Contents

Editorial Board ix
Contributors xi

1.1.1 Introduction / 1.1.1-1
MARYLYNN V. YATES

GENERAL METHODOLOGY

VOLUME EDITOR: SURESH D. PILLAI
SECTION EDITORS: YOICHI KAMAGATA,
CLEBER C. OUVERNEY, DOUGLAS R. CALL,
STEFAN J. GREEN, YILDIZ T. CHAMBERS, AND
JOHN SCOTT MESCHKE

2.1 CULTURE-BASED AND PHYSIOLOGICAL
DETECTION

2.1.1 Detection of Specific Taxa Using
Chromogenic and Fluorogenic Media / 2.1.1-1
MOHAMMAD MANAFI

2.1.2 Anaerobic Cultivation / 2.1.2-1
TAKASHI NARIHIRO AND YOICHI
KAMAGATA

2.1.3 New Devices for Cultivation / 2.1.3-1
YOSHITERU AOI AND SLAVA EPSTEIN

2.2 MICROSCOPIC METHODS

2.2.1 Gold-Based In Situ Hybridization for
Phylogenetic Single-Cell Detection of
Prokaryotes in Environmental Samples / 2.2.1-1
THILO EICKHORST AND HANNES SCHMIDT

2.2.2 Assessment of Prokaryotic Biological Activity
at the Single-Cell Level by Combining
Microautoradiography and Fluorescence
in situ Hybridization / 2.2.2-1
CLEBER C. OUVERNEY

2.3 TARGET-SPECIFIC DETECTION

2.3.1 Antibody-Based Technologies for
Environmental Biodetection / 2.3.1-1
CHERYL L. BAIRD AND SUSAN M. VARNUM

2.3.2 PCR, Real-Time PCR, Digital PCR, and
Isothermal Amplification / 2.3.2-1
RACHEL A. BARTHOLOMEW, JANINE
R. HUTCHISON, TIMOTHY M. STRAUB,
AND DOUGLAS R. CALL

2.3.3 Microarray-Based Environmental
Diagnostics / 2.3.3-1
DA’RELL P. CHANDLER

2.3.4 Field Application of Pathogen Detection
Technologies / 2.3.4-1
TIMOTHY M. STRAUB, DOUGLAS
R. CALL, CINDY BRUCKNER-LEA,
HEATHER COLBURN, CHERYL L. BAIRD,
RACHEL A. BARTHOLOMEW,
RICHARD OZANICH, AND
KRISTIN JARMAN

2.4 MICROBIAL COMMUNITY ANALYSIS OF
ENVIRONMENTAL SAMPLES WITH
NEXT-GENERATION SEQUENCING

2.4.1 Introduction to Microbial
Community Analysis of Environmental
Samples with Next-Generation
Sequencing / 2.4.1-1
STEFAN J. GREEN AND JOSH D. NEUFELD

2.4.2 Microbial Community Analysis Using
High-Throughput Amplicon
Sequencing / 2.4.2-1
DENNY IONESCU, WILL A. OVERHOLT,
MICHAEL D. J. LYNCH, JOSH D. NEUFELD,
ANKUR NAQIB, AND STEFAN J. GREEN

2.4.3 Functional Metagenomics: Procedures and
Progress / 2.4.3-1
LAURA S. MORRIS AND JULIAN
R. MARCHESI

2.4.4 Metagenomics: Assigning Functional
Status to Community Gene
Content / 2.4.4-1
NASEER SANGWAN AND RUP LAL

2.4.5 Generation and Analysis of Microbial
Metatranscriptomes / 2.4.5-1
NEHA SARODE, DARREN J. PARRIS, SANGITA
GANESH, SHERRY L. SESTON, AND FRANK
J. STEWART
CONTENTS

2.5 QA/QC in Environmental Microbiology
2.5.1 Introduction to Principles of Quality Assurance / 2.5.1-1
KEVIN K. CONNELL
2.5.2 General Quality Control / 2.5.2-1
ROBIN K. OSHIRO
2.5.3 Quality Control for Bacteriological Analyses / 2.5.3-1
ELLEN BRAUN-HOWLAND
2.5.4 Quality Control for Virological Analyses / 2.5.4-1
RICHARD E. DANIELSON
2.5.5 Quality Control for USEPA Method 1623 Protozoan Analysis and PCR Analyses / 2.5.5-1
GEORGE D. DI GIOVANNI AND GREGORY D. STURBAUM
2.5.6 The Role of Statistical Thinking in Environmental Microbiology / 2.5.6-1
J. VAUN MCArTHUR AND R. CARY TUCKFIELD
2.5.7 Study Design / 2.5.7-1
YILDIZ T. CHAMBERS AND ROBIN K. OSHIRO

2.6 Sampling Methods
2.6.1 Water Sampling and Processing Techniques for Public Health-Related Microbes / 2.6.1-1
VINCENT HILL
2.6.2 Surface Sampling / 2.6.2-1
LAURA J. ROSE, JUDITH NOBLE-WANG, AND MATTHEW J. ARDUINO
2.6.3 Soil Sampling for Microbial Analyses / 2.6.3-1
JOHN BROOKS
2.6.4 Microbiological Sampling of Wastewater and Biosolids / 2.6.4-1
NICOLETTE A. ZHOU, ERIC C. THOMPSON, AND JOHN SCOTT MESCHKE

