAND

19 Standardized Flow Cytometry Assays for Enumerating CD34+ Hematopoietic Stem Cells / 182
D. ROBERT SUTHERLAND AND MICHAEL KEENEY

20 Functional Flow Cytometry-Based Assays of Myeloid and Lymphoid Functions for the Diagnostic Screening of Primary Immunodeficiency Diseases / 199
MAURICE R. G. O’GORMAN

21 Acute Lymphoblastic Leukemia/Lymphoma: Diagnosis and Minimal Residual Disease Detection by Flow Cytometric Immunophenotyping / 207
JOSEPH A. DiGIUSEPPE

22 Acute Myeloid Leukemia: Diagnosis and Minimal Residual Disease Detection by Flow Cytometry / 217
BRENT WOOD AND LORI SOMA

23 Chronic Lymphocytic Leukemia, the Prototypic Chronic Leukemia for Flow Cytometric Analysis / 226
HEBA DEGHEIDY, DALIA A. A. SALEM, CONSTANCE M. YUAN, AND MARYALICE STETLER-STEVENSON

24 Plasma Cell Disorders / 235
JUAN FLORES-MONTERO, LUZALBA SANOJA, JOSÉ JUAN PÉREZ, FANNY POJERO, NOEMI PUIG, MARÍA BELÉN VIDRIALES, AND ALBERTO ORFAO

25 Future Cytometric Technologies and Applications / 251
HOLDEN T. MAECKER

section E

FUNCTIONAL CELLULAR ASSAYS / 259

VOLUME EDITOR: BARBARA DETRICK
SECTION EDITOR: STEVEN D. DOUGLAS

26 Introduction / 261
STEVEN D. DOUGLAS

27 Cryopreservation of Peripheral Blood Mononuclear Cells / 263
ADRIANA WEINBERG

28 Lymphocyte Activation / 269
ROSHINI SARAH ABRAHAM

29 Functional Assays for B Cells and Antibodies / 280
MOON H. NAHM AND ROBERT L. BURTON

30 Methods for Detection of Antigen-Specific T Cells by Enzyme-Linked Immunospot Assay (ELISPOT) / 290
BARBARA L. SHACKLETT AND DOUGLAS F. NIXON

31 Regulatory T Cell (Treg) Assays: Repertoire, Functions, and Clinical Importance of Human Treg / 296
THERESA L. WHITESIDE

32 Measurement of NK Cell Phenotype and Activity in Humans / 300
SAMUEL C. C. CHIANG AND YENAN T. BRYCESON

33 Functional Assays for the Diagnosis of Chronic Granulomatous Disease / 310
DEBRA LONG PRIEL AND DOUGLAS B. KUHNS

section F

CYTOKINES AND CHEMOKINES / 321

VOLUME EDITOR: BARBARA DETRICK
SECTION EDITOR: JOHN J. HOOKS

34 Introduction / 323
JOHN J. HOOKS

35 Multiplex Cytokine Assays / 324
ELIZABETH R. DUFFY AND DANIEL G. REMICK

36 Cytokine Measurement by Flow Cytometry / 338
HOLDEN T. MAECKER

37 Chemokine and Chemokine Receptor Analysis / 343
SABINA A. ISLAM, BENJAMIN D. MEDOFF, AND
section G

IMMUNOHISTOLOGY AND IMMUNOPATHOLOGY / 373

VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: R. NEAL SMITH

40 Introduction / 375
ROBERT G. HAMILTON

41 Immunofluorescence Methods in the Diagnosis of Renal and Cardiac Diseases / 376
A. BERNARD COLLINS, JAMES R. STONE, AND R. NEAL SMITH

42 Western Blot Analysis for the Detection of Anti-Glomerular Basement Membrane Antibodies and Anti-Phospholipase A2 Receptor Antibodies / 385
A. BERNARD COLLINS AND R. NEAL SMITH

section H

INFECTIOUS DISEASES CAUSED BY BACTERIA, MYCOPLASMAS, CHLAMYDIAE, AND RICKETTSIAE / 391

VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITOR: CHRISTINE M. LITWIN

43 Introduction / 393
CHRISTINE M. LITWIN

44 Diagnostic Methods for Group A Streptococcal Infections / 394
CHRISTINE M. LITWIN, SHELDON E. LITWIN, AND HARRY R. HILL

45 Diagnosis of Helicobacter pylori Infection and Assessment of Eradication / 404
BRUCE E. DUNN AND SUHAS H. PHADNIS

46 Laboratory Diagnosis of Syphilis / 412
JOHN L. SCHMITZ

47 Lyme Disease, Relapsing Fever, and Leptospirosis / 419
GUIQING WANG AND MARIA E. AGUERO-ROSENFELD

48 Immunological Tests in Tuberculosis / 433
CHRISTINE M. LITWIN

49 Mycoplasma: Immunologic and Molecular Diagnostic Methods / 444
KEN B. WAITES, MARY B. BROWN, AND JERRY W. SIMECKA

50 Chlamydia and Chlamydophila Infections / 453
ROSEMARY SHE

51 The Rickettsiaceae, Anaplasmataceae, and Coxiellaceae / 461
LUCAS S. BLANTON AND DAVID H. WALKER

52 The Bartonellaceae, Brucellaceae, and Franciscellaceae / 473
CHRISTINE M. LITWIN, BURT ANDERSON, RENEE TSOLIS, AND AMY RASLEY

section I

MYCOTIC AND PARASITIC DISEASES / 483

VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: THOMAS B. NUTMAN

53 Introduction / 485
THOMAS B. NUTMAN

54 Immunological and Molecular Approaches for the Diagnosis of Parasitic Infections / 486
PATRICIA P. WILKINS AND THOMAS B. NUTMAN

55 Serological and Molecular Diagnosis of Fungal Infections / 503
MARK D. LINDSLEY

section J

VIRAL DISEASES / 535

VOLUME EDITOR: JOHN L. SCHMITZ
SECTION EDITORS: RICHARD L. HODINKA AND JOHN L. SCHMITZ

56 Introduction / 537
JOHN L. SCHMITZ

57 Immunologic and Molecular Methods for Viral Diagnosis / 538
MARIE LOUISE LANDRY AND YI-WEI TANG

58 Herpes Simplex Virus / 550
D. SCOTT SCHMID

59 Varicella-Zoster Virus / 556
D. SCOTT SCHMID

60 Epstein-Barr Virus and Cytomegalovirus / 563
HENRY H. BALKOFER, JR., KRISTIN A. HOGQUST, AND PRIYA S. VERGHESE
CONTENTS

section K

IMMUNODEFICIENCY DISEASES / 711

VOLUME EDITOR: BARBARA DETRICK
SECTION EDITORS: KATHLEEN E. SULLIVAN AND HOWARD M. LEDERMAN

61 **Human Herpesviruses 6, 7, and 8** / 578
RICHARD L. HODINKA

62 **Parvovirus B19** / 591
STANLEY J. NAIDES

63 **Respiratory Viruses** / 598
DAVID J. SPEICHER, MOHSIN ALI, AND MARÈK SMIEJA

64 **Measles, Mumps, and Rubella Viruses** / 610
DIANE S. LELAND AND RYAN F. RELICH

65 **Viral Hepatitis** / 620
HUBERT G. M. NIESTERS, ANNELIES RIESEBOS-BRILMAN, AND CORETTA C. VAN LEER-BUTER

66 **Viral Agents of Gastroenteritis** / 639
GABRIEL I. PARRA AND KIM Y. GREEN

67 **Arboviruses** / 648
ROBERT S. LANCIOTTI AND JOHN T. ROEHRIG

68 **Diagnosis of Hantavirus Infections** / 658
WILLIAM MARCIEL DE SOUZA AND LUÍZ TADEU MORAES FIGUEREIDO

69 **Rabies Virus** / 665
D. CRAIG HOOPER

70 **Human T-Cell Lymphotropic Virus Types 1 and 2** / 674
BREANNA CARUSO, RAYA MASSOUD, AND STEVEN JACOBSON

71 **Diagnosis of Prion Diseases** / 682
RICHARD RUBENSTEIN, ROBERT B. PETERSEN, AND THOMAS WISNIEWSKI

72 **Principles and Procedures of Human Immunodeficiency Virus Diagnosis** / 696
KELLY A. CURTIS, JEFFREY A. JOHNSON, AND S. MICHELE OWEN

section L

ALLERGIC DISEASES / 781

VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: PAMELA A. GUERRERIO

80 **Introduction** / 783
PAMELA A. GUERRERIO

81 **Quantitation and Standardization of Allergens** / 784
RONALD L. RABIN, LYNNSEY RENN, AND JAY E. SLATER

82 **Immunological Methods in the Diagnostic Allergy Clinical and Research Laboratory** / 795
ROBERT G. HAMILTON

83 **Assay Methods for Measurement of Mediators and Markers of Allergic Inflammation** / 801
JOHN T. SCHROEDER, R. STOKES PEEBLES, JR., AND PAMELA A. GUERRERIO

84 **Tests for Immunological Reactions to Foods** / 815
CARAH B. SANTOS, DAVID M. FLEISCHER, AND ROBERT A. WOOD

85 **Diagnosis of Rare Eosinophilic and Mast Cell Disorders** / 825
CEM AKIN, CALMAN PRUSSIN, AND AMY D. KLION

section M

SYSTEMIC AUTOIMMUNE DISEASES / 839

VOLUME EDITOR: BARBARA DETRICK
SECTION EDITOR: WESTLEY H. REEVES

86 **Introduction** / 841
WESTLEY H. REEVES

87 **Antinuclear Antibody Tests** / 843
ALESSANDRA DELAVANCE, WILSON DE MELO CRUVINEL, PAULO LUIZ CARVALHO FRANCESCATONIO, AND Luis EDUARDO COELHO ANDRADE

88 **Detection of Autoantibodies by Enzyme-Linked Immunosorbent Assay and Bead Assays** / 859
EDWARD K. L. CHAN, RUFUS W. BURLINGAME, AND MARVIN J. FRITZLER

89 **Immunodiagnosis and Laboratory Assessment of**
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Title</th>
<th>Volume Editor</th>
<th>Section Editors</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>90</td>
<td>Immunodiagnosis of Autoimmune Myopathies / 878</td>
<td>MINORU SATOH, ANGELA CERIBELLI, MICHITO HIRAKATA, AND EDWARD K. L. CHAN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>Immunodiagnosis of Scleroderma / 888</td>
<td>MASATAKA KUWANA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>92</td>
<td>Antibody and Biomarker Testing in Rheumatoid Arthritis / 897</td>
<td>ANN DUSKIN CHAUFFE AND MICHAEL RAYMOND BUBB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>Antiphospholipid Antibody Syndrome: Clinical Manifestations and Laboratory Diagnosis / 905</td>
<td>MARTINA MURPHY AND NEIL HARRIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>Antineutrophil Cytoplasmic Antibodies (ANCA) and Strategies for Diagnosing ANCA-Associated Vasculitides / 909</td>
<td>R. W. BURLINGAME, C. E. BUCHNER, J. G. HANLY, AND N. M. WALSH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>IgG4-Related Disease: Diagnostic Testing by Serology, Flow Cytometry, and Immunohistopathology / 917</td>
<td>JOHN H. STONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>Future Perspectives for Rheumatoid Arthritis and Other Autoimmune Diseases / 922</td>
<td>JEREMY SOKOLOVE</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>101</td>
<td>Detection of Antimitochondrial Autoantibodies in Primary Biliary Cholangitis and Liver Kidney Microsomal Antibodies in Autoimmune Hepatitis / 966</td>
<td>PATRICK S. C. LEUNG, MICHAEL P. MANNS, ROSS L. COFFEL, AND M. ERIC GERSHWIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>102</td>
<td>Cardiovascular Diseases / 975</td>
<td>CHERYL L. MAIER, C. LYNNE BUREK, NOEL R. ROSE, AND AFTAB A. ANSARI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>Celiac Disease and Inflammatory Bowel Disease / 983</td>
<td>MELISSA R. SNYDER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>104</td>
<td>Autoantibodies Directed against Erythrocytes in Autoimmune Hemolytic Anemia / 990</td>
<td>R. SUE SHIREY AND KAREN E. KING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>Immune Thrombocytopenia / 995</td>
<td>THOMAS S. KICKLER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>Monitoring Autoimmune Reactivity within the Retina / 998</td>
<td>JOHN J. HOOKS, CHI-CHAO CHAN, H. NIDA SEN, ROBERT NUSSENBLAT, AND BARBARA DETRICK</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>107</td>
<td>Introduction / 1007</td>
<td>ROBERT G. HAMILTON</td>
<td>DANIEL CHAN AND LORI J. SOKOLL</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>Malignancies of the Immune System: Use of Immunologic and Molecular Tumor Markers in Classification and Diagnostics / 1015</td>
<td>ELAINE S. JAFFE AND MARK RAFFELD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>Monitoring of Immunologic Therapies / 1036</td>
<td>THERESA L. WHITESIDE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>111</td>
<td>Circulating Tumor Cells as an Analytical Tool in the Management of Patients with Cancer / 1051</td>
<td>DANIEL C. DANILA, HOWARD I. SCHER, AND MARTIN FLEISHER</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>100</td>
<td>Autoantibodies to Glycolipids in Peripheral Neuropathy / 961</td>
<td>HUGH J. WILLISON</td>
<td></td>
</tr>
<tr>
<td>section</td>
<td>90</td>
<td>Immunodiagnosis of Autoimmune Myopathies / 878</td>
<td>MINORU SATOH, ANGELA CERIBELLI, MICHITO HIRAKATA, AND EDWARD K. L. CHAN</td>
<td></td>
</tr>
<tr>
<td>section</td>
<td>91</td>
<td>Immunodiagnosis of Scleroderma / 888</td>
<td>MASATAKA KUWANA</td>
<td></td>
</tr>
<tr>
<td>section</td>
<td>92</td>
<td>Antibody and Biomarker Testing in Rheumatoid Arthritis / 897</td>
<td>ANN DUSKIN CHAUFFE AND MICHAEL RAYMOND BUBB</td>
<td></td>
</tr>
<tr>
<td>section</td>
<td>93</td>
<td>Antiphospholipid Antibody Syndrome: Clinical Manifestations and Laboratory Diagnosis / 905</td>
<td>MARTINA MURPHY AND NEIL HARRIS</td>
<td></td>
</tr>
<tr>
<td>section</td>
<td>94</td>
<td>Antineutrophil Cytoplasmic Antibodies (ANCA) and Strategies for Diagnosing ANCA-Associated Vasculitides / 909</td>
<td>R. W. BURLINGAME, C. E. BUCHNER, J. G. HANLY, AND N. M. WALSH</td>
<td></td>
</tr>
<tr>
<td>section</td>
<td>95</td>
<td>IgG4-Related Disease: Diagnostic Testing by Serology, Flow Cytometry, and Immunohistopathology / 917</td>
<td>JOHN H. STONE</td>
<td></td>
</tr>
<tr>
<td>section</td>
<td>96</td>
<td>Future Perspectives for Rheumatoid Arthritis and Other Autoimmune Diseases / 922</td>
<td>JEREMY SOKOLOVE</td>
<td></td>
</tr>
<tr>
<td>section</td>
<td>O</td>
<td>Cancer / 1005</td>
<td>ROBERT G. HAMILTON</td>
<td>DANIEL CHAN AND LORI J. SOKOLL</td>
</tr>
<tr>
<td>section</td>
<td>P</td>
<td>Transplantation Immunology / 1063</td>
<td>BARBARA DETRICK</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

SECTION EDITORS: ELAINE F. REED AND QIUHENG JENNIFER ZHANG

112 Histocompatibility and Immunogenetics Testing in the 21st Century / 1065
 QIUHENG JENNIFER ZHANG AND ELAINE F. REED

113 Molecular Methods for Human Leukocyte Antigen Typing: Current Practices and Future Directions / 1069
 MARK KUNKEL, JAMIE DUKE, DEBORAH FERRIOLA, CURT LIND, AND DIMITRI MONOS

114 Evaluation of the Humoral Response in Transplantation / 1091
 PAUL SIKORSKI, RENATO VEGA, DONNA P. LUCAS, AND ANDREA A. ZACHARY

115 Non-Human Leukocyte Antigen Antibodies in Organ Transplantation / 1103
 ANNETTE M. JACKSON AND BETHANY L. DALE

116 Evaluation of the Cellular Immune Response in Transplantation / 1108
 DIANA METES, NANCY L. REINSMOEN, AND ADRIANA ZEEVI

117 Complement in Transplant Rejection / 1123
 CARMELA D. TAN, E. RENE RODRIGUEZ, AND WILLIAM M. BALDWIN III

118 Molecular Characterization of Rejection in Solid Organ Transplantation / 1132
 DARSHANA DADHANIA, TARA K. SIGDEL, THANGAMANI MUTHUKUMAR, CHOLI HARTONO, MINNIE M. SARWAL, AND MANIKKAM SUTHANTHIRAN

119 Killer Cell Immunoglobulin-Like Receptors in Clinical Transplantation / 1150
 RAJA RAJALINGAM, SARAH COOLEY, AND JEROEN VAN BERGEN

120 Chimerism Testing / 1161
 LEE ANN BAXTER-LOWE

section Q

LABORATORY MANAGEMENT / 1169

VOLUME EDITOR: ROBERT G. HAMILTON
SECTION EDITOR: RONALD J. HARBECK

121 Clinical Immunology Laboratory Accreditation, Licensure, and Credentials / 1171
 LINDA COOK AND RONALD J. HARBECK

122 Validation and Quality Control: General Principles and Application to the Clinical Immunology Laboratory / 1180
 VIJAYA KNIGHT AND TERRI LEBO

Author Index / 1193

Subject Index / 1195
Contributors

ROSHINI SARAH ABRAHAM
Mayo Clinic, Laboratory Medicine and Pathology, Hilton 210e, 200 1st St. SW, Rochester, MN 55905

MARIA E. AGUERO-ROSENFELD
NYU Langone Medical Center, Rm. H374A, 560 First Ave., New York, NY 10016

CEM AKIN
Brigham and Women’s Hospital, Department of Medicine, Rheumatology, Immunology, 75 Francis Street, Boston, MA 02115

MOHSIN ALI
Icahn School of Medicine at Mount Sinai, Department of Medical Education, One Gustave L. Levy Place, New York, NY 10029

BURT ANDERSON
Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612

GIUSEPPE BARBESINO
Thyroid Unit, Massachusetts General Hospital – Harvard Medical School, 15 Parkman St., Boston, MA 02114

DAVID R. BARNIDGE
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905

LEE ANN BAXTER-LOWE
Children’s Hospital Los Angeles, 4650 Sunset Blvd., #32, Los Angeles, CA 90027

ANGELIQUE BIANCOTTO
CHI/NHLBI, National Institutes of Health, 10 Center Drive, Bldg. 10 Room 7N110a, Bethesda, MD 20892

LUCAS S. BLANTON
University of Texas Medical Branch-Galveston, Department of Internal Medicine, 301 University Blvd., Galveston, TX 77555

MARY B. BROWN
Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, 2015 S.W. 16th Ave., Gainesville, FL 32611

SARAH K. BROWNE
NIAID, NIH, Immunopathogenesis Section, Bldg. 10 - CRC Rm. B3-4233, 10 Center Drive, Bethesda, MD 20014

YENAN T. BRYCESON
Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden, and Institute of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway

MICHAEL RAYMOND BUBB
Division of Rheumatology, University of Florida, 1600 S.W. Archer Rd D2-39, P.O. Box 100221, Gainesville, FL 32610

C. E. BUCHNER
Genalyte, Inc., 10520 Wateridge Circle, San Diego, CA 92121
xv ■ CONTRIBUTORS

C. LYNN BUREK
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

RUFUS W. BURLINGAME
Genalyte, Inc., Diagnostic Assay Development, 10520 Wateridge Circle, San Diego, CA 92121

ROBERT L. BURTON
University of Alabama at Birmingham, 845 19th St. S, BBRB612, Birmingham, AL 35294

FREDERICK D. BUSHMAN
Perelman School of Medicine, University of Pennsylvania, Department of Microbiology, 3610 Hamilton Walk, Philadelphia, PA 19104

BREANNA CARUSO
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

PATRIZIO CATUREGLI
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Ave., Baltimore, MD 21205

ANGELA CERIBELLI
Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center, Via A. Manzoni 56, 20089, Rozzano (Milan), Italy

CHI-CHAO CHAN
Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892

EDWARD K. L. CHAN
Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, FL 32610

ANITA CHANDRA
Department of Clinical Biochemistry and Immunology, Box 109, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom

ANN DUSKIN CHAUFFE
Division of Rheumatology, University of Florida, 1600 S.W. Archer Rd D2-39, P.O. Box 100221, Gainesville, FL 32610

SAMUEL C. C. CHIANG
Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden

A. BERNARD COLLINS
Massachusetts General Hospital, Pathology, 503 Warren Bldg., 14 Fruit St., Boston, MA 02114

LINDA COOK
University of Washington, Laboratory Medicine, 1616 Eastlake Ave. E, Suite 320, Seattle, WA 98102

SARAH COOLEY
University of Minnesota, Hematology, Oncology and Transplantation, 420 Delaware St. SE, Mayo Mail Code 806, Minneapolis, MN 55455

ROSS L. COPPEL
Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia 3800

WILSON DE MELO CRUVINEL
Pontifícia Universidade Católica de Goiás, School of Medical, Pharmaceutical and Biomedical Sciences, Avenida Universitária 1440, Setor Universitário, Goiânia, GO, 74.605-010, Brazil

KELLY A. CURTIS
Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

DARSHANA DADHANIA
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065

BETHANY L. DALE
Immunogenetics Laboratory, Johns Hopkins University School of Medicine, 2041 E. Monument St., Baltimore, MD 21205

DANIEL C. DANILA
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

ALESSANDRA DE REMIGIS
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

WILLIAM MARCIEL DE SOUZA
Virology Research Center, School of Medicine of Ribeirao Preto of University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

LUDOVICA DE VINCENTIS
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

HEBA DEGHEIDY
FDA, Center for Biologics Evaluation and Research, WO52/72 RM 3209, 10903 New Hampshire Ave., Silver Spring, MD 20993

ALESSANDRA DELAVANCE
Fleury Laboratories, Research and Development Department, Avenida Valdomiro de Lima 508, São Paulo, SP 04344-070, Brazil

BARTHA DETRIX
Immunology Laboratory, Department of Pathology, Johns Hopkins University, School of Medicine, 600 N. Wolfe St., Baltimore, MD 21287

JOSEPH A. DE GIUSEPPE
Hematopathology and Special Hematology Laboratory, Department of Pathology & Laboratory Medicine, Hartford Hospital, 80 Seymour St., Hartford, CT 06102
CONTRIBUTORS

STEVEN D. DOUGLAS
The Children's Hospital of Philadelphia, University of Pennsylvania, Suite 1208 Abramson Research Building, 34th & Civic Center Blvd., Philadelphia, PA 19104

ELIZABETH R. DUFFY
Boston University School of Medicine, Pathology and Laboratory Medicine, 670 Albany St., Boston, MA 02118

JAMIE DUKE
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

BRUCE E. DUNN
Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226

GEORGE S. EISENBARTH
[Deceased]

MELISSA ELDER
University of Florida, Pediatrics, 1600 S.W. Archer Road, Gainesville, FL 32610

DEBORAH FERRIOLE
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

LUIZ TADEU MORAES FIGUEREIDO
Virology Research Center, School of Medicine of Ribeirao Preto of University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

DAVID M. FLEISCHER
Children's Hospital Colorado, Pediatrics, Aurora, CO 80045

MARTIN FLEISHER
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

THOMAS A. FLEISHER
Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bldg. 10 Rm. 2C306, 10 Center Drive, Bethesda, MD 20814

JUAN FLORES-MONTERO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

PAULO LUIZ CARVALHO FRANCESCANTONIO
Pontificia Universidade Católica de Goiás, School of Medical, Pharmaceutical and Biomedical Sciences, Avenida Universitária 1440, Setor Universitário, Goiânia, GO, 74.605-010, Brazil

MARVIN J. FRITZLER
University of Calgary, Cumming School of Medicine, Calgary, Alberta T2N 4N1, Canada

DENNIS GALANAKIS
State University of New York, Stony Brook, NY 11794

M. ERIC GERSHWIN
Division of Rheumatology/Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility Suite 6510, School of Medicine, University of California at Davis, Davis, CA 95616