Environmental Public Health Microbiology

VOLUME EDITOR: MARYLYNN V. YATES
SECTION EDITORS: GARY A. TORANZOS, MARK P. BUTTNER, ED TOPP, VALERIE J. HARWOOD, AND MARYLYNN V. YATES

3.1 Water
3.1.1 Current and Developing Methods for the Detection of Microbial Indicators in Environmental Freshwaters and Drinking Waters / 3.1.1-1
TASHA M. SANTIAGO-RODRIGUEZ, JULIE KINZELMAN, AND GARY A. TORANZOS
3.1.2 Best Practices for Cyanobacterial Harmful Algal Bloom Monitoring / 3.1.2-1
TIMOTHY G. OTTEN AND HANS W. PAERL
3.1.3 Assessing the Efficiency of Wastewater Treatment / 3.1.3-1
GRACIELA RAMIREZ TORO AND HARVEY MINNIGH
3.1.4 Epidemiologic Aspects of Waterborne Infectious Disease / 3.1.4-1
SAMUEL DOREVITCH
3.1.5 Waterborne Enteric Viruses: Diversity, Distribution, and Detection / 3.1.5-1
MORTEZA ABBASZADEGAN AND ABSAR ALUM
3.1.6 Detection of Protozoa in Surface and Finished Waters / 3.1.6-1
ABSAR ALUM, ERIC N. VILLEGAS, SCOTT P. KEELY, KELLY R. BRIGHT, LAURA Y. SIFUENTES, AND MORTEZA ABBASZADEGAN
3.1.7 Drinking Water Microbiology / 3.1.7-1
MARYLYNN V. YATES

3.2 Air
3.2.1 Introduction to Aerobiology / 3.2.1-1
PAULA KRAUTER AND LINDA D. STETZENBACH
3.2.2 Sampling for Airborne Microorganisms / 3.2.2-1
SERGEY A. GRINSHPUN, MARK P. BUTTNER, GEDIMINAS MAINELIS, AND KLAUS WILLEKE
3.2.3 Analysis of Bioaerosol Samples / 3.2.3-1
PATRICIA CRUZ AND MARK P. BUTTNER
3.2.4 Fate and Transport of Microorganisms in Air / 3.2.4-1
GARY S. BROWN AND ALAN JEFF MOHR
3.2.5 Airborne Fungi and Mycotoxins / 3.2.5-1
DE-WEI LI, ECKARDT JOHANNING, AND CHIN S. YANG
3.2.6 Airborne Bacteria, Archaea, and Endotoxin / 3.2.6-1
PETER S. THORNE, CAROLINE DUCHAINE, AND PASCALE BLAIS LECOURS
3.2.7 Airborne Viruses / 3.2.7-1
SYED A. SATTAR, NITIN BHARDWAJ, AND M. KHALID IJAZ
3.2.8 Aerobiology of Agricultural Pathogens / 3.2.8-1
ESTELLE LEVETIN
3.2.9 Legionellae and Legionnaires’ Disease / 3.2.9-1
CLARESSA E. LUCAS AND BARRY S. FIELDS

3.3 Soil
3.3.1 Pathogenic Viruses and Protozoa Transmitted by Soil / 3.3.1-1
PASCAL DELAQUIS, JULIE BRASSARD, AND ALVIN GAJADHAR
3.3.2 Natural Soil Reservoirs for Human Pathogenic and Fecal Indicator Bacteria / 3.3.2-1
MARIA LAURA BOSCHIROLI, JOSEPH FALKINHAM, SABINE FAVRE-BONTÉ, SYLVIE NAZARET, PASCAL PIVETEAU, MICHAEL SADOWSKY, MURULEE BYAPPANAHALLI, PASCAL DELAQUISS, AND ALAIN HARTMANN

3.4 Microbial Source Tracking
3.4.1 The Evolving Science of Microbial Source Tracking / 3.4.1-1
VALERIE J. HARWOOD, CHARLES HAGEDORN, AND MICHAEL SADOWSKY

3.4.2 Validation of Microbial Source Tracking Markers and Detection Protocols: Considerations for Effective Interpretation / 3.4.2-1
ASJA KORAJKIC, DON STOECKEL, AND JOHN F. GRIFFITH

3.4.3 Overview of Microbial Source Tracking Methods Targeting Human Fecal Pollution Sources / 3.4.3-1
ORIN C. SHANKS, HYATT GREEN, ASJA KORAJKIC, AND KATHARINE G. FIELD

3.4.4 Methods of Targeting Animal Sources of Fecal Pollution in Water / 3.4.4-1
ANICET R. BLANCH, ELISENDA BALLESTÉ, JENNIFER WEIDHAAS, JORGE SANTO DOMINGO, AND HODON RYU