EMANUELA M. GHIA
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92033

PATRICIA C. GICLAS
National Jewish Health, Diagnostic Complement Laboratory, 1400 N. Jackson St., Denver, CO 80206

KIMBERLY C. GILMOUR
Immunology, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, United Kingdom

ELIZABETH A. GODBEY
Department of Pathology, Columbia University Medical Center, New York, NY 10032

PETER D. GOREVIC
Division of Rheumatology, The Mount Sinai Medical Center, Annenberg Building; Room 21-056, Box 1244, New York, NY 10029

KIM Y. GREEN
Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, 9000 Rockville Pike, Building 50, Room 6318, Bethesda, MD 20892

PAMELA A. GUERRERIO
Food Allergy Research Unit, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, 4 Memorial Dr., Building 228B, MSC0430, Bethesda, MD 20892

ROBERT G. HAMILTON
Johns Hopkins University School of Medicine, Dermatology, Allergy and Clinical Immunology Reference Library, 5501 Hopkins Bayview Circle, Baltimore, MD 21224

SHUHONG HAN
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

J. G. HANLY
Dalhousie University and Nova Scotia Health Authority (Central Zone), Departments of Medicine and Pathology, Nova Scotia Rehabilitation Center, 1341 Summer St., Halifax, NS B3H 4K4, Canada

RONALD J. HARBECK
National Jewish Health, 1400 Jackson Street, Denver, CO 80206
CONTIBUTORS

NEIL HARRIS
University of Florida, Department of Pathology, 1600 SW Archer Rd, Gainesville, FL 32610

CHOLI HARTONO
Weill Cornell Medical College, Nephrology, 505 E. 70th St., Helmsley 2nd Floor, New York, NY 10021

HARRY R. HILL
University of Utah, Department of Pathology, Pediatrics and Medicine, 50 N. Medical Drive, Room 5B-114, Salt Lake City, UT 84132

MICHITO HIRAKATA
Medical Education Center, Graduate Medical Education Center, Keio University School of Medicine, Tokyo, Japan

RICHARD L. HODINKA
University of South Carolina School of Medicine Greenville and Greenville Health System, Room 210, Health Science Administration Building, 701 Grove Rd., Greenville, SC 29600

KRISTIN A. HOGQUIST
Center for Immunology, University of Minnesota, 2-186 MBB, 2101 6th St. SE, Minneapolis, MN 55455

STEVEN M. HOLLAND
National Institutes of Health, LCID, CRC B-4141, MSC 1684, Bethesda, MD 20892

JOHN J. HOOKS
National Institutes of Health, Immunology & Virology Section, NEI, Bldg. 10 Rm. 10N248, 10 Center Drive, Bethesda, MD 20814

D. CRAIG HOOPER
Thomas Jefferson University, Jefferson Center for Neurovirology, 1020 Locust St, Philadelphia, PA 19107

AMY P. HSU
National Institutes of Health, Laboratory of Clinical Infectious Disease, National Institute of Allergy and Infectious Diseases, Bldg. 10 CRC Rm B3-4233, 10 Center Drive, Bethesda, MD 20892

RICHARD L. HUMPHREY
Johns Hopkins Hospital, Pathology, 600 North Wolfe St., Baltimore, MD 21287

ANDREA ILLINGWORTH
Dahl Chase Diagnostic Services, 417 State St., Suite 540, Bangor, ME 04401

SABINA A. ISLAM
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114

ANNETTE M. JACKSON
Immunogenetics Laboratory, Johns Hopkins University School of Medicine, 2041 E. Monument Street, Baltimore, MD 21205

STEVEN JACOBSON
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

ELAINE S. JAFFE
Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, 10 Center Dr./Rm. 35235, MSC-1500, Bethesda, MD 20892

JEFFREY A. JOHNSON
Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

JERRY A. KATZMANN
Mayo Clinic and Mayo Foundation, Laboratory Medicine and Pathology, 200 First St. SW, Rochester, MN 55905

MICHAEL KEENEY
Hematology/Flow Cytometry, London Health Sciences Centre, Victoria Hospital, 800 Commissioners Road E, London, Ontario, N6A3W9 Canada

DAVID F. KEREN
University of Michigan, 5228 Medical Science I, 1301 Catherine, Ann Arbor, MI 48109

THOMAS S. KICKLER
Johns Hopkins University School of Medicine, 1800 Orleans Street, Sheikh Zayed B2-120Q, Baltimore, MD 21287

KAREN E. KING
Johns Hopkins Hospital, Transfusion Medicine, 1800 Orleans St., Baltimore, MD 21287

THOMAS J. KIPPS
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92039

AMY D. KLIION
National Institutes of Health, Laboratory of Parasitic Diseases, NIAID, Bldg. 4, Rm. B1-28, Bethesda, MD 20892

VIJAYA KNIGHT
National Jewish Health, National Jewish Health Advanced Diagnostic Laboratories, Division of Pathology, Department of Medicine, 1400 Jackson St., Denver, CO 80206

DOUGLAS B. KUHNS
Clinical Services Program, P.O. Box B, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702

D.S. KUMARARATNE
Department of Clinical Biochemistry and Immunology, Box 109, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, United Kingdom

MARK KUNKEL
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104
MASATAKA KUWANA
Department of Allergy and Rheumatology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan

ROBERT S. LANCIOITTI
Arbovirus Diseases Branch, Centers for Disease Control & Prevention, 3150 Rampart Road (CSU Foothills Campus), Fort Collins, CO 80521

MARIE LOUISE LANDRY
Yale University, Laboratory Medicine and Internal Medicine, P.O. Box 208035, New Haven, CT 06520

TERRI LEBO
National Jewish Health, Advanced Diagnostic Laboratories, 1400 Jackson St., Denver, CO 80206

HOWARD M. LEDERMAN
Pediatric Allergy & Immunology, Johns Hopkins Hospital - CMSC 1102, 600 N Wolfe St, Baltimore, MD 21287-3923

DIANE S. LELAND
Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IU Health Pathology Laboratory Building, Room 6027F, 350 W 11th St, Indianapolis, IN 46202

PATRICK S. C. LEUNG
Division of Rheumatology/Allergy and Clinical Immunology, Genome and Biomedical Sciences Facility Suite 6510, School of Medicine, University of California at Davis, Davis, CA 95616

ARNOLD I. LEVINSON
Perelman School of Medicine, University of Pennsylvania School of Medicine, Room 316 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104

YI LI
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

CURT LIND
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

MARK D. LINDSLEY
Mycotic Diseases Branch, Centers for Disease Control and Prevention, 1600 Clifton Road, Mailstop G-11, Atlanta, GA 30333

ROBERT P. LISAK
Wayne State University Medical Center, Neurology, 4201 St. Antoine St., Detroit, MI 48201

CHRISTINE M. LITWIN
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425

SHELDON E. LITWIN
Department of Medicine, Medical University of South Carolina, 114 Doughty St., Charleston, SC 29425

DONNA P. LUCAS
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205

ANDREW D. LUSTER
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114

HOLDEN T. MAECKER
Stanford University, Institute for Immunity, Transplantation, & Infection, Stanford University Medical School, 299 Campus Drive, Stanford, CA 94305

CHERYL L. MAIER
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322

MICHAEL P. MANNS
Department of Gastroenterology and Hepatology, Zentrum Innere Medizin, Medizinische Hochschule Hannover, Hannover, Germany

REBECCA MARSH
Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229

JOHN MASSINI
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

RAYA MASSOUD
National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Rockville, MD 20892

J. PHILIP McCoy, JR.
National Institutes of Health, NHLBI, 10 Center Drive, Bethesda, MD 20892

BENJAMIN D. MEDOFF
Center for Immunology and Inflammatory Diseases, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114

DIANA METES
University of Pittsburgh Medical Center, Thomas E Starzl Transplantation Institute, BST E1549, 200 Lothrop St., Pittsburgh, PA 15213

DIMITRI MONOS
The Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104

MARTINA MURPHY
University of Florida, Hematology/Oncology, 1600 SW Archer Rd., Gainesville, FL 32610

THANGAMANI MUTHUKUMAR
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065
CONTORUOTORS

MOON H. NAHM
University of Alabama at Birmingham, 845 19th St. S, BBRB 614, Birmingham, AL 35294

STANLEY J. NAIDES
Immunology, Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92675

HUBERT G. M. NIESTERS
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

TIMOTHY B. NIEWOLD
Mayo Clinic, Department of Immunology and Division of Rheumatology, 200 1st Street SW, Rochester, MN 55905

DOUGLAS F. NIXON
Dept. of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, The George Washington University, Ross Hall 736, 2300 Eye Street, NW, Washington, D.C. 20037

ROBERT NUSSENBLATT
Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg. 10 Rm 10N109, 10 Center Drive, Bethesda, MD 20814

THOMAS B. NUTMAN
Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Room B1 03, Bethesda, MD 20892

MAURICE R. G. O'GORMAN
Keck School of Medicine, University of Southern California, and the Children's Hospital of Los Angeles, Pathology and Pediatrics, 4650 Sunset Blvd #43, Los Angeles, CA 90027

ALBERTO ORFAO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

S. MICHELE OWEN
National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329

GABRIEL I. PARRA
Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, 9000 Rockville Pike, Building 50, Room 6316, Bethesda, MD 20892

R. STOKES PEEBLES, JR.
Vanderbilt University, Medicine, T-1218 MCN, Vanderbilt University Medical Center, Nashville, TN 37232

JOSÉ JUAN PÉREZ
Departamento de Hematología, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL); Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, 37007, Spain

ROBERT B. PETERSEN
Case Western Reserve University, Department of Pathology, 5-126 Wolstein Building, 2103 Cornell Road, Cleveland, OH 44106

SUHAS H. PHADNIS
Medical College of Wisconsin, Pathology, 9200 W. Wisconsin Ave., Milwaukee, WI 53205

FANNY POJERO
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

YVONNE POSEY
Beaumont Hospital – Royal Oak, Clinical Pathology, 3601 W. 13 Mile Road, Royal Oak, MI 48073

DEBRA LONG PRIEL
Clinical Services Program, P.O. Box B, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702

CALMAN PRUSSIN
Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11N238, Bethesda, MD 20892-1881

NOEMÍ PUIG
Departmento de Hematología, Hospital Universitario de Salamanca, Instituto Biosanitario de Salamanca (IBSAL); Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Salamanca, 37007, Spain

RONALD L. RABIN
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

MARK RAFFEL
Laboratory of Pathology, Center for Cancer Research, National Institutes of Health, 10 Center Dr./Rm. 3S235, MSC-1500, Bethesda, MD 20892

ALEX J. RAI
Department of Pathology, Columbia University Medical Center, New York, NY 10032

RAJA RAJALINGAM
University of California at San Francisco, Immunogenetics and Transplantation Laboratory, Department of Surgery, 43 Castro St., Main Hospital Level B, CPMC Davis Campus, San Francisco, CA 94114

AMY RASLEY
Host-Pathogen Laboratory Group, Lawrence Livermore National Laboratory, Livermore, CA 94550
LAURA Z. RASSENTI
UCSD, Moores Cancer Center, 3855 Health Science Drive, M/C 0820, La Jolla, CA 92039

ELAINE F. REED
UCLA, Pathology, Rehab 1520, 1000 Veteran Avenue, Immunogenetics Center, Los Angeles, CA 90095

WESTLEY H. REEVES
University of Florida, Division of Rheumatology & Clinical Immunology, PO Box 100221, Gainesville, FL 32610-0221

NANCY L. REINSMOEN
HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars-Sinai Health Systems, HLA and Immunogenetics Lab-SSB 197, 8723 Alden Drive, Los Angeles, CA 90048

RYAN F. RELICH
Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, IU Health Pathology Laboratory Building, Room 6027E, 350 W 11th St, Indianapolis, IN 46202

DANIEL G. REMICK
Boston University School of Medicine, 670 Albany St., Boston, MA 02118

LYNNSEY RENN
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

ADRIANA RICCIUTI
Johns Hopkins University, Department of Pathology, Rutland Ave., Baltimore, MD 21205

ANNELIES RIEZEBOS-BRILMAN
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

KIMBERLY RISMA
Division of Allergy/Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229

E. RENE RODRIGUEZ
Department of Pathology, 9500 Euclid Ave., Cleveland, OH 44022

JOHN T. ROEHRLIG
Centers for Disease Control and Prevention, Atlanta, GA (Retired)

NOEL R. ROSE
Johns Hopkins University, Department of Pathology, SOM, 720 Rutland Avenue, Baltimore, MD 21205

JOHN M. ROUTES
Department of Pediatrics and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226

RICHARD RUBENSTEIN
SUNY Downstate Medical Center, Departments of Neurology and Physiology/Pharmacology, 450 Clarkson Ave., Brooklyn, NY 11203

DALIA A. A. SALEM
CCR, NCI, NIH, Laboratory of Pathology, Building 10, Mail Stop 1500, Room 3S 241, Bethesda, MD 20892

LUZALBA SANOJA
Centro de Investigación del Cáncer (Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL), Instituto Biosanitario de Salamanca (IBSAL), Servicio General de Citometría (NUCLEUS-Universidad de Salamanca), Salamanca, 37007, Spain

CARAH B. SANTOS
National Jewish Health, 1400 Jackson St., K731A, Denver, CO 80206

MINNIE M. SARWAL
University of California San Francisco, Division of Transplant Surgery, G893, 513 Parnassus Ave., San Francisco, CA 94143

MINORU SATOH
Department of Clinical Nursing, School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Isei-ga-oka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan

HOWARD I. SCHER
Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065

D. SCOTT SCHMID
Centers for Disease Control and Prevention, NCIRD/DVD/MMRHBLB, 1600 Clifton Rd NE, Atlanta, GA 30333

JOHN L. SCHMITZ
University of North Carolina, Department of Pathology & Laboratory Medicine, School of Medicine, Rm. 1035 East Wing, UNC Hospitals, Chapel Hill, NC 27514

JOHN T. SCHROEDER
Johns Hopkins University, Medicine, Division of Allergy and Immunology, Unit Office 2, 5501 Hopkins Bayview Circle, Baltimore, MD 21224

H. NIDA SEN
Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bldg. 10 Rm 10N109, 10 Center Drive, Bethesda, MD 20814

CHRISTINE SEROOGY
University of Wisconsin, Pediatrics, 1111 Highland Ave., 4139 WIMR, Madison, WI 53705

BARBARA L. SHACKLETT
Dept. of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, 3146 Tupper Hall, I Shields Ave., Davis, CA 95616
ROSEMARY SHE
Keck Medical Center of USC, Pathology, 1441 Eastlake Ave., Suite 2424, Los Angeles, CA 90089

R. SUE SHIREY
Johns Hopkins Hospital, Transfusion Medicine, 1800 Orleans St., Baltimore, MD 21287

TARA SIGDEL
University of California San Francisco, Division of Transplant Surgery, 513 Parnassus Avenue, S-1268 Medical Sciences Building, San Francisco, CA 94143

PAUL SIKORSKI
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205

JERRY W. SIMECKA
Department of Cell Biology and Immunology, University of North Texas Health Science Center, RES 402A 3500 Camp Bowie Blvd., Fort Worth, TX 76107

JAY E. SLATER
Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993

MAREK SMIEJA
McMaster University, Department of Pathology & Molecular Medicine, L424-St. Joseph’s Healthcare Hamilton, 50 Charlton Ave E, Hamilton, ON L8N 4A6, Canada

RICHARD J. H. SMITH
Iowa Institute of Human Genetics, Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA 52242

R. NEAL SMITH
Massachusetts General Hospital, Pathology, 501B Warren Bldg., 14 Fruit St., Boston, MA 02114

MELISSA R. SNYDER
Mayo Clinic, Hilton 2-10D, 200 First St. SW, Rochester, MN 55905

LORI J. SOKOLL
Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205

JEREMY SOKOLOVE
VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304-1207, and Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA 94305

LORI SOMA
University of Washington, Department of Laboratory Medicine, NW120, Box 357110, 1959 Pacific St., Seattle, WA 98195-7110

DAVID J. SPEICHER
Griffith University, Menzies Health Institute Queensland, Gold Coast Campus, Queensland 4222, Australia

ANDREA K. STECK
Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045

MARYALICE STETLER-STEVENSON
CCR, NCI, NIH, Laboratory of Pathology, Building 10, Mail Stop 1500, Room 3S 235G, Bethesda, MD 20892

JAMES R. STONE
Massachusetts General Hospital, Pathology, 185 Cambridge Street, Boston, MA 02114

JOHN H. STONE
Harvard Medical School, Division of Rheumatology, 25 Shattuck St, Boston, MA 02115

MANIKKAM SUTHANTHIRAN
Weill Cornell Medical College, Division of Nephrology & Hypertension, 525 E. 68th St., Box 3, New York, NY 10065

D. ROBERT SUTHERLAND
Laboratory Medicine Program, Toronto General Hospital/University Health Network, 200 Elizabeth St., Room 11E416, Toronto, Ontario, M5G2C4 Canada

ELIZABETH SYKES
Beaumont Hospital – Royal Oak, Clinical Pathology, 3601 W. 13 Mile Road, Royal Oak, MI 48073

CARMELA D. TAN
Department of Pathology, 9500 Euclid Ave., Cleveland, OH 44022

YI-WEI TANG
Memorial Sloan-Kettering Cancer Center, Clinical Microbiology Service, 1275 York Ave., S328, New York, NY 10065

STEFFEN THIEL
Aarhus University, Department of Medicine, Bartholin Building, Wilhelm Meyers Allé 4, Aarhus, 8000, Denmark

RENÉE TSOLIS
Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616

JEROEN VAN BERGEN
Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands

CORETTA C. VAN LEER-BUTER
University Medical Centre Groningen, Department of Medical Microbiology, Division of Clinical Virology, Hanzeplein 1, Groningen, The Netherlands

PRIYANKA VASHISHT
Mayo Clinic, Department of Immunology and Division of Rheumatology, 200 1st St. SW, Rochester, MN 55905

RENATO VEGA
Johns Hopkins University, Immunogenetics Laboratory, 2041 E. Monument St., Baltimore, MD 21205
ACKNOWLEDGMENT OF PREVIOUS CONTRIBUTORS

The Manual of Molecular and Clinical Laboratory Immunology is by its nature a continuously revised work which refines and extends the contributions of previous editions. Since its first edition in 1976, many eminent scientists have contributed to this important reference work. The American Society for Microbiology and its Publications Board gratefully acknowledge the contributions of all of these generous authors over the life of this Manual.
In 1971, I was working at the University of Oxford's Sir William Dunn School of Pathology in the laboratory of James Gowans, the investigator who first definitively showed that the lymphocyte was the source of specific adaptive immunity. I was busily cannulating the thoracic ducts of rats in order to harvest T lymphocytes when I was informed that a transatlantic telephone call was coming in. My first reaction was fear of bad news. Rather, it was a phone call from Earle Spaulding. I knew Earle as the chairman of microbiology at Temple and active in the Eastern Pennsylvania branch of the American Society for Microbiology (ASM). He explained that he was calling as a member of the editorial group of the Manual of Clinical Microbiology (MCM), at that time in its first edition. His particular concern was the chapter on immunology, which devoted 100 pages to various serologic tests for infectious organisms with no mention of noninfectious diseases. Earle felt strongly that the field of immunologic diagnosis was growing exponentially and deserved a separate, companion manual. The MCM editorial board agreed, providing I was willing to accept the position of Editor-in-Chief.

I was delighted to receive the invitation. I had recently chaired a “blue ribbon” committee of the American Association of Immunologists (AAI) on the future of clinical immunology. We concluded that there was no space for a new patient-centered clinical specialty, but great need for improved, expanded laboratory support. A comprehensive manual would serve as a great stimulus to the whole field of laboratory-based clinical immunology. I accepted the offer with two qualifications. First, I needed a co-editor, particularly someone well versed at a practical level in immunology and infectious diseases. Second, I asked that such a manual be cosponsored by the AAI. Both qualifications were agreed to by the ASM Publications Board.

The person I had in mind as co-Editor-in-Chief was Herman Friedman. I knew Herman from contacts arising from our joint interest in allergy research. I knew he understood the practice of laboratory immunology and was one of the few immunologists who actually researched the immunology of infection. Herman readily agreed to partner with me on the Manual, and so began a close collaboration that continued for three subsequent editions of the Manual, ended only by his untimely death. The AAI also accepted an offer of collaboration and appointed a liaison committee to work with us.

We were off and running, but we had no idea of how to proceed. There had never been a manual describing the entire laboratory practice of immunology. Part of our mission was to include the many applications of immunology devoted to detection and analysis of a wide variety of diseases, not only those induced by microorganisms. Should we approach the subjects disease by disease or method by method? We finally decided to compromise by beginning the book with invited chapters on the common methods used in the immunology laboratory, then continuing with sections covering their application to the main categories of disease. We included a final section on laboratory administration and quality control.

Having developed particular sections, we then sought the most experienced and highly qualified individuals to serve as section editors. Because of the cross-cutting matrix arrangement, there was major concern that some topics would be dealt with twice or even three times. We therefore decided to organize a “stakeholders meeting” at which all of the section editors met at ASM in Washington, DC, with proposed outlines of their sections. Going through each one systematically, we identified topics where overlap occurred and ensured that everything important was included once, but not more. We also made a fundamental decision that the book would be complete and free-standing. The methods would be described in sufficient detail that the laboratory worker could actually prepare the materials, perform the tests, and interpret the results without consulting other references. It should be understood that, at that time, most laboratory reagents
were prepared within the laboratory and were generally not available as commercial kits. This format required that we keep descriptions terse and the reference lists short.

When the first edition of the *Manual of Clinical Immunology* was published in 1976, we felt it warranted some type of celebration. Herman suggested that we should organize a meeting to mark the birth of the book and to bring together the leaders in clinical laboratory immunology, including our authors and section editors. Eventually, this led to the formation of the Association of Medical Laboratory Immunologists and the American Board of Medical Laboratory Immunology.

The *Manual* continues to be published at regular intervals to the present, as the editorial lineup has evolved. Barbara Detrick and Robert G. Hamilton joined me as Editors for the Sixth Edition, and Dr. Detrick has continued to lead the *Manual* for the Seventh and the present Eighth Edition. I hope the series will go on for many years. Although the *Manual*‘s name has changed and the format is altered, the overall aim is still to improve the care of patients with infectious malignant inflammatory and immune-mediated disorders. With the ready availability of validated kits, the job of the clinical laboratory immunologist has shifted toward working with clinical colleagues on the significance and interpretation of laboratory tests.

I’m proud to have been involved in the genesis of this *Manual*. It would not have been possible without the continued support of ASM, the cooperation of AAI, the persistence of succeeding volume and section editors, the contributions of hundreds of practicing clinical laboratory immunologists, and the foresight of a few visionary microbiologists of the 1970 era who realized that immunology had become a discipline and specialty of its own. It never would have happened if Herman Friedman had not joined with me in accepting the challenge. I hope that he will long be remembered for his numerous contributions to immunology.

NOEL R. ROSE, MD, Ph.D.
For over 40 years, the *Manual of Clinical Laboratory Immunology* has been the leading reference source, both in the United States and abroad, to advance the field of laboratory immunology, to foster the best contemporary and most cutting-edge methodologies, and to translate basic immunologic principles into appropriate laboratory tests.

Since the publication of the 7th edition of this Manual, remarkable progress has been made in the field of immunology, and these notable advancements have been reflected in the clinical immunology arena as well. The scope of clinical immunology is exceptionally broad and encompasses nearly every medical specialty, including such areas as transplantation, rheumatology, oncology, infectious disease, allergy, hematology, and neurology, to name a few. Because of its strategic position in the hospital setting, it is critical that the clinical immunology laboratory should have a guide to follow with regard to accurate and appropriate laboratory procedures. As the field of clinical immunology continues to expand, we look to the laboratory director as a key person to gather the new basic information and integrate it into useful clinical procedures as well as to serve as a pivotal contact for communication with the various disciplines. In addition to keeping abreast with the most updated testing systems, the goal for this Manual is that it must not only serve the needs of today’s clinical immunology laboratory but also look to the future, where even more dramatic progress in diagnosis and treatment can be anticipated.

In an effort to capture the new dimensions in this field and to reflect the continuous evolution of clinical immunology, significant changes have been introduced into the 8th edition of the *Manual of Molecular and Clinical Laboratory Immunology*. Several sections of the Manual have been notably updated to reflect the latest laboratory approaches in molecular assays as well as the shift to automated testing, kit-based diagnostics, and new technical tools: themes that are carried throughout the book.

New chapters have been introduced to highlight these changes. For example, section D, Flow Cytometry, describes the latest applications of these techniques, such as polychromatic flow cytometry and mass cytometry; section F reviews fresh information on the clinical applications of cytokines and chemokines; the infectious disease sections H, I, and J include the newest strategies used in infectious disease diagnosis and treatment, including the HIV and syphilis algorithms; section K, Immunodeficiency Diseases, presents the recent newborn screening programs for severe combined immune deficiency; and section P, Transplantation Immunology, outlines the usefulness of next-generation sequencing in the human leukocyte antigen (HLA) laboratory.

Once again, this Manual is offered not just in print but also electronically as either an EPUB file or a PDF. This special feature will allow a larger audience to review and use the Manual.

As we produce the 8th edition of this Manual, it is appropriate to celebrate its success. Noel Rose, the Manual’s first Editor-in-Chief, has provided a foreword reflecting on how the field has changed over the past 5 decades.

Since the publication of this Manual is a joint effort of many dedicated individuals, I wish to acknowledge the outstanding commitment and invaluable support of our volume editors, section editors, and chapter authors, all of whom, as internationally renowned experts in their areas, have contributed their extraordinary experience, energy, and time to the success of this edition. Also, I would like to extend my appreciation to the ASM editorial staff, in particular Ellie Tupper, Senior Production Editor, and Christine Charlip, Director, ASM Press, who have provided their valuable experience and support to complete this edition.

BARBARA DETRICK, Ph.D.
Editor in Chief
AUTHOR AND EDITOR
CONFLICTS OF INTEREST

Cem Akin (coauthor on chapter 85) has consultancy agreements with Novartis and Patara Pharma and receives research funding from Dyax.

Barbara Detrick (Editor in Chief, coauthor on chapter 106) serves as a consultant to Siemens Healthcare Diagnostics, Inc., Abbott Laboratories, and INOVA Diagnostics, Inc.

Deborah Ferriola (coauthor on chapter 113) receives royalties from Omixon. Omixon has licensed the protocol we developed for HLA typing by NGS from the Children’s Hospital of Philadelphia and makes it available as a commercial product named “Holotype HLA.” Omixon is mentioned in this chapter as a company that provides software analysis tools for the genotyping of HLAs using NGS data. It is not mentioned as a company that commercializes HLA typing products/kits, because at the time of writing Omixon had not developed this activity.

Marvin J. Fritzler (coauthor on chapter 88) has been a consultant to or received research gifts in kind from Inova Diagnostics Inc., Euroimmun GmbH, Mikrogen GmbH, Dr. Fsoke Laboratorien GmbH, ImmunoConcepts, GSK Canada, Amgen, Roche, and Pfizer. He is the Director of Mitogen Advanced Diagnostics Laboratory.

Andrea Illingworth (coauthor on chapter 18) has received unrestricted Educational Grant funding and speaker honoraria from Alexion Pharmaceuticals.

Michael Keeney (coauthor on chapters 18 and 19) is a consultant for Beckman Coulter, Canada, and Alexion Pharma, Canada. He has received unrestricted Educational Grant funding and speaker honoraria from Alexion Pharmaceuticals.

Masataka Kuwana (chapter 91) holds a patent on an anti-RNA polymerase III antibody measuring kit.

Curt Lind (coauthor on chapter 113) receives royalties from a licensing agreement between Omixon Biocomputing and the Children’s Hospital of Philadelphia and is an employee of Thermo Fisher Scientific, Transplant Diagnostics.

Robert P. Lisak (coauthor on chapter 99) is on an advisory board for Syntimmune.

Dimitri Monos (coauthor on chapter 113) receives royalties from Omixon. Omixon has licensed the protocol we developed for HLA typing by NGS from the Children’s Hospital of Philadelphia and makes it available as a commercial product named “Holotype HLA.” Omixon is mentioned in this chapter as a company that provides software analysis tools for the genotyping of HLAs using NGS data. It is not mentioned as a company that commercializes HLA typing products/kits, because at the time of writing Omixon had not developed this activity.

Stanley J. Naides (chapter 62) is a full-time employee of Quest Diagnostics Nichols Institute and receives a salary, stock, and stock options from Quest Diagnostics.

Timothy Niewold (coauthor on chapter 38) has received research grants from Janssen Inc. and EMD Serono Inc.

Maurice R. G. O’Gorman (chapter 20) is a BD Biosciences consultant and contractee.

Paul Sikorski (coauthor on chapter 114) is an employee of One Lambda, Inc., a Thermo Fisher Scientific brand.

Marek Smieja (coauthor on chapter 63) has done small studies with Copan and GenMark.

Melissa R. Snyder (chapter 103) participates on the Strategic Advisory Committee with INOVA Diagnostics.

Kathleen E. Sullivan (section editor) is a Baxter grant recipient and an Immune Deficiency Foundation consultant.

D. Robert Sutherland (coauthor on chapters 18 and 19) has received speaker fees and consulting fees from Alexion Pharmaceuticals.
Yi-Wei Tang (coauthor on chapter 57) has received research funds from Roche Molecular Diagnostics and the Luminex Corporation.

Brent Wood (coauthor on chapter 22) has received research funding and honoraria for Advisory Board participation from Seattle Genetics and Amgen and honoraria from Abbvie for Advisory Board participation.

Andrea A. Zachary (coauthor on chapter 114) is a consultant for BiologicTx and Genentech and is a Scientific Advisory Board member for Immucor.
Author Index

Abraham, Roshini Sarah, 26, 269
Aguero-Rosenfeld, Maria E., 419
Akin, Cem, 825
Ali, Mohsin, 598
Anderson, Burt, 473
Andrade, Luis Eduardo Coelho, 843
Ansari, Aftab A., 975

Baldwin III, William M., 1123
Balfour, Jr., Henry H., 563
Barbesino, Giuseppe, 930
Barnidge, David R., 26
Baxter-Lowe, Lee Ann, 1161
Biancotto, Angélique, 149
Biancardi, Sergio, 1365
Blanton, Lucas S., 461
Brown, Mary B., 444
Browne, Sarah K., 365
Bryceson, Yenan T., 300
Bubb, Michael Raymond, 897
Buchner, C. E., 909
Burek, C. Lynne, 929, 930, 975
Burton, Robert L., 280
Bushman, Frederic D., 19
Caruso, Breanna, 674
Caturegli, Patrizio, 930
Ceribelli, Angela, 878
Chan, Chi-Chao, 998
Chan, Edward K. L., 859, 878
Chand, Anita, 737
Chafee, Ann Duskin, 897
Chang, Samuel C. C., 300
Cooper, A. Bernard, 376, 385
Cook, Linda, 1169
Cookey, Sarah, 1150
Coppell, Ross L., 966
Crivineli, Wilson de Melo, 843
Curtis, Kelly A., 696

Dalhania, Darshana, 1132
Dale, Bethany L., 1103
Danila, Daniel C., 1051
De Remigis, Alessandra, 930
de Souza, William Marciel, 658
De Vincentiis, Ludovica, 930
Degheidy, Heba, 226

Dellavance, Alessandra, 843
Dettrock, Barbara, 998
Di Giuseppe, Joseph A., 207
Douglas, Steven D., 261
Duffy, Elizabeth R., 324
Duke, Jamie, 1069
Dunn, Bruce E., 404

Eisenbarth, George S., 930
Elder, Melissa, 721

Ferriola, Deborah, 1069
Figueiredo, Luiz Tadeu Moraes, 658
Fleischer, David M., 815
Fleisher, Martin, 1051
Fleisher, Thomas A., 3
Flores-Montero, Juan, 235
Francescantonio, Paulo Luiz Carvalho, 843
Fritzler, Marvin J., 859

Galanakis, Dennis, 101
Gershwin, M. Eric, 966
Ghia, Emanuela M., 51
Giclas, Patricia C., 127, 129, 749
Gilmour, Kimberly C., 737
Godsey, Elizabeth A., 1008
Gorevic, Peter D., 101
Green, Kim Y., 639
Guerrero, Pamela A., 783, 801

Hamilton, Robert G., 375, 795, 1007
Han, Shuhong, 868
Hanly, J. G., 909
Harbeck, Ronald J., 1169
Harris, Neil, 905
Hartono, Choli, 1132
Hill, Harry R., 394
Hirakata, Michio, 878
Hodinka, Richard L., 578
Hogueist, Kristin A., 563
Holland, Steven M., 766
Hooks, John J., 323, 998
Hooper, D. Craig, 665
Hsu, Amy P., 5
Humphrey, Richard L., 74

Illingworth, Andrea, 168
Islam, Sabina A., 343

Jackson, Annette M., 1103
Jacobson, Steven, 674
Jaffe, Elaine S., 1015
Johnson, Jeffrey A., 696

Katzmann, Jerry A., 112
Keeney, Michael, 168, 182
Keren, David E., 49, 74, 112
Kickler, Thomas S., 995
King, Karen E., 990
Kipps, Thomas J., 51
Klon, Amy D., 825
Knight, Vijaya, 1180
Kuhns, Douglas B., 310
Kumararatne, D. S., 737
Kunkel, Mark, 1069
Kuwana, Masatasa, 888

Lanciotti, Robert S., 648
Landry, Marie Louise, 538
Lebo, Terri, 1180
Lederman, Howard M., 713
Leland, Diane S., 610
Leung, Patrick S. C., 966
Levinson, Arnold I., 954
Li, Yi, 868
Lind, Curt, 1069
Lindsay, Mark D., 503
Lisak, Robert P., 954
Litwin, Christine M., 393, 394, 433, 473
Litwin, Sheldon E., 394
Lucas, Donna P., 1091
Luster, Andrew D., 343

Maecker, Holden T., 251, 338
Maier, Cheryl L., 975
Manns, Michael P., 966
Marsh, Rebecca, 775
Massini, John, 688
Massoud, Raya, 674
McCoy, Jr., J. Philip, 149
Medoff, Benjamin D., 343
Metes, Diana, 1108
Monos, Dimitri, 1069
Murphy, Martina, 905
Muthukumar, Thangamani, 1132
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nahm, Moon H.</td>
<td>280</td>
</tr>
<tr>
<td>Naides, Stanley J.</td>
<td>591</td>
</tr>
<tr>
<td>Nieters, Hubert G. M.</td>
<td>620</td>
</tr>
<tr>
<td>Niewold, Timothy B.</td>
<td>357</td>
</tr>
<tr>
<td>Nixon, Douglas F.</td>
<td>290</td>
</tr>
<tr>
<td>Nussenblatt, Robert</td>
<td>998</td>
</tr>
<tr>
<td>Nutter, Thomas B.</td>
<td>485, 486</td>
</tr>
<tr>
<td>O’Gorman, Maurice R. G.</td>
<td>147, 199</td>
</tr>
<tr>
<td>Orfao, Alberto</td>
<td>235</td>
</tr>
<tr>
<td>Owen, S. Michele</td>
<td>696</td>
</tr>
<tr>
<td>Parra, Gabriel I.</td>
<td>639</td>
</tr>
<tr>
<td>Peebles, Jr., R. Stokes</td>
<td>801</td>
</tr>
<tr>
<td>Pérez, José Juan</td>
<td>235</td>
</tr>
<tr>
<td>Petersen, Robert B.</td>
<td>682</td>
</tr>
<tr>
<td>Phadnis, Suhas H.</td>
<td>404</td>
</tr>
<tr>
<td>Pogorelov, Fanny</td>
<td>235</td>
</tr>
<tr>
<td>Posey, Yvonne</td>
<td>89</td>
</tr>
<tr>
<td>Priel, Debra Long</td>
<td>310</td>
</tr>
<tr>
<td>Prussin, Calman</td>
<td>825</td>
</tr>
<tr>
<td>Puig, Noemí</td>
<td>235</td>
</tr>
<tr>
<td>Rabin, Ronald L.</td>
<td>784</td>
</tr>
<tr>
<td>Raffeld, Mark</td>
<td>1015</td>
</tr>
<tr>
<td>Rai, Alex J.</td>
<td>1008</td>
</tr>
<tr>
<td>Rajalingam, Raja</td>
<td>1150</td>
</tr>
<tr>
<td>Rasley, Amy</td>
<td>473</td>
</tr>
<tr>
<td>Rassenti, Laura Z.</td>
<td>51</td>
</tr>
<tr>
<td>Reed, Elaine F.</td>
<td>1065</td>
</tr>
<tr>
<td>Reeves, Wesley H.</td>
<td>841, 868</td>
</tr>
<tr>
<td>Reinsoo, Nancy L.</td>
<td>1108</td>
</tr>
<tr>
<td>Relich, Ryan F.</td>
<td>610</td>
</tr>
<tr>
<td>Remick, Daniel G.</td>
<td>324</td>
</tr>
<tr>
<td>Renn, Lynsaye</td>
<td>784</td>
</tr>
<tr>
<td>Ricciuti, Adriana</td>
<td>930</td>
</tr>
<tr>
<td>Riezanos-Brilman, Annelies</td>
<td>620</td>
</tr>
<tr>
<td>Risma, Kimberly</td>
<td>775</td>
</tr>
<tr>
<td>Rodriguez, E. Rene</td>
<td>1123</td>
</tr>
<tr>
<td>Roehrig, John T.</td>
<td>648</td>
</tr>
<tr>
<td>Rose, Noel R.</td>
<td>930, 975</td>
</tr>
<tr>
<td>Routes, John M.</td>
<td>715</td>
</tr>
<tr>
<td>Rubenstein, Richard</td>
<td>682</td>
</tr>
<tr>
<td>Salem, Dalia A. A.</td>
<td>226</td>
</tr>
<tr>
<td>Sanoja, Luzalba</td>
<td>235</td>
</tr>
<tr>
<td>Santos, Carah B.</td>
<td>815</td>
</tr>
<tr>
<td>Sarwal, Minnie M.</td>
<td>1132</td>
</tr>
<tr>
<td>Satoh, Minoru</td>
<td>878</td>
</tr>
<tr>
<td>Scher, Howard L.</td>
<td>1051</td>
</tr>
<tr>
<td>Schmid, D. Scott</td>
<td>550, 556</td>
</tr>
<tr>
<td>Schmitz, John L.</td>
<td>412, 537</td>
</tr>
<tr>
<td>Schroeder, John T.</td>
<td>801</td>
</tr>
<tr>
<td>Sen, H. Nida</td>
<td>998</td>
</tr>
<tr>
<td>Seroogy, Christine</td>
<td>721</td>
</tr>
<tr>
<td>Shacklett, Barbara L.</td>
<td>290</td>
</tr>
<tr>
<td>She, Rosemary</td>
<td>453</td>
</tr>
<tr>
<td>Shirley, R. Sue</td>
<td>902</td>
</tr>
<tr>
<td>Sigdel, Tara K.</td>
<td>1132</td>
</tr>
<tr>
<td>Sikorski, Paul</td>
<td>1091</td>
</tr>
<tr>
<td>Simecka, Jerry W.</td>
<td>444</td>
</tr>
<tr>
<td>Slater, Jay E.</td>
<td>784</td>
</tr>
<tr>
<td>Smieja, Marek</td>
<td>598</td>
</tr>
<tr>
<td>Smith, Richard J. H.</td>
<td>138</td>
</tr>
<tr>
<td>Smith, R. Neal</td>
<td>376, 385</td>
</tr>
<tr>
<td>Snyder, Melissa R.</td>
<td>983</td>
</tr>
<tr>
<td>Sokoll, Lori J.</td>
<td>1008</td>
</tr>
<tr>
<td>Sokolove, Jeremy</td>
<td>922</td>
</tr>
<tr>
<td>Soma, Lori</td>
<td>217</td>
</tr>
<tr>
<td>Speicher, David J.</td>
<td>598</td>
</tr>
<tr>
<td>Steck, Andrea K.</td>
<td>930</td>
</tr>
<tr>
<td>Sterl, Maryalice</td>
<td>226</td>
</tr>
<tr>
<td>Stone, James R.</td>
<td>376</td>
</tr>
<tr>
<td>Stone, John H.</td>
<td>917</td>
</tr>
<tr>
<td>Suthanthiran, Manikkam</td>
<td>1132</td>
</tr>
<tr>
<td>Sutherland, D. Robert</td>
<td>168, 182</td>
</tr>
<tr>
<td>Sykes, Elizabeth</td>
<td>89</td>
</tr>
<tr>
<td>Tan, Carmela D.</td>
<td>1123</td>
</tr>
<tr>
<td>Tang, Yi-Wei</td>
<td>538</td>
</tr>
<tr>
<td>Thielsch, Steffen</td>
<td>133</td>
</tr>
<tr>
<td>Tsolis, Renee</td>
<td>473</td>
</tr>
<tr>
<td>Van Bergen, Jeroen</td>
<td>1150</td>
</tr>
<tr>
<td>Van Leer-Luers, Coretta</td>
<td>620</td>
</tr>
<tr>
<td>Vashista, Priyanka</td>
<td>357</td>
</tr>
<tr>
<td>Vega, Renato</td>
<td>1091</td>
</tr>
<tr>
<td>Verbiest, James W.</td>
<td>715</td>
</tr>
<tr>
<td>Verghese, Priya S.</td>
<td>563</td>
</tr>
<tr>
<td>Vidriales, María Belén</td>
<td>235</td>
</tr>
<tr>
<td>Waites, Ken B.</td>
<td>444</td>
</tr>
<tr>
<td>Walker, David H.</td>
<td>461</td>
</tr>
<tr>
<td>Walsh, Noreen M.</td>
<td>909</td>
</tr>
<tr>
<td>Wang, Guiping</td>
<td>419</td>
</tr>
<tr>
<td>Wang, Jian</td>
<td>930</td>
</tr>
<tr>
<td>Warren, Jeffrey S.</td>
<td>54</td>
</tr>
<tr>
<td>Weinberg, Adriana</td>
<td>263</td>
</tr>
<tr>
<td>Whiteside, Theresa L.</td>
<td>296, 1036</td>
</tr>
<tr>
<td>Wilkins, Patricia P.</td>
<td>486</td>
</tr>
<tr>
<td>Wills, Hugh J.</td>
<td>961</td>
</tr>
<tr>
<td>Wolskiowski, Thomas</td>
<td>682</td>
</tr>
<tr>
<td>Wood, Brent</td>
<td>217</td>
</tr>
<tr>
<td>Wood, Robert A.</td>
<td>815</td>
</tr>
<tr>
<td>Yu, Liping</td>
<td>930</td>
</tr>
<tr>
<td>Yuan, Constance M.</td>
<td>226</td>
</tr>
<tr>
<td>Zachary, Andrea A.</td>
<td>1091</td>
</tr>
<tr>
<td>Zeevi, Adriana</td>
<td>1108</td>
</tr>
<tr>
<td>Zhang, Qiheng Jennifer</td>
<td>1065</td>
</tr>
</tbody>
</table>
AABB (American Association of Blood Banks), 1172
AAE (acquired angioedema), 756–757
ABB (American Board of Bioanalysis), 1174
ABCC (American Board of Clinical Chemistry), 1174
ABFT (American Board of Forensic Toxicology), 1174
ABHI (American Board of Histocompatibility and Immunogenetics), 1172
ABI SOLiD system, 20
ABMG (American Board of Medical Genetics), 1172
ABMLI (American Board of Medical Laboratory Immunology), 1172
ABMM (American Board of Medical Microbiology), 1172
Absolute cell counting, in polychromatic flow cytometry, 155
ACA (anticentromere antibody), 888–889
Acanthamoeba, 489
Accreditation of clinical immunology laboratory, 1176–1177
Accuracy, 1183–1184
Acetylcholine, 954–956
Acetylcholine receptor, 954–958
Acetylcholine receptor antibodies, 954–958
Acetylcholinesterase, 957
aCGH (array comparative genomic hybridization), 745
ACIF (anticomplement immunofluorescence assay), for human herpesvirus-6, 582–583
Acoustic radiation, 151
ACPA. See Anti-cyclic citrullinated peptide antibody
Acquired angioedema (AAE), 756–757
Acrocyanosis, cryoglobulins and, 101–102
Acrodermatitis chronica atrophicans, Lyme, 421
Activated partial thromboplastin time (APTT), 906–907
Activation-induced deaminase (AID), 59, 740
Active cell movement, signal transduction and, 351
Acute erythroid leukemia, 220
Acute glomerulonephritis, poststreptococcal, 394–395, 397, 399–401
Acute lymphoblastic leukemia (ALL), diagnosis, 207–212
flow cytometry immunophenotyping, 207–214
immunophenotypic-genotypic and prognostic correlations, 212
minimal residual disease (MRD), 207–209, 212–214
Acute megakaryoblastic leukemia, 220
Acute monocytic leukemia (AMoL), 220, 1028–1029
Acute motor axonal neuropathy (AMAN), 961–962, 964
Acute myeloid leukemia (AML), antigens associated with diagnosis of, 218
diagnosis, 207–212
biology of, 218
classification, 218–220
diagnostic sample preparation and evaluation, 220–222
data acquisition, 221
data analysis, 221
reagent panels, 221
reporting, 221–222
specimen requirements and processing, 220–222
epidemiology, 218
minimal residual disease, 222–223
data acquisition and evaluation, 222–223
reporting, 223
specimen requirements, processing, and reagent panels, 222
normal myeloid maturation and antigen expression, 217–218
overview, 217–220
Acute myocardial injury, 975–976
Acute-phase reaction, 81–82
Acute promyelocytic leukemia (APL), 220
Acute respiratory tract infections, 598. See also Respiratory viruses
Acute rheumatic fever, 394–395, 397–401
ADA, 301, 306
Adalimumab, 361
ADCC (antibody-dependent cellular cytotoxicity), 1156
ADCCs (antibody-dependent cellular cytotoxicity), 1156
Addison disease antibodies to adrenal antigens, 931–932
clinical manifestations, 931
indirect IF test for adrenal autoantibodies, 931–932
prevalence, 931
Addressable laser bead immunoassay (ALBIA), 862–863
Adenosine, extracellular, 298
Adenoviridae, 640
Adenoviruses, 598, 644–645
clinical significance, 600–602, 644
description of agents, 599
detection and characterization, 645
direct fluorescent antibody (DFA), 603
epidemiology, 600
gastroenteritis, 644
genome, 644
proteins, 644–645
rapid diagnosis, 539
species, 645
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600
Adhesion assays, 350
Adhesion disorders, 767–771
Adhesion molecules, allograft rejection and, 1132
Adult T-cell leukemia/lymphoma, 1026
human T-cell lymphotropic virus, 674–675
immunophenotype of, 228
Affinity maturation, 59, 67
African sleeping sickness, 489
African tick bite fever, 463–464
African trypanosomiasis, 489
Adenoid cystic carcinoma
CSF samples, 98–99
monoclonal gammopathies, 115
protein identification, 77
reference ranges, 77
serum proteins, 83
urology, 85–86, 97
Age-related macular degeneration (AMD), 100, 127, 749
Agglutination, rheumatoid arthritis testing, 900
Agreement, 1184
Agrin, antibodies against, 958–959
AH50 assay, 749–751, 752–753
analytical concerns, 753
controls, 752–753
interpretation, 754
materials and reagents, 752
pitfalls and troubleshooting, 753
Alere q HIV-1/2 Detect, 702
ALCL.
Albumin, 301
Airway challenges, 810–811
See ALL.
Acute lymphoblastic leukemia
ALK protein, 1027
AIDS Clinical Trial Group, 1184
Allergen extracts
AID (activation-induced deaminase), 60, 59, 74
Aichivirus A, 640
aHUS (atypical hemolytic-uremic syndrome), 1196
hypereosinophilic syndromes (HES), 783, See food.
Food allergy
eosinophilic gastrointestinal diseases (EGID), 783, 829–831
Alveolar echinococcal disease, 493
Alternative splicing, 58
American Board of Medical Microbiology
American Board of Medical Laboratory
American Board of Medical Genetics
American Board of Histocompatibility and
American Board of Forensic Toxicology
American Board of Clinical Chemistry
American Board of Bioanalysis (ABB), 1172
American Board of Bioanalysis (ABB), 1172
American Board of Clinical Chemistry
(ABBC), 1174
American Board of Forensic Toxicology
(AFBT), 1174
American Board of Histocompatibility and
Immunogenetics (ABHI), 1172
American Board of Medical Genetics
(ABMG), 1172
American Board of Medical Laboratory
Immunology (ABMLI), 1172
American Board of Medical Microbiology
(ABMM), 1172
American Osteopathic Association (AOA), 1172
American Society for Histocompatibility and
Immunogenetics (ASHI), 1075, 1172
Amino acid structure, 74–75
7-Aminoacetoxyquinolin D (7-AAD), 158, 187–191, 270–271
AML. See Acute myeloid leukemia
Ammonium chloride-based lysing agents, 191
AMoL (acute monocytic leukemia), 220
Amplifiler HIV-1 Monitor, 705
AMR (antibody-mediated rejection), 1123–1129
Amyloidosis
acute lymphocytic [AL]-type
electrophoresis pattern, 82
free light chain assay, 68–69
primary (light chain), 235
cardiac, 381
diagnosis, 116–119
immunofixation electrophoresis, 116–117
monoclonal gammopathy, 113–114–119, 121
Anakinra, 361–362
Analbuminemia, 77
Analog-to-digital converters (ADCs), 153
Analyze specific reagents, FDA regulation of, 1175
Analytical accuracy, 1184
Analytical sensitivity and specificity, 1186
Anaphylaxis, food allergy, 818–819, 821
Anaplasma
A. phagocytophilum, 462–464, 466, 468–469
epidemiology, 462
laboratory diagnosis, 465–469
immunodiagnosis, 466
interpretation, 468–469
molecular diagnosis, 467–468
pathobiology, 464
taxonomy, 461–462
Anaplastallamaeaceae, 461–462
Anaplastic large-cell lymphoma (ALCL), 1017, 1027
immunophenotype of, 228
translocation, 1020
ANCA. See Antineutrophil cytoplasmic antibodies
Andes hantavirus, 658, 661, 663
Androgen receptor gene copy amplifications, 1052, 1057
Anemia, pernicious, 932–933
Antibody.
See also specific antibody
Antibiotic spikes on capillary electrophoresis, 187–191, 270–271
sandwich ELISA, 789–790
tests of overall potency, 790–791
basophil activation, 791
ELISA inhibition (competition ELISA), 791
flow cytometry, 791
RAST inhibition, 790–791
in vitro assessments of antibody potency, 789–790
in vivo assessments of antibody potency, 785, 787–788
Allergen immunotherapy, 784
Allergic bronchopulmonary aspergillosis, 80, 515, 785–796
Allergic diseases
eosinophilic gastrointestinal diseases (EGID), 783, 829–831
food. See Food allergy
hypereosinophilic syndromes (HES), 783, 825–829
immunoassays, 783, 795–800
inflammation. See Inflammation, allergic
mast cell disorders, 783, 831–834
Allograft rejection. See Transplant rejection
alpha interferon, assays of, 130–132
ALP, 82
Alpha interferon, 519
Alpha heavy chain, 66–67
alkaline phosphatase, 301
Alzheimer disease, 1027
α-Acid glycoprotein, electrophoresis of, 77, 82
α-Lipoprotein, electrophoresis of, 77
α2-Macroglobulin, electrophoresis of, 78–79, 82
Alphaviruses, 648–649
Alternative pathway, complement, 130–132
Alternative assessment of proficiency (AAP), 1184
Alternative pathway 50% hemolysis (AH50), 1017, 1027
Alphavirus, pernicious, 932–933
Amyloidosis
American Board of Medical Genetics
American Board of Histocompatibility and
American Board of Forensic Toxicology
American Board of Medical Microbiology
American Board of Medical Laboratory
Immunology (ABMLI), 1172
American Board of Medical Microbiology
(ABMM), 1172
American Osteopathic Association (AOA), 1172
American Society for Histocompatibility and
Immunogenetics (ASHI), 1075, 1172
Anaphylaxis, food allergy, 818–819, 821
Anaplasma
A. phagocytophilum, 462–464, 466, 468–469
epidemiology, 462
laboratory diagnosis, 465–469
immunodiagnosis, 466
interpretation, 468–469
molecular diagnosis, 467–468
pathobiology, 464
taxonomy, 461–462
Anaplastallamaeaceae, 461–462
Anaplastic large-cell lymphoma (ALCL), 1017, 1027
immunophenotype of, 228
translocation, 1020
ANCA. See Antineutrophil cytoplasmic antibodies
Andes hantavirus, 658, 661, 663
Androgen receptor gene copy amplifications, 1052, 1057
Anemia, pernicious, 932–933
Angioedema, 127
Angioimmunoblastic T-cell lymphoma (AILT), 228, 1020
Angiotensin II type I receptor (ATIR), 1103–1104
Animal models
autoimmune reactivity within retina, 998
chemokines and chemokine receptors in development and disease, 353
Annexin V, 270
Anti-A-carbohydrate test, 401
Anti-α-carboxyglutamic acid receptor antibodies, 954–958
acceleration of α-carboxyglutamic acid receptor degradation, 956
effector mechanisms of, 956
properties, 954–956
receptor blockade by, 956–957
Antibiotic spikes on capillary electrophoresis, 75–76
Antibody. See also Immunoglobulin; specific antibody
diversity, generation of, 59
functional assays, 261, 280–288
multiplexed opsonophagocytic killing assay (MOPA4) for functional antibodies against Streptococcus pneumoniae, 283, 288
opsonophagocytosis assays (OPAs), 282–283
serum bactericidal assay for functional antibodies against Haemophilus influenzae type b, 284
functions, 282
half-antibodies, 918
humoral response in transplantation, 1091–1101
opsonization by, 282
reagents in polychromatic flow cytometry, 157–158
titration in polychromatic flow cytometry, 159, 161
Antibody assays
asparaginase, 515
blastomycosis, 517
candidiasis, 518
in cryoglobulinemia, 105
Antibody avidity
human herpesvirus-6, 583
varicella-zoster virus, 559–560
Antibody deficiencies, 737–746
absent B cells, 738
clinical manifestations, 737
common variable immune deficiency (CVID), 740
defect in immunoglobulin isotype switching, 739–740
evaluation of patients, 737–741
generic analysis, 745–746
direct sequencing, 745
MPLA and ACCH, 745–746
IgA deficiency, 740–741
IgG subclass deficiency, 741
inherited type, 739
laboratory investigation, 741–745
CD40L (CD154) expression for diagnosis of X-linked lymphoproliferative syndrome 1 (XLP1), 743–745
diagnosis of X-linked hyper IgM syndrome (HIGM), 742–743
diagnosis of X-linked antibody deficiency (XLA), 743–745
diagnosis of X-linked lymphoproliferative syndrome 1 (XLP1), 743–745
diagnosis of X-linked lymphoproliferative syndrome 2 (XLP2), 743–745
extended B-cell immunophenotyping, 742–743
flow cytometry, 741
next-generation sequencing, 746
phenotypes, 738
Antibody-dependent cellular cytotoxicity (ADCC), NK cell-mediated, 1156
Antibody detection
African trypanosomiasis, 489
amebiasis, 489
arboviruses, 648, 650–652
babesiosis, 490–491
cryptosporidiosis, 491–492
cyclosporiasis, 492
cysticercosis, 492–493
cytomegalovirus, 572–573
echinococcosis, 493
Epstein-Barr virus, 567–568
fascioliasis, 494
fungal infections, 504–505
giardiasis, 495
human herpesvirus-6, 581–582
leishmaniasis, 495
paragonimiasis, 496
parasitic infections, 486–488, 492
schistosomiasis, 496
strongyloidiasis, 496–497
toxocariasis, 497
toxoplasmosis, 497–498
trichinellosis, 498
Antibody-mediated rejection (AMR), 1123–1129
Antibody microarrays, 29
Antibody screens, in evaluation of humoral response to transplantation
advantages and disadvantages of, 1093
assay characteristics, 1093
interpretation, 1097
overview, 1093
quality control, 1095–1096
Antibody-secreting memory B cells, 615
Antibody titration, with polychromatic flow cytometry, 159, 161
Anti-C5a peptidase antibodies, 401
Anti-calpastatin antibody, 899
Anticardiolipin assay, 907
Anticellular antibody, 843
Anticentromere antibody (ACA), 888–889
Anticoagulant, choice in cryofibrinogenemia testing, 108–109
Anticomplement immunofluorescence assay (ACIF), for human herpesvirus-6, 582–583
Anticyclic citrullinated peptide, in rheumatoid arthritis, 347
Anticyclic citrullinated peptide antibody (ACPA), 897–902, 923
clinical significance, 899
combined ACPA and RF testing, 902
Anticytokine autoantibodies, 897–902, 923
detection, 365–368
enzyme-linked immunosorbent assay (ELISA), 365, 367–368
immunoblotting, 367–368
luciferase immunoprecipitation systems (LIPS), 367–368
Luminex, 367–368
protein array, 367–368
radioimmunoassays (RIA), 367–368
diseases associated with, 365–366
functional assays, 369
isotype and subclass analysis, 369
titer, 369
Anti-deaminated gladin antibodies, 984–985
Anti-DNase B test, 399–400
Anti-dsDNA antibodies, 868, 873–874
Antityrropolypoenit autoantibodies, 323
Anti-FBG (thrombin binding globulin), 899
Anti-filaggrin, 898–899
Antigen assays
influenza virus, 604
respiratory syncytial virus, 604
antenegative binding site, 67
Antigen capture ELISA, for arboviruses, 652
Antigen detection
adenoviruses, 645
arboviruses, 652–653
asparaginase, 515–516
candidiasis, 8–9
cryptosporidium, 105
cytoplasmin, 491
caestevirus, 493
cytoplasminogevirus, 572
fungal infections, 506
hepatitis C virus, 628–629
histoplasmosis, 525–526
human herpesvirus-6, 580–582
noroviruses, 642
parasitic infections, 488, 489, 490
rotaviruses, 640
saposin, 642
Antigen-driven proliferation, immunologic
Antigen microarrays, 29–30
Antigen-presenting cells (APCs), 1028
allograft rejection, 1132
intracellular cytokine staining (ICS) assay, 338–339
T cell activation, 269
Antigens, for autoantibody detection, 860–861
production of recombinant proteins, 860–861
purification of autoantigens, 860
purification of recombinant proteins, 861
Rosetta bacteria for production of large recombinant proteins, 861
use of natural autoantigens, 860
use of peptide antigens, 860
Anti-gludin antibodies, 984–985
Anti-glomerular basement disease, 911
Anti-glomerular basement membrane antibodies, Western blot analysis of, 385–387
Antiglycolipid antibodies, 961–964
Anti-GM1 ganglioside IgM antibodies, 961–962, 964
Anti-granulocyte-macrophage colony stimulating factor autoantibodies and pulmonary alveolar proteinosis, 323
Anti-hyaluronidase test, 400
Anti-IFN-γ autoantibodies and opportunistic infection, 323
Anti-keratin antibody, 898–899
Anti-Ku antibody, 891
Anti-La (SS-B) antibodies, 869
Anti-MCV (mutated citrullinated vimentin), 899
Antimitochondrial autoantibodies, 966–969
Anti-M-protein test, 401
Anti-myelinated-associated glycoprotein, 961
Anti-NADase test, 401
Antinuclear antibodies, Western blot analysis of, 897–902, 923
Antinuclear antibody tests, 843–857
in scleroderma/systemic sclerosis, 888–895
Antinuclear antibody tests, 843–857
NIIF-ANA patterns, 849–857
decision-tree algorithm for classification, 856
disease associations, 854
interpretation of IIF-ANA test, 852–857
LE cell test, 843–844
limitations, 855
methodological platforms, 843–845
automated readers for IIF-ANA assay, 844
enzyme-based HEp-2 cell ANA, 844
indirect immunofluorescence assay on HEp-2 cells, 843–845
solid-phase ANA, 844–845
negative test, meaning of, 852
positive test
meaning of, 852–853
without clinical evidence of systemic autoimmunity, 853–855
quality control, 855, 859
reading IIF-ANA slides, 849–852
report of IIF-ANA test, 849, 852–857
strategy for ordering, 855
technical recommendations, 846–849
assay procedure, 846–849
cell substrate, 846
controls, 846
dark room, 849
first washing, 847
incubation with conjugate, 847–848
microscopy, 848–849
primary antibody incubation, 847
sample dilution, 846
samples, 846
second washing and coverslip mounting, 848
standard operating procedure, 846
workspace, 846
to order, 852
two-tier serologic testing algorithm, 423
Western blt, 422–423, 425
taxonomy of Lyme
Borrelia, 419–420
transmission, 421
Borrelia, 1066, 1099
Bovine spongiform encephalopathy (BSE), 682, 684–686, 691
Bowtie alignment program, 1086
Boyden chamber, 349
B-prolymphocytic leukemia, 226
Brachyspiraceae, 419
BRAF gene, 1028
Brain-abundant membrane-attached signal protein 1 (BASP1), 1137–1138
Breast cancer
biomarkers, 922
circulating tumor cells, 1052, 1054, 1056–1057
Breastfeeding, human T-cell lymphotropic virus transmission by, 675
Brefeldin A, 160, 339
disease (CGD) and, 770
Boyden chamber, 349
Bowtie alignment program, 1086
Bortezomib, 1066, 1099
deficiency, 127, 132, 754, 757–758
circulating tumor cells, 1052, 1054, 1056–1057
BASp1, 1137–1138
protein 1 (BASP1), 1137–1138

Biosafety, hantaviruses and, 658, 660–661
Birbeck granule, 1028
Birdshot chorioretinopathy, 998
Bisalbuminemia, 77
Bone marrow transplantation
Bone marrow
See also
Human Bocaparvovirus (genus), 599
BLyS, 923
See B cell
B lymphocyte.

Bocaparvovirus (genus), 599
Bovavirus nephropathy, 347, 1135, 1143
Bisalbuminemia, 77
Birdshot chorioretinopathy, 998
Biosafety, hantaviruses and, 658, 660–661

1200 ■ SUBJECT INDEX
CD11c (continued)
B-cell chronic lymphoproliferative disorders, 227
chronic lymphocytic leukemia (CLL), 226
hairst cells leukemia, 1028
Langerhans cells, 1028
CD13
acute lymphoblastic leukemia, 211–212
acute myeloid leukemia, 217–220
chronic lymphocytic leukemia (CLL), 226
CD14
acute lymphoblastic leukemia, 212
acute myeloid leukemia, 217–218, 220
in assays for PNH, 172, 174–175, 177
Langerhans cells, 1028
CD15
acute lymphoblastic leukemia, 212
acute myeloid leukemia, 217–220
in assays for PNH, 171–172, 175, 177–178
Hodgkin’s lymphoma, 1027–1028
CD15s deficiency
CD16
acute myeloid leukemia, 217–218
in assays for PNH, 172–173
NK cell defects, 776, 779
NK cells, 300–301, 305–306
T-cell chronic lymphoproliferative disorders, 228
CD18, 150, 749
deficiency, 201
leukocyte adhesion deficiency (LAD), 770–771
CD19
acute lymphoblastic leukemia, 207–208, 210, 212–213
acute myeloid leukemia, 217–219
B-cell chronic lymphoproliferative disorders, 227
B cells, 280–281
chronic lymphocytic leukemia (CLL), 226–229, 232
deficiency, 740
human herpesvirus-8, 586–587
plasma cells, 239–246
T cell lymphoblastic lymphoma, 1021
CD20
acute lymphoblastic leukemia, 207–208, 210, 212–213
B-cell chronic lymphoproliferative disorders, 227
B cells, 280–281
chronic lymphocytic leukemia (CLL), 226–227, 229
Hodgkin’s lymphoma, 1028
plasma cells, 239–240, 243
removal by pronase treatment of cells, 1099
T cell lymphoblastic lymphoma, 1021
tissue rejection and, 1137
CD21, 563, 1028
CD22
acute lymphoblastic leukemia, 208–210, 212
B-cell chronic lymphoproliferative disorders, 227
chronic lymphocytic leukemia (CLL), 226, 229
CD23
B-cell chronic lymphoproliferative disorders, 227
B-cell lymphomas, 1023
B cells, 281
chronic lymphocytic leukemia (CLL), 226, 229
dendritic cells, 1028
CD24, in assays for PNH, 172–173, 175, 177
CD25
acute lymphoblastic leukemia, 212
B-cell chronic lymphoproliferative disorders, 227
chronic lymphocytic leukemia (CLL), 226
daclizumab (anti-CD25 antibody), 299
deficiency, 723, 727–728
mast cells, 811–833
T-cell chronic lymphoproliferative disorders, 228
T-cell lymphomas, 1026
Treg cells, 296–298
CD25high, 275, 298
CD27
B cells, 281
lymphocytic variant hypereosinophilic syndrome, 828
plasma cells, 239–242, 245–246
CD28, plasma cells, 239–240, 242, 244
CD30
Hodgkin’s lymphoma, 1028
T-cell lymphomas, 1027
CD33
acute myeloid leukemia, 217–220, 223
in assays for PNH, 171–172
chronic lymphocytic leukemia (CLL), 226
plasma cells, 239–240
CD34/CD34+ cells, 147
acute lymphoblastic leukemia, 207–211
acute myeloid leukemia, 217–219, 222–223
flow cytometry quantification, 150
hematopoietic stem cells enumeration, 182–196
benefits, 190–191
CD34+ cell subsets in backup marrow, 196
clinical issues, 183
clinical utility, 195–196
commercial kits based on ISHAGE guidelines, 187–190
controls for rare-event detection, 184
early methods, 183
graft assessment, 183
immunological characterization of CD34+ stem cells, 193–195
ISHAGE protocol, basic, 185
ISHAGE single-platform with viability assessment, 185–187
lyzing agents, 191
negative antibody controls, 191
quality assurance, 191
sequential Boolean gating, 184–185
simultaneous CD34 and CD34+ cells, 192–193
single-platform absolute CD34+ count, 185
statistical issues in rare-event detection, 183–184
technical issues, 184
CD34 Count Kit (Dako), 188–189
CD35, 130–131, 138, 749
CD36, acute myeloid leukemia, 218, 220
CD38
acute lymphoblastic leukemia, 207, 209
acute myeloid leukemia, 217, 219–220, 222–223
B-cell lymphomas, 1024
chronic lymphocytic leukemia (CLL), 226, 232
plasma cells, 236, 238–240, 242, 246–247
CD39, Treg cells, 296–298
CD40, X-linked hyper IgM syndrome (XHIM), 742–744
and, 726
CD40L
expression for diagnosis of X-linked hyper IgM syndrome (XHIM), 742–744
as marker of T cell activation, 269–270, 275
CD40 ligand deficiency screens, 201–203
CD43, chronic lymphocytic leukemia (CLL), 226, 229
CD45
acute lymphoblastic leukemia, 207–214
acute myeloid leukemia, 217–222
in assays for PNH, 175, 178
B-cell lymphomas, 1024
chronic lymphocytic leukemia (CLL), 226, 229
in flow cytometry of hematopoietic stem cells, 183–195
plasma cells, 239–242, 245–246
CD46, 130–131, 138–139, 141, 580, 749, 1124
CD54, 155, 238–240, 239
CD55, 131, 138–139, 141, 749
absence in PNH, 168–169
in assays for PNH, 170
flow cytometry quantification, 150
CD56
acute myeloid leukemia, 218–219, 223
NK cell defects, 777
NK cells, 300–301, 305
plasma cells, 239, 242
T-cell chronic lymphoproliferative disorders, 228
T-cell lymphomas, 1027
CD56high, 300
CD56low, 300, 303–305
CD57, T-cell chronic lymphoproliferative disorders, 228
CD57high, 305
CD68, 301, 303–305
CD69, T-cell chronic lymphoproliferative disorders, 228
CD69high, 305
CD69low, 305
CD7, T-cell chronic lymphoproliferative disorders, 228
CD71, acute myeloid leukemia, 220
CD62L, 155
in cryoprotected peripheral blood mononuclear cells, 266
NK cells, 300
CD63, as basophil surface activation marker in allergy, 791, 806, 821
CD64, 32–33
acute lymphoblastic leukemia, 212
in assays for PNH, 171–172, 175, 177–178
CD65, in acute lymphoblastic leukemia, 211
CD66b, in assays for PNH, 172–173
CD68, 1127
CD69
as basophil surface activation marker in allergy, 806
as marker of T cell activation, 269, 275
NK cells, 301, 305
X-HIOM screening, 731–732
CD71, acute myeloid leukemia, 217–218, 220
CD73, 298
CD79a, 52, 209, 212
B-cell lymphomas, 1024
T-cell lymphoblastic lymphoma, 1021
CD79b, 52
B-cell chronic lymphoproliferative disorders, 227
chronic lymphocytic leukemia (CLL), 226, 229
CD123, acute myeloid leukemia, 217–218
CD117
CD107b, 275
CD107, detection in intracellular cytokine staining (ICS) assay, 338
NK cell defects, 779
as surrogate of degranulation in T cell and NK cell cytotoxicity, 204–205
CD107a, 275
CD11
acute lymphoblastic leukemia, 211
acute myeloid leukemia, 217–220, 222
plasma cells, 239–240, 242, 244, 246–247
CD123, acute myeloid leukemia, 217–218
CD127™, 275
CD13
acute myeloid leukemia, 217
flow cytometry quantification, 151
CD138 (syndecan 1), 236, 238–242, 245–247, 281
CD14
detection in intracellular cytokine staining (ICS) assay, 338–339
as marker of T cell activation, 269
X-HIGM screening, 721–732
CD15, in assays for PNH, 172–173, 175, 177, 179–180
CD20
chronic lymphocytic leukemia (CLL), 226, 229
plasma cells, 239–240, 242–244
CD203c, as basophil surface activation marker in allergy, 791, 806, 821
CD229, plasma cells, 236, 238–240, 239
CD235 (glycoporphin A), 169–171, 220
CD279, T-cell lymphomas, 1026
CD30, plasma cells, 239–240
CD319, plasma cells, 236, 238–240
CDAC (cold-dependent activation of complement), cryoglobulinemia and, 101, 106
CDC. See Centers for Disease Control and Prevention
CDC assay. See Complement-dependent cytotoxicity (CDC) assay
cDNA, 8, 335
cDNA microarray
lymphoma, 1020, 1024–1025
transplant rejection, 1134, 1137
CD83, 57
Celiac disease, 983–986, 988
clinical manifestation, 984
diagnosis, 984–986
anti-deaminated gliadin antibodies, 984–985
anti-gliadin antibodies, 984–985
anti-TG antibodies, 984–985
biopsy, 984–985
endomysial antibodies, 984–985
HLA typing, 984, 986
summary of tests, 985
epidemiology, 983–984
monitoring patients, 986
pathology, 983
quality assurance for clinical testing, 988
testing recommendations, 986
Cell culture. See Culture
Cell death, measuring, 1042
Cell-mediated immunity
food allergy, 815–816
human herpesvirus-6, 580
Cell Quest software, 1044
CellSearch immunomagnetic isolation, 1052–1053, 1056
Cell surface markers, on T cells after activation with mitogenic stimuli, 274, 277
Cellular immune response in transplantation, evaluation of, 1108–1121
division and precursor frequency analysis using multiparameter CFSE-MLC, 1111–1112
data analysis and interpretation, 1112
pitfalls and troubleshooting, 1112
procedure, 1111–1112
clinical applications, 1120–1121
cytokine measurements, 1113–1116
ELISPOT assay, 1113–1114
cellular significance, 1114
pitfalls and troubleshooting, 1114
procedure, 1113–1114
flow cytometry, 1111–1112, 1114–1116
immune cell function assay, 1116–1119
intracellular ATP synthesis assay, 1116–1119
expected values, 1119
interpretation of results, 1118–1119
overview, 1116–1117
procedure, 1117–1118
intracellular cytokine staining (ICS), 1114–1116
data acquisition, 1116
data analysis, 1116
procedure, 1114–1116
troubleshooting, 1116
mixed lymphocyte culture (MLC) assay, 1108–1110
concept, 1108
equipment and instrumentation, 1109
interpretation, 1109
materials and reagents, 1109
mechanics and controls, 1109
MTT method, 1109–1110
pitfalls and troubleshooting, 1109
procedure, 1108–1109
sample requirements, 1108–1109
propagation of lymphocyte cultures from allograft biopsy specimens, 1112–1113
concept, 1112–1113
pitfalls and troubleshooting, 1113
procedure, 1113
T-cell precursor frequency determination by limiting dilution assays, 1110–1111
validation of assays, 1119–1120
analysis of patient and healthy control subject data, 1119–1120
proficiency testing, 1110
quality assurance, 1120
quality control, 1120
statistical evaluation of data, 1119–1120
Cellular infiltrate, chemokines assays, 348
Center for Clinical Standards and Quality (CCSQ), 1172
Centers for Disease Control and Prevention (CDC)
CDC-EITB (CDC-enzyme-linked immunoelectrotransfer blot) assay for cystercerosis, 492–493
guidelines for flow cytometry, 1180
Model Performance Evaluation Program (MPEP), 1177
Centers for Medicare & Medicaid Services (CMS), 1171–1175
Centipoise (cP) unit, 71
Cerebrospinal fluid (CSF)
amyehis, 489
arboviruses, 648, 650, 652, 655
cryptococcosis, 522–523
cysticercosis, 492–493
herpes simplex virus, 505
immunocompetent characterization of immunoglobulins, 98–99
measles viruses, 612
transferrin in, 79
Treponema pallidum, 413–416
Trypanosoma cruzi, 491
Ceruloplasmin, 361
CFB (complement factor B), 140, 142
CFH receptors, 138, 140, 142
CFSE (carboxyfluorescein diacetate succinimidyl ester), 270, 298, 1111–1112
CGD. See Chronic granulomatous disease
CH50 (complement 50% hemolysis), 131–132
CH50 assay, 749–754
analytical concerns, 753
buffer preparation, 751
controls, 752–753
equipment and instruments, 751
interpretation, 753–754
materials, 751
pitfalls and troubleshooting, 753
postanalytical concerns, 753
preanalytical concerns, 753
procedure, 751–752
quality control/quality assurance, 753
reagents, 750–751
sample requirements, 750
sensitized sheep cells, 751
Chagas’ disease, 491
Charge-coupled device (CCD), 150, 165
Chêdiak-Higashi syndrome, 765–767, 771
Chemiluminescence immunoassay (CIA)
cutaneous body detection, 863–864
human immunodeficiency virus (HIV), 698–705
oxidative metabolism disorders, 773–774
systemic sclerosis-related antinuclear antibodies, 892
Treponema pallidum, 414–417
viral infections, 542
Chemokines and chemokine receptors, 323, 343–354
allograft rejection, 1132
assays, 348–353
adhesion assays, 350
animal models, 353
Boydent chamber, 349
cellular infiltrate, 348
for chemokine expression in disease, 347–348
chemotactic response: in vitro assays, 348–351
chemotactic response: in vivo assays, 351–353
imaging, in vivo, 351–353
integran conformation change, 350–351
overview, 348
recruitment assays, 351
signal transduction and active cell movement, 351
Chlamydia trachomatis, 453–458

Chlamydia pneumoniae, 455–457, 600
clinical disease, 455
culture, 456
description of organism, 455
diagnostic testing, 455–457
molecular testing, 457
serology, 454–455
specimen collection, 456

C. psittaci, 457–458

C. pecorum

C. felis

C. abortus

specimen collection, 454
serology, 454–455
recommended laboratory tests, 453–454

serovars, 453

specimen collection, 454

Chlamydophila, 453–458

Chlamydiaceae, 453

Chlamydiaphila trachomatis, 453–455
clinical disease, 453
culture, 454
direct antigen detection, 454
laboratory diagnosis, 453–455
molecular testing, 455
recommended laboratory tests, 453–454
serology, 454–455

Chlamydia, 453–458

Cholangitis, biliary. See Biliary cholangitis

Chorea, streptococcal, 395

Chromatogram, 1080

Chromatographic assay, for prion diseases, 686

Chromobacterium violaceum, chronic granulomatous disease (CGD) and, 767

Chromatin in situ hybridization (CISH), for lymphoma, 1019–1020

Chronic ataxic neuropathy, 961–962, 964

Chronic granulomatous disease (CGD), 14
diagnosis, 772–774
chemiluminescence, 773–774
DHR (dihydrodihydrorhodamine) oxidation, 772–773
myeloperoxidase, 774
NBT (nitroblue tetrazolium) test, 772
functional cellular assays for diagnosis, 262, 310–320
analysis of 99th percentile surface expression by flow cytometry, 316–317
analysis of PMN H2O2 production by flow cytometry of dihydrodihydrorhodamine 123 staining, 310–312
analysis of PMN ROS generation by luminol-enhanced chemiluminescence, 316
histochemical staining of PMN with NBT, 313–314
immunoblot analysis of phox subunits of NOX2, 317–319
isolation and characterization of PMN, 312–313
quantitative analysis of O2 generation using SOD-inhibitable ferriytochrome c reduction, 314–315
interferon-γ (IFN-γ) for, 323
neutrophil dysfunction, 767, 772–774
oxidative burst assay screen for, 204

Chronic lymphocytic leukemia (CLL), 148, 226–232, 1020, 1023–1024
CLL-Z index, 230
diagnosis, 228–229
flow cytometry, 226–232
minimal residual disease, 232
role in diagnosis, 226
role in prognostication, 226–227

Chronic myelocytic leukemia (CML), 1019–1020

Chronic neurogenic pulmonary aspergillosis, 513

Chronic obstructive pulmonary disease (COPD), 601

Chronic sensorimotor demyelinating neuropathy, 961–962

Chronic thyroiditis, 930–931

Chronic sensorimotor demyelinating neuropathy, 961–962

Chronic motor neuropathy, 961–962

Chronic wasting disease (CWD), 682, 684–685, 687, 691–692

CHS1, 771, 767

Churg-Strauss syndrome, 829, 913

CIA. See Chemiluminescence immunoassay

CID. See Combined immunoassay

CIE/CRIE (crossed immunoelectroporesis/crossed radiimmunoelctrophoresis), 790

Circulating tumor cells, 1051–1057

Clinical immunology laboratory accreditation and licensure, 1176–1177

American Society for Histocompatibility and Immunogenetics (ASHH), 1177

College of American Pathologists, 1176–1177

The Joint Commission, 1177

proficiency testing, 1177

crediting agencies and programs, 1178–1179

textured government agencies and regulatory issues, 1171–1175

analyte specific reagents regulation, 1175

Clinical Laboratory Improvement Amendment (CLIA), 1171–1172, 1174–1175

Giard Laboratory Practices (GLP) Regulations, 1175

laboratory-developed tests regulation, 1175

website addresses of governmental agencies, 1173

international issues and agencies, 1171–1175

quality control, 1187–1189

state certifying programs, 1175–1176

California, 1176

New York State, 1176

Washington State, 1175

validation, 1180–1187, 1190

analytical validation, 1056

biomarkers predictive of tumor sensitivity, 1057

clinical qualification, 1056

context of use, 1055–1056

future in the clinic, 1057

molecular characteristics of CTCs, 1056–1057

prognostic and response bioindicator, 1056

detection methods, 1052–1055

agnostic methods, 1054–1055

CellSearch immunomagnetic isolation, 1052–1053, 1056

filtration assays, 1054

flow cytometry, 1054

functional assays, 1054

gene-, transcription-, and translation-based assays, 1054

microfluidic capture, 1054

metastatic process, 1051–1052

morphology and characteristics, 1051–1052

shedding of, 1051

Cirrhosis, electrophoresis pattern in, 80–82

CISH (chromogen in situ hybridization), for lymphoma, 1019–1020

Citrate, in cryophorinemia testing, 108–109

Citrullinated proteins, antibodies against, 898–899

Citrullination, 898

CJD. See Creutzfeldt-Jakob disease

Cladribine, for mastocytosis, 834

Classical NK cell deficiency, 300, 305

Classical pathway, complement, 129–132

Class switching, heavy-chain, 58–59

Class switch recombination (CSR), 58–59

CLEP (Clinical Laboratory Evaluation Program), New York State, 1176

CLIA (Clinical Laboratory Improvement Amendment), 1092, 1171–1172, 1174–1175

Clinical and Laboratory Standards Institute (CLSI), 1174, 1178, 1180, 1186

Clinical immunology laboratory validation, 1180–1187, 1190

Washington State, 1175

New York State, 1176

California, 1176

California, 1176

validation, 1180–1187, 1190
Complement activation (continued)
 polyclonal and monoclonal antibodies to
 C5b-C9, 1124–1126, 1126
 quality control of complement assays,
 1126
 soluble complement products in body
 fluids, 1127–1128
 specific organ transplants, 1126–1127
 types of injury, 1128–1129
Complement activation-related pseudodallergy
 (CARPA), 127
Complement control protein (CCP), 757
Complement deficiency, 749–761
 Complement control protein (CCP), 757
 terminal pathway components, 760–761
 P , 758
 MCP (membrane cofactor protein)
 MASPs (MBL- associated serine proteases),
 lectin pathway, 758–759
 VN (vitronectin), 761
 therapy, 761
 Complement-dependent cytotoxicity (CDC)
 assay, 1065
 advantages and disadvantages, 1094–1095
 assay characteristics, 1093
 general principles, 1094
 quality control, 1095–1096
 Complement factor B (CFB), 140, 142
 Complement factor H, 130, 138–141
 Complement factor I, 130–131, 138–141
 Complement fixation
 advantages, 509
 arboviruses, 651
 aspergillosis, 515
 blastomycosis, 517
 Chlamydia trachomatis, 455
 Chlamydia pneumoniae, 456–457
 coccdidioidomycosis, 521
 Coxiella, 466
 disadvantages, 509
 equipment, 510
 fungal infections, 509–512
 histoplasmosis, 524–525
 IgG and, 66
 IgM and, 66
 materials, 510
 measles viruses, 611–613
 mumps virus, 615
 Mycoplasma pneumoniae, 445
 paracoccidioidomycosis, 526
 procedure, 510–512
 reagent preparation and standardization,
 510
 titration of guinea pig complement,
 510–511
 reading and interpretation of reactions,
 511–512
 rubella virus, 616–617
 sample requirements, 510
 theory, 509–510
 Trypanosoma cruzi, 491
 Complement receptor 1 (CR1), 130–131,
 138–139, 749, 759, 761, 1124–1125
 Complement receptor 3 (CR3), 749
 Composite tissue grafts, complement
 activation products in, 1127
 Comprehensive leukocyte
 immunophenotyping panel (CLIP),
 162–163
 Congenital rubella syndrome, 616
 Congestive heart failure, 976–977
 Constant (C) region, immunoglobulin, 53,
 66–67
 Coombs tests, for Brucella, 478
 COPD (chronic obstructive pulmonary
 disease), 601
 COR1A mutation, 725
 Coronaviridae, 599
 Coronavirus (genus), 599
 Coronaviruses. See Human coronaviruses
 Coxillia burnetti, 461–468
 epidemiology, 462, 464
 laboratory diagnosis, 465–468
 immunodiagnosis, 466–467
 molecular diagnosis, 468
 pathobiology, 464–465
 taxonomy, 461–462
 Coxillaeae, 461–462
 CFE. See Cytopathic effect
 cPRA (calculated panel- reactive antibody),
 1065
 CR1 (complement receptor 1), 130–131,
 138–139, 749, 759, 761, 1124–1125
 CR3 (complement receptor 3), 749
 CR3 release assay, 776–779
 CRAB criteria, 235
 C-reactive protein
 complement components bound to, 1128
 electrophoresis, 79, 82, 86
 as rheumatoid arthritis biomarker, 922,
 924
 Creatine kinase MB, 975–976
 Cerebral spinal fluid
 Crohn's disease, 362, 985–988
 Kinetoplast staining assay,
 Crithidia luciliae
 Crimean- Congo hemorrhagic fever virus,
 651
 Credentialing agencies and programs,
 1094
 Creatine kinase MB, 975–976
 Cr51 release assay, 776–779
 CR3 (complement receptor 3), 749
 CR1 (complement receptor 1), 130–131,
 138–139, 749, 759, 761, 1124–1125
 CR1 (complement receptor 1), 130–131,
 138–139, 749, 759, 761, 1124–1125
 CR3 (complement receptor 3), 749
 CR3 release assay, 776–779
 CRAB criteria, 235
 C-reactive protein
 complement components bound to, 1128
 electrophoresis, 79, 82, 86
 as rheumatoid arthritis biomarker, 922,
 924
 Creatine kinase MB, 975–976
 Cerebral spinal fluid
 Crossmatching, 1065, 1128
 advantages and disadvantages of, 1093
 assay characteristics, 1093
 endothelial cell (EC), 1105
 interference, 1099–110
 overview, 1093
 quality control, 1095–1096
 reactivity strength, 1099
 test interpretation, 1099
 virtual, 1065, 1097–1099
 Crowd, 601
 Crow- Fukase syndrome, 115. See also POEMS
 syndrome
 Cryocrystaloglobulins, 102
 Cryptobriginenemia, 106–110
 anticoagulant choice, 106–108
 description, 106–107
 disease association, 106–108
 examples, 107–108
 testing considerations, 107
 testing procedures, 108–110
 Cryoglobulin formation, 107–108
 Cryoglobulin(s), 101–106
 classification of, 101–102
 clinical significance, 101–102
 electrophoresis, 76
 mixed, 101–102
 monoclonal, 101–102
 polyclonal, 101–102
 simple, 101–102
 testing, 102–106
 antibody assays, 105
 antigen assays, 105
 complement measurement, 105–106
 concentration determination, 103
 isolation, quantitation, and
 characterization, 102–105
 nucleic acid detection, 105
 procedure, 102–106
 Cryoglobulinemia, 95, 101–106
 complement measurement, 105–106
 description, 101
 diseases associated with, 101–102
 laboratory abnormalities in, 101, 103
 monoclonal gammopathy, 113
 testing for, 102–106
 types, 101
 Cryopreservation of peripheral blood
 mononuclear cells, 261, 263–267
 clinical uses, 263
 functional assays using cryopreserved
 PBMC, 264–265
 cytokine-based assays, 264–265
 cytotoxic assays, 264
 proliferative assays, 264–265
 surface markers on cryopreserved PBMC,
 265–267
 B-cell functional assays, 266–267
 immunophenotyping by flow cytometry,
 265–266
 mRNA quantification assays, 267
 TCR Vβ repertoire, 266
 technical aspects, 263–264
 thawing of frozen PBMC, 263–264
 transportation of frozen PBMC, 263
 Cryptococcosis, 506, 522–523
 clinical indications and diagnostic
 rationale, 545–549, 555, 663
 enzyme immunoassay (EIA), 523
 lateral flow assay, 523
 latex agglutination, 522
 Cryptosporidiosis, 491–492
 CSF. See Cerebrospinal fluid
 CSR (class switch recombination), 58–59
Delta heavy chain, 66–67
Delacrevirus (genus), 674
Dendritic cells, 1023
in allergic conditions, 801, 807
follicular, 1028
interdigitating, 1028
interferon alpha production, 807
Langerhans cells, 1028
proliferative histiocytic lesions, 1028
Dengue virus, 648–653
Denileukin diftitox, 299
Dermatitis herpetiformis, 984
Dense deposit disease, 140, 142–143
Denys-Drash syndrome, 713
DiGeorge syndrome, 713
Diffuse large B-cell lymphoma (DLBCL), 226, 1020, 1024–1025
Difference gel electrophoresis (DIGE), 1054
Dielectrophoretic array, 1054
Dideoxynucleotides (ddNTPs), 5
Dichlorofluorescein diacetate, 204
Diagnostic (clinical) specificity, 1187
Diagnostic (clinical) sensitivity, 1186–1187
Density gradients, in polychromatic flow cytometry, 153
Dermatitis herpetiformis, 984
Desensitization protocols, monitoring, 1100–1101
Detectory efficiency, 153–154
Development, animal models of chemokines and chemokine receptors in, 353
DFA, See Direct fluorescent antibody
DHFR, See Dihydrofolate reductase
Diabetes mellitus
assays
clinical application, 946
electrochemiluminescence (ECL), 942–945
ELISA, 945
epitope assays, 945
interpretation, 945–946
radioassay, 939–942
autoantibodies, 935–946
carboxypeptidase H autoantibodies, 936–937
glutamic acid decarboxylase autoantibodies, 936–946
insulin autoantibodies (IAA), 935–938, 941–945
insulinaemia antigen-2 (IA-2) autoantibodies, 936–941
insulinaemia antigen-2B (IA-2B) autoantibodies, 936–937
islet cell autoantibodies (ICA), 935–939
subclass and isotope determination, 945
zinc transporter-8 (ZnT8) autoantibodies, 936–942
categories, 935–936
Diagnostic accuracy, 1183–1184
Diagnostic (clinical) sensitivity, 1186–1187
Diagnostic (clinical) specificity, 1187
Dichlorofluorescin diacetate, 204
Dideoxynucleotides (ddNTPs), 5
Dielidrofolinotarooytic array, 1054
Difference gel electrophoresis (DIGE), in proteome studies in transplant rejection, 1140, 1142–1143
Diffuse large B-cell lymphoma (DLBCL), 226, 227, 1020, 1024–1025
DiGeorge syndrome, 713
Dihydrofolate reductase (DHFR)
analysis of FMN H2O2 production by flow cytometry of dihydrofolate reductase 123 staining, 310–312
interpretation and limitations, 312
principle, 310
procedure, 311–312
range, 310–311
zinc transporter and normal range, 312
oxidation in oxidative metabolism disorders, 772–773
Dilated cardiomyopathy, 975–978
Dilute Russell Viper Venom time assay, 906
Dimethyl sulfoxide (DMSO), as cryoprotectant, 263
Direct antitriglobulin test, for autoimmune hemolytic anemia, 991
Direct detection
herpes simplex virus, 551–552
viral infections, 538–543
Direct fluorescent antibody (DFA) adenoviruses, 603
Chlamydia trachomatis, 454
cryptosporidiosis, 491–492
enterovirus, 603
Francisella, 479
giardiasis, 495
herpes simplex virus, 552
human metapneumovirus, 603
influenza virus, 603
parainfluenza viruses, 603
Pneumocystis jirovecii, 527
rabies virus, 666, 671
respiratory syncytial virus, 603
respiratory viruses, 603
trichomoniasis, 498
varicella-zoster virus, 558
viral infections, 542
Disease, animal models of chemokines and chemokine receptors in development of, 353
Disseminated tumor cells, 1031–1052
Disulfide bonds, immunoglobulin, 66–67
DLBCL, See Diffuse large B-cell lymphoma
D-L test, for immune hemolytic anemia, 993
DMSO (dimethyl sulfoxide), as cryoprotectant, 263
DNA
ccDNA (covalently closed circular DNA), 624
cDNA, 8, 335, See also cDNA microarray concentration measurement, 1074
detection
Epstein-Barr virus, 569
parovirus B19, 595
double stranded (dsDNA), antibodies to, 873–874
isolation, 5
DNA barcoding. See Barcoding
DNA-dependent protein kinase (DNA-PK), 58
DNA microarray
cDNA microarray in transplant rejection, 1134, 1137
lymphoma, 1020, 1024–1025
DNA polymerase, 1132–1133
DNA repair and recombination, T-cell defects in, 725
ataxia telangiectasia, 722, 725
Omenn syndrome, 722, 725
DNAse(s), 264
DNAse B
anti-DNAse B test, 399–400
DNA sequencing. See Sequencing
Dobrava-Belgrade virus, 660–661, 663
DOCK8 deficiency, 10, 724, 729
Donor-specific antibodies, 1091, 1097, 1100–1101, 1126–1127
Dot ELISA, for arboviruses, 651
double stranded breaks (DSBs), 57–58
double-stranded DNA antibodies, 873–874
preparation, 874
Doublet exclusion, 163
Downey cells, 564, 566
DQBl, 1071, 1081
DRB1 locus, 1066
Droplet digital PCR, for human T-cell lymphotrophic virus, 678
Drug-induced vasculitis, 913
Duck hepatitis virus, 624
DuraClone, 159
Dystrophin, 978
Early T-cell precursors (ETPs), 207, 210–211
Eastern equine encephalitis (EEE), 648–656
EBERs (Epstein-Barr virus-encoded RNA transcripts), 567
EBNA (Epstein-Barr virus nuclear antigens), 563–564, 566–567
Ebola virus, 651
EBV. See Epstein-Barr virus
E-cadherin, 1051
EC (endothelial cell) crossmatch, 1105
Echinococcosis, 493
Echinococcus diagnose, 486–487, 493
E. granulosus, 493
E. multilocularis, 493
ECL assay, See Electrochemiluminescence (ECL) assay
Ecuilizumab, 169, 761
Edrophonium, 957
EDTA, in cryofibrinogenemia testing, 108–109
 Edu (5-ethyl-2'-deoxyuridine), 270, 271, 277
EEE (eastern equine encephalitis), 648–656
EFLM (European Federation of Immunogenetics), 1075
Electrochemiluminescence (ECL) assay
Electrophoresis
Electrophoresis, of rotaviruses, 640–641
Electrophototyping, of rotaviruses, 639–640
Electrolyte disorders, 772–773
Electron microscopy
amebiasis, 489
astroviruses, 642
herpes simplex virus, 551
parovirus B19, 593–594
rotaviruses, 639
varicella-zoster virus, 558
Electropherotyping, of rotaviruses, 639–640
Electrophoresis, 74–87
acute-phase reaction, 81–82
agarose gel. See Agarose gel electrophoresis...
artifacts, 95–96
capillary. See Capillary electrophoresis
chimerism testing, 1162–1163
clinical applications, 85–87
cost of testing, 87
difference gel electrophoresis (DICE),
1140, 1142–1143
false-positive results, 86–87
fuzzy bands, 83–84
immunochemical characterization of
immunoglobulins, 89–99
immunofixation. See Immunofixation
electrophoresis
immunosubtraction. See Immunosubtraction electrophoresis
liver disease pattern, 80–82
monoclonal gammopathies, 112, 115–121
M–spike measurement/quantification,
119–121
nephrotic pattern, 82
oligoclonal banding, 94–95
PAGE. See Polyacrylamide gel
electrophoresis
principles, 74–76
protein analysis, 27–28, 89
protein pattern and, 74
proteome studies in transplant rejection
difference gel electrophoresis (DICE),
1140, 1142–1143
two-dimensional gel electrophoresis
(2DE), 1140, 1142–1143
quality control/assurance, 76–77
internal controls, 77
serum samples, 76–77
urine samples, 77
reference ranges, 76–77
reflex testing for suspicious bands, 83–84
resolution, improvements in, 75
RNA integrity, analysis of, 1133
serum proteins, 65–66, 69–71, 76–84
M protein detection, 82–83
M protein quantification, 83–84
pattern interpretation, 80–84
proteins identified, 77–80
specimen requirements, 76–77
specimen requirements, 76–77
two-dimensional gel electrophoresis (2DE),
103, 1140, 1142–1143
urine proteins, 76–77, 84–86
M protein detection, 84–85
specimen requirements, 77
zone, 75–76
Elimination diets, 818
ELISA. See Enzyme-linked immunosorbent
assay
ELISA inhibition assay, 791
ELISPOT. See Enzyme-linked immunosorbent
spot (ELISPOT) assay
Emerin, 978
emm typing, 396
EMT (epithelial-mesenchymal transition),
1051–1052
Endocaninopathies, 930–949
Endomyssial antibodies, 984–985
Endoplasmic reticulum aminopeptidase
(ERAP) 2 gene, 998
Endosperm, 75
Endothelial cell (EC) crossmatch, 1105
Endothelial cells, 1103–1105
Enhancers, immunoglobulin, 59
α-Enolase, 1000
Entamoeba dispar, 489
Entamoeba histolytica, 489
Entanecrop, for vasculitis, 913
Enteropathy type T-cell lymphoma, immunophenotype of, 228
Enterovirus
clinical significance, 600–602
description of agents, 599
direct fluorescent antibody (DFA), 603
epidemiology, 600
EV-D68, 601–602
rapid diagnosis of, 539
specimen collection, transport, and storage,
602–603
taxonomy, 599
transmission, 600
Enterovirus (genus, 599
Enzyme immunosorbent assay (ELISA)
adenoviruses, 645
antifungal antibody detection, 513–514
antiretroviral antibodies, 1000
aspegillivirus, 515–516
astroviruses, 644
bacteriophages, 517
Borrelia burgdorferi, 422–423
candidiasis, 518–519
Chlamydia trachomatis, 455
Chlamydophila pneumoniae, 456–457
coccidioidomycosis, 521–522
cryptoocoecosis, 523
cryptosporidiosis, 491–492
echinococcosis, 493
Entamoeba histolytica, 489
Epstein-Barr virus, 564, 567–568
fascioliasis, 494
fungal antigen detection, 28
fungal infections, 513–514
giardiasis, 495
hepatitis C virus, 628–629
hepatitis E virus, 633
herpes simplex virus, 552–553
histamine, 801–802
human herpesvirus-6, 581, 583
human herpesvirus-7, 586
human herpesvirus-8, 587
human immunodeficiency virus (HIV),
698–701
leishmaniasis, 495
measles viruses, 611–612
mumps virus, 615
Mycoplasma genitalium, 488
Mycoplasma pneumoniae, 445–446
paragonimiasis, 496
rubella virus, 616–617
strongyloidiasis, 497
systemic sclerosis-related antinuclear
antibodies, 891–893
theory, 513
toxocarasis, 497
toxoplasmiasis, 497
Trypanosoma pallidum, 414–417
trichinellosis, 498
Trypanosoma cruzi, 491
varicella-zoster virus, 559
viral infections, 541–542
Enzyme-linked immunoelectrotransfer blot
(ELITB), for cysticercosis, 492–493
Enzyme-linked immunofluorescent assay (ELISA)
allergy potency testing, 791
allergen testing, 789–790
anticytokine autoantibody detection, 365,
367–368
anti-dsDNA antibodies, 874
antiganglioside antibodies, 963–964
anti-MCV (mutated citrullinated vimentin), 899
antimitochondrial autoantibodies, 967–968
antineutrophil cytoplasmic antibodies
(ANCA), 911
antiphospholipid antibody testing, 907
arboviruses, 648, 650–653
automated liquid-handling systems,
1189–1190
Bartonella, 476
blocking reagent selection, 325–326
Borrelia burgdorferi, 422–423
Brucella, 478
chemokine/chemokine receptor assays, 348
Chlamydophila pneumoniae, 457
Costella, 466
cytokine assays
plate-based micro-ELISAs, 330–331
sequential ELISA, 326–327
traditional ELISA, 324–326
direct, 325
Francisella, 479
glutamic acid decarboxylase autoantibodies,
945
group A streptococci, 401
hantaviruses, 661
Helicobacter pylori, 407–408, 409
herpes simplex virus, 552
histamine, 801–802
human T-cell lymphotropic virus, 676
humoral response in transplantation,
evaluation of, 1093
IgE, 799
IgG4-related disease, 920
immunologic monitoring, 1040, 1045
indirect (sandwich), 325
insulin autoantibodies (IAA), 945
interferon alpha, 807
Leptospira, 429–430
leukotriene C4, 804
liver kidney microsomal antibodies,
970–972
myasthenia gravis, 958–959
non-HLA antibody testing, 1104–1105
parvovirus B19, 594–595
pituitary antibodies, 947
pneumococcal, 283
prion diseases, 686
protein analysis, 28
protein biomarker validation, 1145
rabies virus, 666–667, 670–671
recombinant myositis autoantigens,
885–887
rheumatoid arthritis testing, 900–901
rheumatoid factor measurement by, 898
Rocky Mountain spotted fever, 465
sensitivity and specificity, 325
systemic sclerosis-related antinuclear
antibodies, 892
thryoglobulin antibodies, 930–931
thymoperoxidase antibodies, 930–931
tryptase, 806–807
tuberculosis, 641
validation, 1189
varicella-zoster virus, 558–560
Wuchereria bancrofti, 494
zinc transporter-8 (ZnT8) autoantibodies,
945
Enzyme-linked immunosorbent spot
(ELISPOT) assay
applications of, 292
automated liquid-handling systems,
1189–1190
B-cell functional assays, 266–267
Flow cytometry. See also Polychromatic flow cytometry

acute lymphoblastic leukemia/lymphoma immunophenotyping, 207–214
Fluorescent antibody virus neutralization (FAVN), for rabies virus, 669–670
Fluorescent in situ hybridization (FISH), chimera testing, 1164–1165
lymphoma, 1019–1020, 1024–1025, 1027
myeloproliferative hypereosinophilic syndromes, 827
Fluorescent treponemal antibody absorption (FTA-ABS) test, 414–417
Fluorochromes
Focus reduction neutralization test (FRNT),
FNKD (functional NK cell deficiency), 300, 1185–1187
Fluorognost HIV-1 IFA, 703
Food allergy, 783, 815–822
Focus reduction neutralization test (FRNT),
FMO (fluorescence minus one), 164, 1185–1187
FMO (fluorescence minus one), 164, 1185–1187
FNKD (functional NK cell deficiency), 300, 306
Focus reduction neutralization test (FRNT),
for bartonellosis, 660
Follicular lymphoma, 227, 1017, 1023–1024
Food allergy, 783, 815–822
atopic dermatitis and, 815–819, 821
cell-mediated disorders, 815–816
disorders, 816
foods commonly associated with, 815
IgE-mediated, 815–816
RAST (radioallergosorbent test), 817, 819
signs and symptoms, 816
skin testing, 808
in vitro tests, 819–822
basophil responses, 821
component resolved diagnostics, 820–821
quantification of food-specific IgE antibodies, 819–820
quantification of food-specific IgG antibodies, 821
specific epitope analysis, 821–822
total IgE, 821
tryptase, serum, 821
in vitro tests, 816–819
atopy patch tests, 817–818
elimination diets, 818
fresh food skin prick tests, 817
intradermal skin tests, 817
oral food challenges, 818–819
skin prick tests, 816–817
Food and Drug Administration (FDA)
analyte specific reagents regulation, 1175
Good Laboratory Practices (GLP)
Regulations, 1175
laboratory-developed tests regulation, 1175
test system premarket approval process, 1172
Food challenges
double-blind, placebo-controlled, 815–822
oral, 818–819
Forced expiratory volume in 1 second (FEV1), 810–811
Fourier transform ion cyclotron resonance (FTICR) MS, 1143
FOX3, 13, 275, 296, 1046
CD25 deficiency and, 727
detection in intracellular cytokine staining (ICS) assay, 339
flow cytometry, 731
Franciscella
clinical manifestations, 475
epidemiology, 474
F. novicida, 473
F. philomiragia, 473–474, 479
F. tularensis, 473–475, 479
F. tularensis subsp. holarctica, 473–475
F. tularensis subsp. mediassia, 473–474
F. tularensis subsp. novicida, 473–474, 479
F. tularensis subsp. tularensis, 473–475
immunological methods, 479
laboratory diagnosis, 478–479
culture, 478
immunological methods, 479
molecular methods, 479
serology, 478–479
serology, 478–479
ELISA, 478–479
microagglutination, 478–479
tube agglutination, 478–479
taxonomy, 473–474
Franciscella, 473–474
Free light chain(s)
quantification of food-specific IgE
component resolved diagnostics, 821
intradermal skin tests, 817
fresh food skin prick tests, 817
Frozen tissue-sectioning, 377
FTA-ABS (fluorescent treponemal antibody absorption) test, 414–417
FTICR (Fourier transform ion cyclotron resonance) MS, 1143
Functional cellular assays
for B cells and antibodies, 261, 280–288
chronic granulomatous disease diagnosis, 262, 310–320
cryopreservation of peripheral blood mononuclear cells, 261, 263–267
enzyme-linked immunosorbent assay (ELISPOT) assay, 261, 290–293
lymphocyte activation, 261, 269–278
NK cell assays, 262, 300–307
overview, 261–262
regulatory T cell (Treg) assays, 261–262,
275, 296–299
Functional NK cell deficiency (FNKD), 300, 306
Fungal infections, 485, 503–528
Fungal infections, 485, 503–528
Cryptococcus, 506, 522–523
Candida, 504, 506, 518–519
Blastomyces, 504, 516–517
Coccidioides immitis, 504–505, 519–522
Aspergillus, 506, 522–523
diagnostic methods, 504–529
BDG assay, 514–515
commercial antibody detection tests, 504–505
commercial antigen detection tests, 506
complement fixation, 509–512
enzyme immunoassay, 513–514
immunodiffusion, 507–509
lateral flow assay, 514
latex agglutination, 513
molecular methods, 503, 528–529
serodiagnosis, 515–528
histoplasmosis, 505, 524–526
mucormycosis, 528
paracoccidioidomycosis, 505, 526
penicilliosis marnefﬁci, 526–527
pneumocystis, 527–528
sporotrichosis, 505, 528
Fungitell assay, 515
Fungus ball, 515
GAE (granulomatous amebic encephalitis), 489
Gain-of-function variants, in interferon regulatory factors, 359
Gajdusek, Carlton, 687
Gamma interferon (IFN-γ),
See Interferon-γ (IFN-γ)
Gangliosides, 961–964
GARP (glycoprotein A repetitions predominant), 298
Gastrointestinal, 783, 639–645
adenoviruses, 644–645
astroviruses, 642–644
noroviruses, 640–642
rotaviruses, 639–640
gastroesophageal reflux, 830
GATA2 deficiency, 10, 767
GATK (Genome Analysis Toolkit), 7–8, 1087
Gene expression profiles in allografts, 1132–1135
Gene expression profiles in allografts, 1132–1135
Gene therapy, for severe combined immunodeficiency (SCID), 715
Genetic Creutzfeldt-Jakob disease (gCJD), 682, 687, 690
Genetic diseases, molecular methods of diagnosis, 5–17
analysis of variations, 9–11
arrays, 8–9
diagnosis process, 12–17
framework for diagnosis in immunocompromised patients, 16–17
next-generation sequencing, 7–8
PCR, 5–6
quantitative RT-PCR (qPCR), 8–9
RT-PCR, 8
samples, 5
Sanger sequence analysis, 6–7
TagMan, 8
T-cell excision circles (TRECs), 8
Genetic prion diseases, 690–691
Genome Analysis Toolkit (GATK), 7–8, 1087
Genome size, 19
Genomics, 3
See also Metagenomics
immunologic monitoring, 1046
Genotyping
HLA typing, 1074
human immunodeficiency virus (HIV), 706
killer cell immunoglobulin-like receptors (KIRs), 1154, 1157–1158
mumps virus, 614
viral infections, 544, 546
German measles, 615
Gerstmann-Sträussler-Scheinker (GSS) syndrome, 682, 687, 690
Giardia intestinalis, 911
natural killer cell receptor ligands, 1150–1158
nomenclature, 1072
relevance in transplantation, 1091–1092
HLA Caller software, 1087
HLA-DR, 208, 211, 217–220, 1125
HLA genes
orthognition/structure, 1069–1071
polymeric nature of, 1069
publication of data, 1071
role of, 1069
HLA Twin software, 1087
HLA typing
in celiac disease, 984, 986
contamination prevention, 1075–1076
future of, 1087–1088
genetic polymorphism, 1078
molecular (DNA-based) methods, 1069–1074
next-generation sequencing (NGS), 1069–1070, 1077, 1079–1080
potential impact on HLA typing, 1073–1074
principle of the technology, 1073–1074
consensus/consensus panels, 1074
real-time PCR, 1074
application of, 1077–1078
nucleic acid detection, 1078–1080
real-time PCR, 1077–1079
analysis of data, 1079
applications, 1078
interpretation of results, 1079
principle of the technology, 1078
strengths and weaknesses, 1077–1079
troubleshooting and technical issues, 1079
regulatory and reporting requirements, 1075
sample management, 1075–1076
Sanger sequence-based typing (SBT)
analysis of data, 1080
applications, 1079–1080
interpretation of results, 1081
principle of the technology, 1079–1080
strengths and weaknesses, 1077, 1080
troubleshooting and technical issues, 1081
sequence-specific oligonucleotide probes (SSOs), 1069, 1072–1074, 1076–1077
analysis of data, 1076
applications, 1076
interpretation of results, 1076
principle of the technology, 1076
reverse SSO (RSSO), 1076–1077
strengths and weaknesses, 1076–1077
troubleshooting and technical issues, 1076–1077
sequence-specific primers (SSPs), 1069, 1072–1074, 1071–1078
analysis of data, 1078
applications, 1077–1078
interpretation of results, 1078
principle of the technology, 1077–1078
strengths and weaknesses, 1077–1078
troubleshooting and technical issues, 1078
software packages, 1087
using bead array assays, 332
HLC (heavy-light chain) assays, 69–70
HLH (hemophagocytic lymphohistiocytosis), 204
HME (human monocytic erythroleucosis), 462–464, 466, 468
HMG (high-mobility group) proteins, 58
Hodgkin’s lymphoma, classical, 1027–1028
nodular lymphocyte-predominant, 1025, 1028
Hook effect, 68–69
Horizon stains, 149
Horseshoe crab, 127, 129, 514
HSCT. See Hematopoietic stem cell transplantation
hSLAM (human signaling lymphocyte activation molecule), 611
HTLV. See Human T-cell lymphotropic virus
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 675
Human bocavirus
description of agents, 599–600
new species, 598
specimen collection, transport, and storage, 602–603
taxonomy, 599
Human Cell Differentiation Molecules (HCDM), 158
Human coronaviruses
clinical significance, 600–602
description of agents, 599
epidemiology, 600
Middle East respiratory syndrome (MERS) coronavirus, 538, 598–599, 602–603
new species, 598
rapid diagnosis of, 539
severe acute respiratory syndrome (SARS) coronavirus, 538, 599, 602
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600
Human Genome Variation Society nomenclature, 6
Human granulocytic anaplasmosis (HGA), 462–463, 466, 468
Human herpesvirus-6, 578–585
antibody avidity assay, 583
antibody detection, 581–582
anticomplement immunofluorescence assay (ACIF), 582–583
antigen detection, 580–582
antiviral susceptibility testing, 584–585
biological characteristics, 579
clinical manifestations, 579
collection and storage of specimens, 582
culture, 581
diagnostic methods, 581
ten New species, 581
immunohistochemistry (IHC), 580–581
immunologic diagnosis, 580–583
immunology of infection, 580
indirect fluorescent antibody (IFA), 582
molecular diagnosis, 583–584
morphology, 578
neutralization test, 583
nucleic acid detection, 581, 583–584
PCR, 583–584
radioimmunoprecipitation assay (RIA), 583
rapid diagnosis, 539
reactivation, 579–580
respiratory symptoms, 600
serology, 583
spin amplification shell vial assay, 581–582
transmission, 579–580
Western blot, 583
Human herpesvirus-7, 585–586
antigenemia assay, 586
biological characteristics, 579
clinical disease, 581
culture, 581
diagnostic methods, 581
enzyme immunoassay (EIA), 586
epidemiology and clinical characteristics, 580
genome, 585
immunologic and molecular diagnosis, 585–586
indirect fluorescence antibody (IFA), 586
nucleic acid detection, 581
reactivation, 585
serology, 586
Western blot, 586
Human herpesvirus-8, 586–588
biological characteristics, 579
culture, 581, 587
diagnostic methods, 581, 587–588
disease associations, 586
enzyme immunoassay (EIA), 587
epidemiology and clinical characteristics, 580
genetic diversity, 586
genome, 586
HIV coinfection, 586–588
immunoblot, 587–588
indirect fluorescence antibody (IFA), 587–588
nucleic acid detection, 581
PCR, 587
respiratory symptoms, 600
serology, 587–588
transmission, 587
Human herpesvirus 8, lymphomas and, 1020, 1025
Human Immune Monitoring Center, 148
Human immunodeficiency virus (HIV)
antiviral susceptibilities, 726–727
genotyping assays, 706
phenotyping assays, 706–707
tropism assays, 707
assay result trending, 542
chemiluminescence immunoassay (CIA), 698–700
chemiluminescence immunoassay (CLIA), 542
circulating recombinant forms, 699
coinfections/codisorders
Baronella, 474
Epstein-Barr virus, 567
human herpesvirus-6, 578–579
human herpesvirus-8, 586–588
lymphoma, 1025
strongyloidiasis, 497
syphilis, 412
toxoplasmosis, 498
IgA anitmitochondrial autoantibodies, 966
characteristics, 66–67
class switching, 58–59
cryoglobulins, 101–102, 105
deficiency, 70, 740–741, 984
electrophoresis, 80
Epstein-Barr virus, 568
function, 280
heavy-chain disease, 94
hyperviscosity, and, 71
immunofixation electrophoresis, 90–91
immunosubtraction, 91–92
measurement of, 67–68
in monclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
polyclonal, 93
pyroglobulins, 110
structure, 52, 66–67
subclasses, 67
IgA vasculitis, 911
IgG characteristics, 66–67
class switching, 58–59
electrophoresis, 80
in monclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
polyclonal, 93
pyroglobulins, 110
structure, 52, 66–67
subclasses, 67
IgD myeloma, 85
IgE allergen potency testing, 790–791
in allergic diseases
allergen-specific IgE, 795–798
total serum IgE, 796–797, 798–800
basophil histamine release assay for
demonstration of activity, 802
characteristics, 66–67
class switching, 58–59
electrophoresis, 80
in multiple myeloma, 113–114
pyroglobulins, 110
structure, 52, 66–67
surface, 280–281
IgD myeloma, 85
IgE monoclonal, 93–94
omalizumab (anti-IgE), 795
pyroglobulins, 110
structure, 52, 66–67
total serum IgE, 796–797, 798–800
IgE myeloma, 80, 85
IgG
-allergen-specific, 796–797, 799
anti-acetylcholine receptor antibodies, 955
anticytokine autoantibodies, 369
antimitochondrial autoantibodies, 966
Bartonella, 476
Brugia, 494
characteristics, 66–67
class switching, 58–59
complement activation, 129
Coxiella, 466–467
cryoglobulins, 101–102
electrophoresis, 79
Epstein-Barr virus, 565–569
food-specific IgG antibodies, quantification of, 821
function, 280
hantaviruses, 658, 660–662
heavy-chain disease, 94
hepatitis delta virus, 631
hepatitis E virus, 633
herpes simplex virus, 553
human herpesvirus-6, 584
human herpesvirus-8, 587–588
hyperviscosity and, 71
immunofixation electrophoresis, 79, 90–91
immunosubtraction, 91–92
Loa, 494
measles viruses, 611–614
measurement of, 67–68
in monclonal gammopathies, 114
monoclonal, 93
M protein electrophoresis, 82
mumps virus, 614–615
onchocerciasis, 494
polyclonal, 79, 92–93
pyroglobulins, 110
Rocky Mountain spotted fever, 465
rubella virus, 616–617
structure, 51–52, 66–67
subclass deficiency, 741
toxoplasmosis, 497–498
trichinellosis, 498
varicella-zoster virus, 557, 559–560
IgG4 allergen-specific, 797, 799
characteristics of molecule, 918
food-specific antibodies, 821
serum concentrations in IgG4-related disease, 919–920
IgG4-related disease, 917–920
clinical features, 917–918
abdomen, 917
chest, 917
head and neck, 917
retroperitoneum, 917–918
flow cytometry, 920
immunodiagnosis, 919
pathology, 918
pathophysiology, 918–919
B-cell lineage, 918
CD4 killer cell, 919
IgG4 molecule, 918
immunoglobulin class switch, 918–919
T-cell pathways, 919
serum IgG4 concentrations, 919–920
treatment, 919
IgG avidity
cytomegalovirus, 572–573
herpes simplex virus, 553
human herpesvirus-6, 583
measles viruses, 611
rubella virus, 616
toxoplasmosis, 498
IgG ELISA, for arboviruses, 651
IgG index, 99
IgG myeloma, 89
IGH gene, 1024, 1028
IgM Bartonella, 476
characteristics, 66–67
Chlamydophila pneumoniae and, 457
class switching, 58–59
complement activation, 129
Coxiella, 466
cryoglobulins, 101–103, 105
cytomegalovirus, 543–544, 572
electrophoresis, 80
Entamoeba histolytica, 489
Epstein-Barr virus, 565–569
function, 280
hantaviruses, 658, 660–662
heavy-chain disease, 94
hepatitis A virus, 623
hepatitis B virus, 624
hepatitis E virus, 633
human herpesvirus-6, 580, 584
hyper-IgM syndrome type I, 58
hyper-IgM syndrome type II, 99
hyperviscosity and, 71
immunofixation electrophoresis, 90–91
immunosubtraction, 91–92
measles viruses, 611–613
measurement of, 67–68
in monclonal gammopathies, 114
monoclonal, 93
monoclonal gammopathy of undetermined significance (MGUS), 114
M protein electrophoresis, 82–83
in multiple myeloma, 113–114
mumps virus, 614–615
parvovirus B19, 543, 592
polyclonal, 93
pyroglobulins, 110
response to viral infection, 541, 543–544
Rocky Mountain spotted fever, 465
rubella virus, 616–617
structure, 52, 66–67
surface, 280–281
toxoplasmosis, 497–498
varicella-zoster virus, 560
Waldenström's macroglobulinemia and, 71, 113, 115
X-linked hyper IgM syndrome (XHIM), 201, 281
IgM autoantibulin, hemolytic anemia and, 990, 993
IgM capture EIA, for toxoplasmosis, 497
IgM capture ELISA (MAC-ELISA) arboviruses, 648, 650–651, 655
hantaviruses, 661
IgM ELISA arboviruses, 648, 650–651
Bartonella, 476
Leptospira, 429–430
IgM paraproteinemic neuropathy, 961, 964
IHA. See Indirect hemagglutination assay
Structures
- Basic structure, 51
- Heavy-chain isotopes, 51–52
- Quantification and, 65–67
- Titers against vaccine antigens, 281
- Viscosity measurement, 71–72

Immunoglobulin class switch, 918–919

Immunoglobulin genes, 53–60
- Antibody diversity generation, 59
- Heavy-chain gene complexes, 53–54
- Light-chain gene complexes, 53–56
- Rearrangement, 56–60
- Detection of, 60
- Genetic basis for, 57–58

Immunoglobulin isotope switching, defect in, 465
- Extended B-cell, 742–743
- Strategy, 1038–1040
- Statistical data analysis, 1047
- Rationale, 1038
- Proteomics, 1046
- Currently available assays, 1041
- Clinical trials with biologic agents, 1036–1048
- Challenges, 1036–1037
- Clinical trials with biologic agents, 1037–1038
- Rationale for, 1038
- Currently available assays, 1041
- Functional assays, 1043–1046
- Antibody-driven proliferation, 1044
- Cytokine production and levels, 1045
- Cytotoxic assays, 1044–1045
- Signaling pathways, 1045–1046
- Suppressor cell functions, 1046
- Genomics, 1046
- Phenotypic assays, 1040–1043
- Epitope-specific T cells, 1042
- Immune score and monitoring, 1043
- Intracellular staining for flow cytometry, 1042
- Measuring cell death, 1042
- Multiparameter flow cytometry, 1042–1043
- Neutrophil-to-lymphocyte ratio, 1041–1042
- Percentages versus absolute numbers of immune cells, 1041
- Selection of markers, 1040–1041
- Subtyping of T cells, 1042
- Proteinomics, 1046
- Quality control, 1046–1047
- Rationale, 1038
- Statistical data analysis, 1047
- Strategy, 1038–1040

Immunoperoxidase assay (IPA)
- Amebiasis, 489
- Orientia tsutsugamushi, 465

Immunophenotyping
- Extended B-cell, 742–743
- by flow cytometry
 - Acute lymphoblastic leukemia/lymphoma, 207–214
 - Acute myeloid leukemia (AML), 217–223
 - B-cell chronic lymphoproliferative disorders, 227
 - Chronic lymphocytic leukemia (CLL), 226–232, 235–247
 - Cryopreserved peripheral blood mononuclear cells (PBMC), 265–266
 - Plasma cell disorders, 235–247
 - T-cell chronic lymphoproliferative disorders, 228
- Immunoprecipitation. See also Radioimmunoprecipitation
- Autoimmune myopathies
 - Analysis of proteins, 878–883
 - Analysis of small RNAs, 883–886
- In immunofluorescence electrophoresis, 89–90
- In immunosubtraction electrophoresis, 89, 91
- LIPS (luciferase immunoprecipitation system) assay for anti-RNP, 873
- Pituitary antibodies, 947
- Systemic lupus erythematosus (SLE), 870–873
- Immunopurification, for mass spectrometry, 41
- Immunoreceptor tyrosine-based activation motifs (ITAMs), 726
- Immunosorbent Allergen Chip (ISAC), 798
- Immunostaining of tissue, in IgG4-related disease, 798
- Immunossubtraction (ISUB) electrophoresis
 - Procedure, 112, 120
- Immunoturbidimetric assays, for detection of, 60
- InMAD (In situ microarray detection), 60
- Influenza virus, 598–607
- Antigen assays, 604–606
- Antiviral susceptibility testing, 606
- Avian influenza, 538
- Biohazard, 603
- Clinical significance, 600–602
- Culture, 603, 606
- Description of agents, 599
- Direct fluorescent antibody (DFA) test, 603
- Epidemiology, 600
- H1N1, 538, 601, 604–606
- H3N2, 601, 606
- H5N1, 538, 602
- HTN9, 538, 602
- Immunochromatography, 603–605
- Molecular tests, 605–606
- Pathogenesis, 600
- Rapid influenza diagnostic tests (RIDT), 538–539, 543, 545, 604–605
- Taxonomy, 599
- Transmission, 600
- Vaccination, 601
- Viremia, 602
- When to test, 602
- Whom to test, 602
- InMAD (in vitro microbial antigen discovery), 479

Orientalis tsutsugamushi, 465
Parasymycosis (urococc), 527
Rocky Mountain spotted fever, 465
Rubella virus, 616–617
Toxoplasmosis, 497
Trypanosoma cruzi, 491
Indirect hemaggltination assay (IHA)
Entamoeba histolytica, 489
Trypanosoma cruzi, 491
Indirect immunofluorescence
- Gastric parietal cell antibodies, 932–933
- Islet cell autoantibodies (ICA), 938–939
- Liver kidney microsomal antibodies, 970–971
- Pituitary antibodies, 947–949
- Thyroglobulin antibodies, 930
- Indirect immunofluorescence antimicrobial antibody (IIF-ANA) assay, 843–857
- Inducible costimulating receptor (ICOS), 740
- Infectious mononucleosis, 563–564
- Inflammation, allergic, 783, 801–812
- Assays for measurement of mediators/markers, 801–812
- Airway challenges, 810–811
- Basophil IL-4 and IL-13 secretion, 804–806
- Basophil surface activation markers, 806
- Dendritic cells, 807
- Histamine, 801–803
- Interferon alpha production, 807
- Leukotriene C4, 803–804
- Mast cell specific, 806–807
- Prostaglandin D2, 807
- Quality assurance of in vitro assays, 807–808
- Skin testing, 808–810
- Trypase, 806–807
- Inflammatory bowel disease, 985–988
- Clinical characteristics, 987
- Diagnosis, 985, 987–988
- Epidemiology, 987
- Pathology, 986–987
- Quality assurance for clinical testing, 988
- Treatment with cytokine inhibitors, 357, 362
- Infliximab, 361
- Influenza-like illness, 600–601
- Influenza virus, 598–607
- Antigen assays, 604
- Antiviral susceptibility testing, 606
- Avian influenza, 538
- Biohazard, 603
- Clinical significance, 600–602
- Culture, 603, 606
- Description of agents, 599
- Direct fluorescent antibody (DFA) test, 603
- Epidemiology, 600
- H1N1, 538, 601, 604–606
- H3N2, 601, 606
- H5N1, 538, 602
- H7N9, 538, 602
- Immunochromatography, 603–605
- Molecular tests, 605–606
- Pathogenesis, 600
- Rapid influenza diagnostic tests (RIDT), 538–539, 543, 545, 604–605
- Taxonomy, 599
- Transmission, 600
- Vaccination, 601
- Viremia, 602
- When to test, 602
- Whom to test, 602
- InMAD (in vitro microbial antigen discovery), 479
Interleukin-2 (IL-2), 357–358
Interleukin-1 (IL-1), 359
Interferon-stimulated exonuclease gene 20, 360
Interferon signature, 361
Interferon regulatory factor 7 (IRF7), 362

Integrin conformation change, measurement of, 363–364
Insulinoma antigen-2 (IA-2), 365–366
Insulin autoantibodies (IAA), 367–368
In situ hybridization (ISH), 369–370
Inositol polyphosphate-5-phosphatase, 371
Innate immunity, NK cells and, 372
Interferon-γ receptors (IFN-γR), 373
Interferon regulatory factor 5 (IRF5), 374
Interferon regulatory factor 7 (IRF7), 375
Interferon signature, 376
Interferon-stimulated exonuclease gene 20 (X-Linked), 377
Integrin conformation change, measurement of, 378
Interferon-α (IFN-α)
Interferon-β (IFN-β), treatment for multiple sclerosis, 379–380
Interferon-γ (IFN-γ)
Allograft rejection, 381–382
Anti-IFN-γ autoantibodies and opportunistic infection, 383
Autoantibodies, 384–385
Flow cytometry, 386
Interferon score by quantitative PCR (qPCR), 387
Interferon-α (IFN-α)
Dendritic cell production of, 388
Human herpesvirus-6, 389
For mastocytosis, 390
In systemic lupus erythematosus, 391
Treatment for hepatitis C, 392
Interferon-β (IFN-β)
Treatment for multiple sclerosis, 393–394
Interleukin-2 (IL-2)
Allograft rejection, 395
CD25 deficiency, 396
Cytomegalovirus and, 397
Human herpesvirus-6, 398
Interleukin-1 (IL-1)
Low levels in SLE, 399
Lymphocyte propagation, 400–401
Cell activation, 402–403
Production and T cell activation, 404–405
Receptors, 406
Interleukin-4 (IL-4), measuring basophil secretion of, 407–408
Interleukin-5 (IL-5), in lymphocytic variant hypereosinophilic syndrome, 409
Interleukin-6 (IL-6), 410
Autoantibodies, 411–412
Autoimmune retinopathy, 413–414
Detection in intracellular cytokine staining (ICS) assay, 415
Human herpesvirus-6, 416
Interleukin-12 receptor (IL-12R), 417
Interferon regulatory factor 7 (IRF7), 418
Interferon regulatory factor 5 (IRF5), 419
Human herpesvirus-6, 420
Human herpesvirus-7, 421
Interleukin-10 (IL-10)
Autoimmunity retinopathy, 422–423
Detection in intracellular cytokine staining (ICS) assay, 424
Human herpesvirus-6, 425
Human herpesvirus-7, 426
Interleukin-17 (IL-17)
Autoantibodies, 427–428
Autoimmune retinopathy, 429–430
Intracellular Cytokine Staining (ICS) assay, 431
Human herpesvirus-6, 432
Human herpesvirus-7, 433
Interleukin-23 (IL-23) receptor, 434
International Clinical Cytometry Society (ICCS), 435–436
169, 171–173, 437
International Council for Standardization in Hematology (ICSH), 438
1180, 439
International Federation of Clinical Chemistry and Laboratory Medicine (IFCC), 440
1178–1179
International Myeloma Working Group, 441
83–84, 442–443
87, 444–445
112, 446–447
International Organization for Standardization (ISO), 448
1177–1179, 449
1182
International Society for Cellular Therapy, 450
184
International Society for Heart & Lung Transplantation (ISHLT), 451
1137
International Society of Hematology and Graft Engineering (ISHAGE) protocol, 452
184–187, 453–454
189–194
Basic protocol, 455
185
Commercial kits based on ISHAGE guidelines, 456–457
187–190
Guidelines, 458–459
Simultaneous CD3+ and CD3+ cells, 460–461
192–193
Single platform with viability assessment, 462–463
185–187
International Union of Immunological Societies (IUIS), 464
1178
International Workshop and Conference on Human Leukocyte Differentiation Antigens (HLDA), 465
158
Interphotoreceptor retinal binding protein (IRBP), 466
998, 1001
Intracerebral antigen detection, by polychromatic flow cytometry, 467
160
Intracellular ATP synthesis assay, 1116–1119
Expected values, 1119
Interpretation of results, 1118–1119
Overview, 1116–1117
Procedure, 1117–1118
Intracellular cytokine staining (ICS) assay, 290–291
338–340
Cell processing, 339–340
For cellular immune response in transplantation, 1114–1116
Data acquisition, 1116
Data analysis, 1116
Procedure, 1114–1116
Troubleshooting, 1116
Costimulation, 338
Data analysis, 340
Enzyme-linked immunosorbent spot (ELISPOT) assay compared, 338–339
Resting prior to stimulation, 338
Secretion inhibitors, 339
Specimen types, 338
Stimulating antigens, 339
Stimulation kinetics, 339
Stimulation vessels, 338
Workflow of, 340
Intradural skin testing, 795–796, 809.
See also Skin testing
Intranasal challenge, 510–511
Intravenous immunoglobulin (IVIG), 526–527
Intravitral microscopy (IVM), 350, 352–354
Intrinsic factor, antibodies to, 393
Intracerebral antigen detection, 479
In vivo microfluidic antigen discovery (InMAD), 480
Ionization techniques, mass spectrometry, 34–35
ESI (electrospray ionization), 34–35
MALDI (matrix-assisted laser desorption ionization), 35
Iron deficiency, 479
Helicobacter pylori and, 410
ISEs (intracellular splicing enhancers), 10
Intracellular cytokine staining (ICS), 10
In vitro microbial antigen discovery (InMAD), 10
IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked), 13, 727
IRBP (interphotoreceptor retinal binding protein), 995, 1021
IRF5 (interferon regulatory factor 5), 359
IRF7 (interferon regulatory factor 7), 359
IRGM gene, 986
Iron deficiency, 480
Helicobacter pylori and, 410
ISEs (intracellular splicing enhancers), 10
ISH. See In situ hybridization
ISHAGE. See International Society of Hematology and Graft Engineering (ISHAGE) protocol
ISHLT (International Society for Heart & Lung Transplantation), 1137
Islet cell autoantibodies, 935–939
ISO (International Organization for Standardization), 1177–1179, 1182
Isoelectric focusing (IEF), 98–99, 791–792
Isoelectric point (pI), 74
Israeli tick typhus, 461
ISSs (intracellular splicing silencers), 10
Isoelectric focusing, 60–61
Isoelectric point (pI), 74
Israelie tick typhus, 461
In situ hybridization (ISH), 653
Leukemia (continued)

- myelogenous leukemia, BCR-ABL
translocation in, 922
- plasma cell, 235–237, 240
- IMWG diagnostic criteria, 237
- monoclonal gammopathy, 113
- pyroglobulins and, 110
- Leukotriene C4, assays for, 803–804
- Levey-Jennings chart, 77–78, 153–154,
 1188–1189
- L-ficolin, 133
- Liat HIV Quant VL assay, 702
-Liver transplantation
- primary biliary cholangitis, 966–969
- pulmonary function test, 229, 1017, 1020
- Lymphatic filariasis, 494
- Lymphoplasmacytic lymphoma, 226,
 1023–1024
- Lymphoblastic lymphoma, 207–214,
 1020–1022
- Lymphochip cDNA, 1137
- Lymphochip CDNA, 1137
- Lymphocyte activation, 261, 269–278
- assessment of Treg function, 275
- methodology for measuring, 275–278
- assessment of cell surface markers on T
cells after activation with mitogenic
 stimuli, 274, 277
- lymphocyte proliferation assay using
 Edu-based flow cytometry, 271, 277
- measurement of T cell proliferation by
 using Ki-67 assay, 270, 272
- Ki-67 assay, 270, 272
- measurement of T cell proliferation by
 using 3H-thymidine, 270
- Lymphocyte cultures from allograft biopsy
 specimens, 1112–1113
- concept, 1112–1113
- pitfalls and troubleshooting, 1113
- Lymphocyte proliferation assay (LPA), 732
- for B-cell analysis, 281–282
- cryopreserved peripheral blood
 mononuclear cells (PBMC), 264–265
- secretion of soluble mediators, 282
- stimulation index, 282
- using Edu-based flow cytometry, 271,
 277
- in vitro whole-blood, 283–284
- Lymphocyte separation medium, 1109
- Lymphocyte-specific protein kinase (LCK),
 1138
- Lymphoid-specific T cell receptor (LST)
- T cell receptor, 301, 307, 771, 776, 778
Subj Index 1223

MABS. See Monoclonal antibodies
MAC. See Membrane attack complex
MAC-ELISA. See IgM capture ELISA
Macroglubulinemia, 90, 113, 115
Macrophage inflammatory protein 1β (MIP-1β), 301, 305
Macrophages
human herpesvirus-6, 580
malignancies of, 1028–1029
Mad cow disease, 682
MAGTI, 727
MAHA (microangiopathic hemolytic anemia), 140
MAIPA (monoclonal antibody–specific immobilization of platelet antigen) assay, 995–997
Major histocompatibility complex (MHC) class I expression in natural killer cells, 1153
class I proteins and allograft rejection, 1132
deficiencies, 721–722
MHC class I, 721–722
MHC class II, 721–722
gene polymorphism, 1065
Major histocompatibility complex class I-related chain A (MICA), 1103
Major histocompatibility complex (MHC) class I tetramer staining, 261, 290
Malaria, 495–496
MALDI (matrix-assisted laser desorption ionization), 35
MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometry, 468
Malignancies, immune system, 1015–1029
Malignant plasma cell proliferative disorders, 112–114
MALT1 gene, 1024
MALT (mucosa-associated lymphoid tissue) lymphoma, 404, 1017, 1020
Mannose-binding lectin (MBL), 138, 756
Mannose-binding lectin (MBL), assay of activity, 133–137
assay procedure, 136
assay solutions, 135–136
materials, 134–135
results, calculation, and interpretation, 136–137
serum/plasma preparation, 134
troubleshooting, 137
Mantle cell lymphoma (MCL), 226–227, 229, 1017, 1023
Marburg virus, 651
Marginal zone lymphoma, 226, 1023
Marseilles fever, 461
Mast cell disease, 831–834
Mast cell sarcoma (MCS), 833
Mast cell leukemia (MCL), 833
Mast cell sarcoma, 833
Mastocytosis, 783, 831–834
classification, 831–833
aggressive systemic mastocytosis, 833
cutaneous mastocytosis, 833
extracutaneous mastocytoma, 833
idolent systemic mastocytosis, 831–833
mast cell leukemia (MCL), 833
mast cell sarcoma (MCS), 833
systemic mastocytosis with AHNMD (associated clonal hematologic non-mast cell disease), 833
definition, 831
diagnostic criteria, 831–833
pitfalls in diagnosis, 833–834
therapies, 834
MAT (microscopic agglutination test), for Leptospira, 429
Matrix metalloproteinases, 976–977
Maximal tolerated dose, 1037
Mayaro fever, 469
MBDA (multi-biomarker disease activity) score, 897, 901
MBL. See Mannose-binding lectin
MBL-associated serine proteases (MASP), 133–134
MCL. See Mantle cell lymphoma
MC4R, 300, 305–306, 775–776
MCP. See Membrane cofactor protein
MCTD (mixed connective tissue disease), 868–869
MDS. See Myelodysplastic syndrome
Methionine aminopeptidase, 610–614
clinical manifestations, 610–611
complement fixation, 611–613
diagnostic strategies, 611–612
enzyme immunooassay (EIA), 611–612
hemagglutination inhibition, 611–613
immunostaining, testing for, 611
indirect fluorescence antibody (IFA), 611–612
interpretation of measles testing, 613–614
MFLC. See Monoclonal free light chains
MGC. See Myasthenia gravis
MGUS. See Monoclonal gammopathy of undetermined significance
MHC. See Major histocompatibility complex
MIATa program, 1046, 1116
MIB-1 protein, 1025–1026
MULTIFluorescence immunoassays (FIA), 611–613
neutralization, 611–613
PCR, 611–612
plaque reduction neutralization, 611–613
rapid diagnosis, 340
resurgence of disease, 610
serology, 612–613
technology for measles testing, 612–613
transplacental transfer of antibodies, 611
vaccination, 610–611
Median fluorescence intensity, 154, 156–157
Medical Test Site Licensure law, Washington State, 1175
Medication adverse reaction assessment, 808–809
Mediterranean spotted fever, 461, 463
MEGAN, 20
Melanoma-associated retinopathy, 999, 1001
Membrane attack complex (MAC), 138–140, 874, 956, 1126
Membrane-bound antibody arrays, 331
Membrane cofactor protein (MCP), 130–131, 138, 140–141, 749, 759, 1124–1125
Membranoproliferative glomerulonephritis, 127
Men who have sex with men (MSM), Chlamydia trachomatis in, 453
MERS (Middle East respiratory syndrome) coronavirus, 538, 598–599, 602
Mesenchymal-epithelial transition (MET), 1052
MESF (molecular equivalents of soluble fluorochrome) units, 1042, 1097
Mesothelin, 1013
Mesothelioma, 1013
Messenger RNA. See mRNA
MET (mesenchymal-epithelial transition), 1052
Metagenomics
artifacts in research, 20–22
bias in sequence tag analysis, 21
cage effects in mouse models, 22
low-biomass samples, 21–22
description, 19
disease states, investigation of, 22–23
methods of research, 19–20
DNA barcoding, 20
DNA sequencing, 20
nucleic acid purification, 19–20
shotgun sequencing, 20
tag sequencing, 20
respiratory viruses, 607
viruses, 22
MetaPhAn, 20
Metapneumovirus. See Human metapneumovirus
Metapneumovirus (genus), 599
MFC immunophenotyping, in plasma cell disorders, 243–247
diagnosis and classification, 243
MRD monitoring in multiple myeloma, 244–247
prognostic stratification of patients, 243–244
M-ficolin, 133
MFLC. See Monoclonal free light chains
MG. See Myasthenia gravis
MGUS. See Monoclonal gammopathy of undetermined significance
MHC. See Major histocompatibility complex
MIATA program, 1046, 1116
MIB-1 protein, 1025–1026
Monoclonal gammopathy, 89–90, 112–121.

See also specific disorders
classification, 112–115
malignant plasma cell proliferative disorders, 112–114
premalignant plasma cell proliferative disorders, 114
protein (or low-tumor-burden) diseases, 114–115
diagnostic testing strategy, 115–116
electropherograms, 116–117, 119–120
free light chains, 112–116, 118–121
monitoring M proteins, 119–121
M-spike measurement/quantification, 119–121
ordering patterns, 121
response to therapy, criteria for, 121
screening panels for M protein detection, 116, 118
stratification of risk, 118–119
Monoclonal gammopathy of undetermined significance (MGUS), 71, 84, 87, 89–90, 94, 97, 235–237, 239–240, 242–244, 247
diagnosis, 114, 118
immunofixation electrophoresis, 118–119
immunoglobulin types, 114
IMWG diagnostic criteria, 237
incidence, 114
percentage of plasma cell proliferative disorders, 90
progression, 114, 118
progression to multiple myeloma, 236
Monoclonal proteins
 disorders associated with, 89–90, 93–94
diversity of, 112
electrophoresis
bclonal pattern, 93–94
clinical applications, 85–87
detection in serum, 82–83
detection in urine, 84–85
immuno fixation and immunosubtraction, 93–94
immunoglobulin G, 75–76
principles, 75–76
quantification in serum, 83–84
quantification in urine, 97
sample requirements, 75–76
immunohematologic characterization, 89–99
monitoring, 119–121
screening panels for M protein detection, 116, 118
Monocytes
 flow cytometry for detection/monitoring of INH, 171–179
malignancies of, 1028–1029
MonoMAC syndrome, 10, 15–16
Mononegavirales, 665
Monoplex assays, for viral infections, 544–545
MOPAC. See Multipleplex opsonophagocytic killing assay (MOPAC) for functional antibodies against Streptococcus pneumoniae
Morbillovirus (genus), 610
Mother-to-child transmission
hepatitis C virus, 629–630
human T-cell lymphotropic virus infection transmission by, 675
Mounting medium, for immunofluorescence, 378
Mouse models, cage effects in, 22
MPF (Model Performance Evaluation Program), CDC, 1177
MPN. See Myeloproliferative neoplasm
M Protein. See also Monoclonal proteins
anti-M-protein test, 401
detection, 82–83
quantification, 83–84
M-protein serotyping, streptococci, 396
MRD. See Minimal residual disease
mRNA
absolute quantification of mRNA levels by PCR, 1133
cancer-specific, 1054
cytokine, detection with in situ hybridization, 335
gene expression profiles in allografts, techniques for characterization, 1132–1135
profiles in tissue rejection, 1135–1138
mRNA quantification assays, in cryopreserved peripheral blood mononuclear cells (PMBC), 267
MS. See Multiple sclerosis
MS2 phage, 606–607
See also MS.
Mumps virus, 614–615
Multispot HIV-1/HIV-2 rapid test, 703
Multimodal therapy, 615
Multifocal motor neuropathy (MMN), 1054
Multiparameter CFSE-MLC, cell division and
Multidimensional protein identification technology (MudPIT), 1143
Multifocal motor neuropathy (MMN), 961–962, 964
Multiparameter CFSE-MLC, cell division and precursor frequency analysis using, 1111–1112
data analysis and interpretation, 1112
pittfalls and troubleshooting, 1112
procedure, 1111–1112
Multiphoton intravital microscopy, 352–354
Multiple myeloma, 89, 235–247, 1024
cryoglobulins and, 101
diagnosis, 94, 112–113
electrophoresis, 79–80, 83–87, 94
free light chain assay, 69, 113
hyperc viscosity and, 71
immunoglobulin measurement, 70
immunoglobulin types, 113–114
IMWG diagnostic criteria, 237
incidence, 112
light-chain, 94, 113, 116–117
MFC immunophenotyping for MRD monitoring in, 244–247
monoclonal gammopathy, 112–114, 116–119, 121
M-spike in capillary electrophoresis, 79
nonsereotype, 94, 113, 116
percentage of plasma cell proliferative disorders, 90
plerixafor, 196
progression to, 118, 236
pyroglobulins and, 110
smoldering (SMM), 113–114, 116, 118
smoldering multiple myeloma (SMM), 235–237, 242–244, 247
Multiple sclerosis (MS)
diagnosis, 98–99
interferon-β (IFN-β) treatment for, 323, 357, 362
Multipleplex assays
chemokine/chemokine receptor assays, 348
rheumatoid arthritis testing, 901
viral infections, 544–545, 605–606
Multipleplex bead fluorescence immunoassays
mumps viruses, 611–613
mumps virus, 615
rubella virus, 616–617
Multipleplex cytokine assays, 324–336
bead array assays, 332–334
capillary electrophoresis, 331–332
cost comparison, 334–335
membrane-bound antibody arrays, 331
microarrays, 327–330
molecular methods for measuring cytokines, 335
overview, 324
PCR, 335
plate-based micro-ELISAs, 330–331
sequential ELISA, 326–327
in situ hybridization, 335
traditional ELISA, 324–326
Multipleplex opsonophagocytic killing assay (MOPAC) for functional antibodies against Streptococcus pneumoniae, 285–288
materials and reagents, 285
prepared solutions, 285–286
procedures, 286–288
HL-60 cell differentiation, 286
initiation of HL-60 cultures, 286
preparation of target bacteria working stocks, 286
routine HL-60 propagation, 286
Multipleplex ligation-dependent probe amplification (MLPA), 745
Multipleplex reverse transcription-PCR (RT-PCR)
human immunodeficiency virus (HIV), 702
rotaviruses, 640
Multiplor HIV-1/HIV-2 rapid test, 703
Mumps virus, 614–615
clinical manifestations, 614
complement fixation, 615
diagnostic strategies, 614–615
enzyme immunoassay (EIA), 615
epidemiology, 614
genotyping, 614
hemagglutination inhibition, 615
incidence, 614
indirect fluorescence antibody (IFA), 615
interpretation of testing, 615
molecular methods, 615
multiplex bead fluorescence immunoassays (FIA), 615
neutralization test, 615
rapid diagnosis, 540
resurgence of disease, 610
reverse-transcriptase (RT)-PCR, 614–615
serology, 615
technology for testing, 615
transplacental transfer of antibodies, 614
vaccination, 610, 614
virus isolation, 614–615
Murine typhus, 463
Murray Valley encephalitis virus, 648, 650, 654

Downloaded from www.asmscience.org by IP: 54.70.40.11
On: Fri, 15 Nov 2019 07:02:41
molecular tests, 605–606
rapid detection, 603–604
rapid diagnosis, 540
specimen collection, transport, and storage, 602–603
taxonomy, 599
transmission, 600
Respiratory viruses, 598–607. See also specific viruses
biohazard, 603
clinical significance, 600–602
description of agents, 599–600
diagnostic testing
antiviral susceptibility testing, 606
collection of samples, 602–603
direct fluorescent antibody (DFA), 603
future of, 607
immunochromatography, 603–605
improvement in, 598
molecular tests, 603–606
phenotyping and genotyping, 606
preanalytic quality control, 603
rapid shell vial culture, 603
results evaluation, interpretation, and reporting, 606–607
specimen choice, 602
swab type choice, 602
test ordering, 603
test utility, 603
when to test, 602
whom to test, 602
epidemiology, 600
new species, 598
overview, 598–599
pathogenesis, 600
taxonomy, 599–600
transmission, 600
Respirovirus (genus), 599
Responder cell frequency (RCF), 264
Restriction fragment length polymorphism (RFLP), for Rickettsia identification, 467
Rhavulovirus (family), 665
Rhabdovirus, 579, 586
Rheumatic fever, acute, 394–395, 397–401
Rheumatoid arthritis, 897–902
antibodies associated with
antibodies against citrullinated proteins, 898–900
antibodies less specific for rheumatoid arthritis, 899–900
anti-calpastatin, 899
anti-RA33, 899
biomarkers, 922–924
chemokines in, 346–347
combined ACPA and RF testing, 902
diagnosis, 357
environmental triggers, 902
genetics of, 902
rheumatoid factor (RF), 897–898, 902
rheumatoid factor (RF), 897–898, 902
testing methods, 902–901
agglutination, 900
calibration, 901
collection, 901
comparision of assays, 900
ELISA, 903–901
multi-biomarker disease activity (MBDA), 897, 901
multiplex testing, 901
nephelometry, 900
treatment with cytokine inhibitors, 357, 359–362
IL-1 inhibition, 361–362
IL-6 inhibition, 361
table of commercial biologics, 361
TNF-α inhibition, 360–361
Rheumatoid factor (RF), 543–544
clinical interpretation, 898
combined ACPA and RF testing, 902
cryoglobulins, 101–102, 105–106
factors interfering with measurement, 901–902
in hepatitis C virus infection, 898
overview, 897–898
Rhinosinusitis, viral, 600
Rhinoviruses. See Human rhinovirus
Rubella (family), 616–617
Rubella virus, 616
Rubella virus, 614–615
rubella virus, 616–617
sapoviruses, 642
T-cell receptor-excision circle (TREC), 716–718
TF (transcription factor), 663
Thin filament, 492
Toxocara canis, 1011
Toll-like receptor, 654
Tennis, 838
Tetanus, 335, 337–338
Thrombin, 627
TNF-α, 710
TNF receptor, 710
Thymus, 357
T-lymphocytes, 359
T-lymphocytes, 359–362
103
104
105
106
107
108
109
110
111
112
113
1233
pathobiology, 464
R. aferca, 461–464, 466
R. akari, 461
R. amblyonim, 468
R. australis, 461
R. conorii, 461–463, 466
R. felis, 461
R. parkeri, 461–464, 466
R. prowazekii, 461–463, 465
R. rickettsii, 461–464, 468
R. slosca, 461–463, 465
taxonomy, 461–462
Rickettsiaceae, 461–462
Rickettsialps, 461–462
RIDD. See Radial immunodiffusion
RIDT (rapid influenza diagnostic tests), 503–505, 538, 543, 545
Rift Valley fever virus, 649, 651–652, 655, 663
Rimantadine, 602
Risk assessment, in humoral response in transplantation, 1101
Rituximab, 913, 1066, 1099, 1156
RMRP mutations, 722, 725
RNA
centration quantification, 1133
degradation/integrity, 1132–1133
detection
mumps virus, 614–615
rubella virus, 616–617
extraction
arboviruses, 653–654
for immunoprecipitation analysis in autoimmune myositis, 884
total RNA standard preparation, 883–884
isolation, 5
RNA helicase autoantibodies, 870
RNA polymerase III antibody, 889–890
RNAs, 5, 1132
RNP. See Ribonucleoprotein
Ro, antibodies to, 869
ROAD (Read, Observe, Ask, Discover) inspection process, 1177
Rocie 454 pyrosequencing, 7, 20
Rocio encephalitis, 649
Rocky Mountain spotted fever, 461, 463–466, 468
ROMA, 1012
ROS (reactive oxygen species), 310, 314–316
Rose Bengal test, for Brucella, 477–478
Roseola, 579
Roselovirus, 579, 585
Rossetta bacteria for production of large recombinant proteins, 861
Ross River virus, 648–649, 652–655
Rotaviruses, 639–640
detection and characterization, 639–640, 642
genome, 639
strains, 639, 641
vaccines, 639
RPR card test, 413–414
RREID (rapid rabies enzyme immunoassay) assay, 466
RRNT (replication reduction neutralization test), for hantaviruses, 660
RSSO (reverse SSO), 1076–1077
RSV. See Respiratory syncytial virus
RT-LAMP. See Reverse transcription loop-mediated isothermal amplification
Serum free light chain (sFLC) assay, 69, 71
electrophoresis of, 82, 86, 94
Serum neutralization test. See Neutralization assay
Serum proteins, electrophoresis of, 65–66, 69–71, 76–84
M protein detection, 82–83
M protein quantification, 83–84
pattern interpretation, 80–84
proteins identified, 77–80
specimen requirements, 76–77
Severe acute respiratory syndrome (SARS) coronavirus, 538, 599, 602
Severe combined immunodeficiency (SCID) genetic molecular analysis, 12–13
leaky, 13, 716, 725
newborn screening, 261, 715–719
criteria for screening, 716
follow-up algorithm, 717
limitations with SCID and non-SCID identifications, 718
purpose and benefit of screening, 715
results of screening in Wisconsin, 717–718
T-cell receptor-excision circle (TREC), 715–719
NK cells, 701
treatment, 715
SH2D1A, 729, 775–776
Shadow artifact, immunofixation, 95–96
Shell vial centrifugation culture, 541
Shewart control chart, 1188
Shingles, 556
Short-pass filter, 152–153
Shippers, 556
Short-pH filter, 152–153
Short tandem repeat (STR), 1161–1164
Short-term assay, 1119–1120
SHTR (Single Molecule Real Time) chip, 1088
SH2D1A, 729, 775–776
SLE. See Systemic lupus erythematosus (SLE)
Small cell lung cancer, 841
Small lymphocytic lymphoma (SLL), 226, 1023–1024
Smallpox, 557
Small RNAs, immunoprecipitation analysis in
active cell movement and, 351
respiratory viruses, 607
Smad, 868–869
Smad, 868–869
SmD antigen, antibodies to, 868–869
SmN antigen, antibodies to, 868–869
Smolka, plasma cells, 239–240
SMM. See Smoldering multiple myeloma
Smoldering multiple myeloma (SMM), 237–237, 242–244, 247
IMWG diagnostic criteria, 237
progression to multiple myeloma, 236
Smoldering myeloma, 89–90
SMRPs (soluble mesothelin-related peptides), 1013
SMRT (Single Molecule Real Time) chip, 1088
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), 1013
SNP. See Single nucleotide polymorphism
SOAP-HLA software, 1087
SOD (superoxide dismutase), 314, 316
SOFIA (surround optical fiber immunoassay), 1087
Software, restrictions on, 6
Soluble mesothelin-related peptides (SMRPs), 1013
Soluble cholecystokinin-B receptor, 67
Soluble epidermal growth factor receptor (sEGFR), 1013
Soluble Fas ligand (sFasL), 1013
Soluble interleukin-2 receptor (sIL-2R), 1013
Soluble interleukin-6 receptor (sIL-6R), 1013
Soluble interleukin-1 receptor (sIL-1R), 1013
Soluble interleukin-15 receptor (sIL-15R), 1013
Soluble interleukin-18 receptor (sIL-18R), 1013
Soluble interleukin-27 receptor (sIL-27R), 1013
Soluble interleukin-23 receptor (sIL-23R), 1013
Soluble interleukin-36 receptor (sIL-36R), 1013
Soluble interleukin-22 receptor (sIL-22R), 1013
Soluble intercellular adhesion molecule 1 (sICAM-1), 977
Soluble intercellular adhesion molecule 1 (sICAM-1), 977
Soluble intercellular adhesion molecule 1 (sICAM-1), 977
Soluble macromolecule (sMAC), 1013
Soluble marker (sMAC), 1013
Specimen collection. See specific tests
Spectra Analyser tools, 1116
SPEP (serum protein electrophoresis), 65–66, 69–71
Spin amplification shell vial assay, for human herpesvirus-6, 581–582
Spirochaetes, 419
Sporotrichosis, 419–430
Splenic marginal zone lymphoma, 227, 1023
Splicing
alternative, 58
analysis programs, 11
conserved splicing motifs, 10
Splicing regulatory elements (SREs), 10
Stable isotope standards and capture by anticancer antibodies (SISCAPA), 41
Stain index, 136–138
Standard curve preparation, from multiplex cytokine assay, 328–329
Staphylococcus aureus
in Chédiak-Higashi syndrome patients, 771
in chronic granulomatous disease (CGD), 767
neutropenia and, 765
STAG1
flow cytometry assays
gain-of-function alleles in CMCD (chronic mucocutaneous candidiasis), 200–201
phosphorylation levels as signal for type 1 cytokine signaling abnormalities, 200
phosphorylated, 369
STAG1 gene, 13
STAG3 deficiency, 721, 728
STAG3 gene, 13–14
STAT4, 139–360
STAT5b deficiency, 723, 728
STAT5b, 301, 306, 316
STAT5b, 301, 306
STAT5b, 301, 306
Statistical data analysis
from cellular assays, 1119–1120
from immunologic monitoring, 1047
Stauroporine, 201
Stem Cell Enumeration Kit, 189
Stem CXP, 188–189, 191
Stem-Kit (Beckman-Coulter), 187–189
Stems cells, hematopoietic. See Hematopoietic stem cells
Stiff-man syndrome, 937, 945
Stimulated, 305
Stimulation index, lymphocyte proliferation assay, 282
Stinging-insect assessment, 808
Stokes shift, 156
Stomach flu, 640
STR (short tandem repeat), 1116–1116
Strychnos cyparissias, 401
Streplococci, group A, 395–401
Streptococcus pneumoniae
C-reactive protein and, 79
multiplexed opsonophagocytic killing assay (MOPA4) for functional antibodies against, 285–288
Thyroid-stimulating hormone receptor-blocking antibody, 933–935
assays for, 934–935
cellular study, 935
nature and properties of, 933–934
Thyroid-stimulating hormone receptor-stimulating antibody, 933–935
Thyroid-stimulating immunoglobulin assay, 934
Thyroxinase, antibodies to, 930–931
TIA-1 protein, 1027
Tick-borne encephalitis, 648–649, 654–655
Tick-borne lymphadenopathy, 463
Tick-borne relapsing fever, 427
Time-of-flight (TOF) mass spectrometer, 37–38, 1142–1143
Time-resolved fluorescence immunoassay (TRFIA), 559
Tissue handling and freezing procedure, 736–737
Tissue transglutaminase, antibodies against, 984–985
Titin, 959, 978
TLRσ. See Toll-like receptors
T lymphocyte. See T cell
TMA (transcription-mediated amplification), 448
TMPRSS7 fusion products, 1052
TNF-α. See Tumor necrosis factor-α
TNF-β (tumor necrosis factor-β), 360
Tocilizumab, 361
TOD (time-of-flight) mass spectrometer, 37–38, 1142–1143
Togaviridae, 448
Toll-like receptors (TLRs), 358–359, 923, 610
Toxocariasis, 497
Topoisomerase I, antibody to, 889
Transforming growth factor (TGF), 339
Transforming growth factor-β (TGF), 339
Transfusion-related acute lung injury, 339
β-transferrin, electrophoresis of, 75–76, 79, 1135
Transcriptome, 1132
Transplantation, 1063–1168
Transplacental transfer of antibodies
Transmigration assays, 349
Transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), 740
Transmigration assays, 349
Transmissible spongiform encephalopathies (TSEs), 682–692
Transplacental transfer of antibodies
measles viruses, 611
mumps viruses, 614
Transplantation, 1063–1168
cellular immune response, evaluation of, 1108–1121
cell division and precursor frequency analysis using multiparameter CFSE-MLC, 1111–1112
clinical applications, 1120–1121
cytokine measurements, 1113–1116
ELISPOT assay, 1113–1114
flow cytometry, 1114–1116
immune cell function assay, 1116–1119
intracellular ATP synthesis assay, 1116–1119
intracellular cytokine staining (ICS), 1114–1116
mixed lymphocyte culture assay, 1108–1110
propagation of lymphocyte cultures from allograft biopsy specimens, 1112–1113
T-cell precursor frequency determination by limiting dilution assay, 1110–1111
validation of assays, 1119–1120
chimerism testing, 1161–1165
demand for, 1065–1066
humoral response, evaluation of, 1091–1091
goals and aims, 1092
interpretation, 1097–1101
methods, 1092–1096
relevance, 1091–1092
validation, 1096–1097
killer cell immunoglobulin-like receptors (KIRs), 1150–1158
non-HLA antibodies in organ transplantation, 1066, 1103–1106
clinical relevance, 1103
mechanisms of allograft injury, 1103–1104
non-HLA antigens implicated in transplantation, 1103
testing methods, 1104–1105
testing procedures, 1105–1120
rabies virus and, 666
risk assessment, 1101
Transplant rejection
chemokines in, 346–348
clinical application of molecular characterization of human allografts, 1135–1140
microarray studies, 1136–1139
real-time quantitative PCR, 1135–1136
sequencing, 1140
complement activation, 1123–1129
acute rejection, 1128–1129
chronic rejection, 1129
composite tissue grafts, 1127
heart, 1126–1127
hypercapture rejection, 1128
kidney, 1126
liver, 1127
lung, 1127
pancreas, 1127
polycyclic and monocyclic antibodies to C1q, 1123
polycyclic and monocyclic antibodies to C3 split products, 1124–1126
polycyclic and monocyclic antibodies to C4d, 1123–1124
polycyclic and monocyclic antibodies to C5b-C9, 1126
products in specific organ transplants, 1126–1127
small intestine, 1127
soluble complement products in body fluids, 1127–1128
soluble products in urine, or bronchoalveolar lavage fluid, 1127–1128
specific organ transplants, 1126–1127
types of injury, 1128–1129
gene expression profiles in allografts, techniques for characterization, 1132–1135
absolute quantification of mRNA levels by PCR, 1133
competitive quantitative PCR, 1133
microarray assays, 1134
next-generation sequencing, 1134–1135
PCR, 1132–1133
preamplification-enhanced real-time PCR assay, 1133–1134
real-time quantitative PCR, 1133
molecular characterization in solid organ transplantation, 1132–1146
clinical applications of human allografts, 1135–1140
gene expression profiles in allografts, 1132–1135
protein biomarker validation platforms, 1145
proteome and peptidome, 1140–1145
protein biomarker validation platforms, 1145
ELISA, 1145
selected reaction monitoring, 1145
proteome studies, 1140–1145
bottom-up approach, 1140
capillary electrophoresis followed by mass spectrometry (CE-MS), 1142–1143
difference gel electrophoresis (DIGE), 1140, 1142–1143
gel-based studies, 1142, 1143
high-throughput studies, 1140, 1142–1144
liquid chromatography coupled with mass spectrometry (LC-MS), 1142–1143
peptidomics, 1144
protein arrays, 1144–1145
surface-enhanced laser desorption ionization-time of flight mass spectrometry (SELDI-TOF MS), 1142–1143
top-down approach, 1140, 1142–1143
two-dimensional gel electrophoresis (2DE), 1140, 1142–1143
Transportation of frozen PBMC, 263
Transhyretin
electrophoresis of, 75, 77
in primary amyloidosis, 115
TREC (T-cell receptor-excision circle), 8, 713, 715–719, 725
Treg. See Regulatory T cell
Treponema carateum, 412
Treponema denticola, 413
Treponema pallidum, 412–417
cellular manifestations, 412–413
epidemiology, 412
incidence, 412
microbiology, 412
natural history, 412–423
subsp. endemiaum, 412
subsp. pallidum, 412
subsp. pertenue, 412
testing
algorithms, 416–417
direct detection, 413
indications for, 413
nontreponemal tests, 413–414
quality control and assurance, 415–416
rapid point-of-care tests, 415
serology, 413–415
treponemal antibody tests, 414–415

SUBJECT INDEX ▼ 1237
definition, 1182
non-HLA antibody testing procedures, 1106
validation parameters, 1183–1187
accuracy, 1183–1184
analytical sensitivity and specificity, 1188
clinical (diagnostic) sensitivity, 1186–1187
clinical (diagnostic) specificity, 1187
limit of blank (LoB), 1185
limit of detection (LoD), 1185–1186
limit of quantitation (LoQ), 1185–1186
linearity, 1185–1186
precision, 1184–1185
reference range/interval, 1186
Variable-number tandem repeat (VNTR), 1161–1164
Variable (V) region, immunoglobulin, 53, 66–67
Variant Creutzfeldt-Jakob disease (vCJD), 556–560
Variation databases, 11
Variant Creutzfeldt-Jakob disease (vCJD), 556–560
Variable (V) region, immunoglobulin, 53, 66–67
Variable-number tandem repeat (VNTR), 1161–1164
Variable (V) region, immunoglobulin, 53, 66–67
Variant Creutzfeldt-Jakob disease (vCJD), 556–560
Variation databases, 11
Varicella, 556
Varicella-zoster virus, 556–560
antibody avidity, 559–560
cytopathic effect (CPE), 557
direct examination from skin lesions, 558
direct fluorescent antibody (DFA), 558
electron microscopy, 558
ELISA, 558–560
enzyme immunoassay (ELISA), 559
fluorescent antibody to membrane antigen (FAMA assay), 558–559
genetic stability, 557
lateral flow assay, 558–559
latex agglutination, 558–559
neutralization assays, 559
overview, 556–557
PCR, 556–558
rapid diagnosis, 540
respiratory symptoms, 600
serologic testing, 558–560
specimen collection, 557
time-resolved fluorescence immunoassay (TRFIA), 559
virus isolation, 557–558
Vascular cellular adhesion molecule 1, as
Varicella-zoster virus, 556–560
Variation databases, 11
Variant Creutzfeldt-Jakob disease (vCJD), 556–560
Variable (V) region, immunoglobulin, 53, 66–67
Variable-number tandem repeat (VNTR), 1161–1164
Variable (V) region, immunoglobulin, 53, 66–67
Variant Creutzfeldt-Jakob disease (vCJD), 556–560
Variation databases, 11
Varicella, 556
Varicella-zoster virus, 556–560
antibody avidity, 559–560
cytopathic effect (CPE), 557
direct examination from skin lesions, 558
direct fluorescent antibody (DFA), 558
electron microscopy, 558
ELISA, 558–560
enzyme immunoassay (ELISA), 559
fluorescent antibody to membrane antigen (FAMA assay), 558–559
genetic stability, 557
lateral flow assay, 558–559
latex agglutination, 558–559
neutralization assays, 559
overview, 556–557
PCR, 556–558
rapid diagnosis, 540
respiratory symptoms, 600
serologic testing, 558–560
specimen collection, 557
time-resolved fluorescence immunoassay (TRFIA), 559
virus isolation, 557–558
Vascular cellular adhesion molecule 1, as a biomarker of chronic myocardial injury, 977
Vasculitis
antineutrophil cytoplasmic antibodies (ANCA)-associated, 909–914
disease diagnosis, 909
tenotrophil extracellular traps and, 914
tests for ANCA, 909–911
treatment, 913–914
types, 911–913
cryofibrinogenemia and, 107
cryoglobulins and, 101–102, 104, 106, 911
nomenclature, 911
types
anti-glomerular basement disease, 911
drug-induced vasculitis, 913
eosarcoidic granulomatosis with polyangitis (EGPA), 913
giant cell arteritis, 911
granulomatosis with polyangitis, 912–913
IgA vasculitis, 911
Kawasaki disease, 911
large vessel vasculitis, 911
medium vessel vasculitis, 911
microscopic polyangitis, 913
polymyositis, 913
polymyalgia nodosa, 911
small vessel vasculitis, 911
Takayasu’s arteritis, 911
VCF file, 8
Veneral Disease Research Laboratory (VDRL) assay, 413–416
Venezuelan equine encephalitis (VEE), 650, 652, 656
Verification, 1181
Verruca peruana, 475
Viability dyes, in polychromatic flow cytometry, 149–150, 158–160
Vimentin, 899, 1051, 1103
Viremia, 682, 684, 687, 691
Virus isolation, 557–558
time-resolved fluorescence immunoassay
serologic testing, 558–560
respiratory symptoms, 600
rapid diagnosis, 540
PCR, 544–545
neutralization assays, 544
quantitative assays, 544
PCR, 544–545
quantitative assays, 544–546
rapid, table of, 539–540
test monitoring, 547
test selection, 546
test validation, 546–547
natural killer (NK) cell control of infections in hematopoietic stem cell transplantation, 1155–1156
in solid organ transplantation, 1156–1157
ViroSeq HIV-1 genotyping system, 706–707
Virtual crossmatching, 1065, 1097–1099
Virus
antibody neutralization of, 282
cardiovascular diseases and, 979
genotyping assays, 544
human immunodeficiency virus (HIV), 544, 546
human herpesvirus-7, 583
human immunodeficiency virus (HIV), 703
human T-cell lymphotropic virus, 676–677
Mycoplasma pneumoniae, 445
putative antibodies, 494
prion diseases, 686, 690
Western equine encephalitis (WEE), 649–652, 654, 656
Westgard, James O., 1188
West Nile virus, 648–649, 652–656
WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, 765–767
White blood cells, paroxysmal nocturnal hemoglobinuria (PNH), 168–180
WHO. See World Health Organization
Whole-exome sequencing, 1088
Whole-genome sequencing, 1088
Whole-lung antigen challenge, 811
Whooping cough, 600
Whole-organ transplant, 1155–1156
World Association of Societies of Pathology and Laboratory Medicine, 1178
Wells-Brookfield viscometer, 71
Western blot
anti-glomerular basement membrane (anti-GMB) antibodies, 385–387
anti-phospholipase A2 receptor antibodies, 387–388
antirental antibodies, 1000
Borreli burgdorferi, 422–423, 425
tantivirus, 660–661
human herpesvirus-6, 583
human herpesvirus-7, 586
human immunodeficiency virus (HIV), 703
human T-cell lymphotropic virus, 676–677
Mycoplasma pneumoniae, 445
putative antibodies, 494
prion diseases, 686, 690
Western equine encephalitis (WEE), 649–652, 654, 656
Westgard, James O., 1188
West Nile virus, 648–649, 652–656
WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, 765–767
White blood cells, paroxysmal nocturnal hemoglobinuria (PNH), 168–180
WHO. See World Health Organization
Whole-exome sequencing, 1088
Whole-genome sequencing, 1088
Whole-lung antigen challenge, 811
Whooping cough, 600
Winter vomiting disease, 640
WISH cells, 358
Wiskott-Aldrich syndrome, 281, 713, 723, 729, 795–796
Wolbachia, 461–462
Woodchuck hepatitis virus, 624
World Association of Societies of Pathology and Laboratory Medicine (WASPMAL), 1178
World Health Organization (WHO)
classification of lymphoid neoplasm, 1015–1017
laboratory quality assurance, 1178
Nomenclature Committee for Factors of the HLA System, 1072
Wuchereria bancrofti, 494
WU polyomavirus, 596, 600
X(C) chemokines, 343
Xenopus laevis, 462
XIAP/BIRC4, 1189
X-linked lymphoproliferative syndrome, 1018–1019
X-linked chromosomal inactivation, 1018–1019
X-linked disorders
- agammaglobulinemia, 32–33
- anhidrotic ectodermal dysplasia with immunodeficiency, 723, 728
- antibody deficiency, 743–745
- hyper IgM syndrome, 201, 281, 726, 742–744
- lymphoproliferative disease, 724, 729, 775–776
- lymphoproliferative syndrome 1, 743–745
- lymphoproliferative syndrome 2, 743–745

X-linked inhibitor of apoptosis (XIAP), 724, 729, 731
Xpert Flu assay, 605
Xpert HIV-1 Qual, 702
Xpert HIV-1 viral load assay, 702
Xpert MTB/RIF assay, 433
xTAG Respiratory Virus Panel, 605–606

Yellow fever virus, 648–656

Zamamivir, 602
Zap-70 (zeta chain-associated protein kinase), 226–227, 229–232, 1024
ZAP-70 deficiency, 722, 727
Zinc transporter-8 (ZnT8) autoantibodies, 936–938, 941–942
Zombie stains, 149
Zone electrophoresis, 75–76
Zoonoses, hantaviruses as, 658
Zoster, 556. See also Varicella-zoster virus