3.4.5 Microbial Source Tracking: Field Study Planning and Implementation / 3.4.5-1
JULIE KINZELMAN AND WARISH AHMED

3.4.6 Fecal Indicator Organism Modeling and Microbial Source Tracking in Environmental Waters / 3.4.6-1
MEREDITH B. NEVERS, MURULEE BYAPPANAHALLI N. BYAPPANAHALLI, MANATHA S. PHANIKUMAR, AND RICHARD L. WHITMAN

3.5 Microbial Risk Assessment
3.5.1 Risk Assessment Framework / 3.5.1-1
MARYLYNN V. YATES

3.5.2 Exposure Assessment / 3.5.2-1
SUSAN R. PETTSON AND NICHOLAS J. ASHBOLT

3.5.3 Dose-Response Modeling and Use: Challenges and Uncertainties in Environmental Exposure / 3.5.3-1
MARK H. WEIR

4.1 Theory
4.1.1 Phylogenomic Networks of Microbial Genome Evolution / 4.1.1-1
TAL DAGAN, OVIDIU POPA, THORSTEN KLÖSGES, AND GIDDY LANDAN

4.1.2 Evolutionary Ecology of Microorganisms: From the Tamed to the Wild / 4.1.2-1
JAY T. LENNON AND VINCENT J. DENEF

4.2 Aquatic Environments
4.2.1 The Microbial Ecology of Benthic Environments / 4.2.1-1
ROBERT H. FINDLAY AND TOM J. BATTIN

4.2.2 Heterotrophic Planktonic Microbes: Viruses, Bacteria, Archaea, and Protozoa / 4.2.2-1
JED A. FUHRMAN AND DAVID A. CARON

4.2.3 Aquatic Biofilms: Development, Cultivation, Analyses, and Applications / 4.2.3-1
JOHN R. LAWRENCE, THOMAS R. NEU, ARMELLE PAULE, DARREN R. KORBER, AND GIDEON M. WOLFARDT

4.3 Extreme Environments
4.3.1 The Microbiology of Extremely Acidic Environments / 4.3.1-1
D. BARRIE JOHNSON AND ANGELES AGUILERA

4.3.2 Life in High Salinity Environments / 4.3.2-1
AHARON OREN

4.3.3 Microbial Life in Extreme Low-Biomass Environments: A Molecular Approach / 4.3.3-1
KASTHURI VENKATESWARAN, MYRON T. LA DUC, PARAG VAISHAMPAYAN, AND JAMES A. SPRY

4.3.4 Life in High-Temperature Environments / 4.3.4-1
BRIAN P. HEDLUND, SCOTT C. THOMAS, JEREMY A. DODSWORTH, AND CHUANLUN L. ZHANG

4.4 Animal-Gut Microbiomes
4.4.1 Invertebrate Gut Associations / 4.4.1-1
DANIELE DAFFONCHIO, ALBERTO ALMA, GUIDO FAVIA, LUCIANO SACCHI, AND CLAUDIO BANDI

4.4.2 Studying the Mammalian Intestinal Microbiome Using Animal Models / 4.4.2-1
FLOOR HUGENHOLTZ, JING ZHANG, PAUL W. O’TOOLE, AND HAUKE SMIDT

4.4.3 Animal Gut Microbiomes / 4.4.3-1
RICHARD J. ELLIS AND CHRISTOPHER S. MCSWEENEY

Microbial Ecology
VOLUME EDITOR: ROBERT V. MILLER
SECTION EDITORS: LARRY J. FORNEY, ROBERT H. FINDLAY, BRIAN P. HEDLUND, AND JULIAN R. MARCHESI

4.1 Theory

Biodegradation and Biotransformation
VOLUME EDITOR: CINDY H. NAKATSU
SECTION EDITORS: CINDY H. NAKATSU AND CHRISTOPHER RENSING
5.1 Biodegradation

5.1.1 Genomic Features and Genome-Wide Analysis of Dioxin-Like Compound Degraders / 5.1.1-1
MASAKI SHINTANI AND KAZUHIDE KIMBARA

5.1.2 Biodegradation of Organochlorine Pesticides / 5.1.2-1
YUJI NAGATA, MICHIRO TABATA, YOSHIYUKI OHTSUBO, AND MASATAKA TSUDA

5.1.3 Anaerobic Degradation of Aromatic Compounds / 5.1.3-1
WEIMIN SUN, VALDIS KRUMINS, DONNA E. FENNELL, AND MAX M. HÄGGBLOM

5.1.4 Microbial Electrochemical Technologies Producing Electricity and Valuable Chemicals from Biodegradation of Waste Organic Matters / 5.1.4-1
TAEHO LEE, AKIHIRO OKAMOTO, SOKHEE JUNG, RYUHEI NAKAMURA, JUNG RAE KIM, KAZUYA WATANABE, AND KAZUHITO HASHIMOTO

5.1.5 A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds / 5.1.5-1
KENGO INOUE, ONRUTHAI PINYAKONG, KANO KASUGA, AND HIDEAKI NOJIRI

5.1.6 Environmental Systems Microbiology of Contaminated Environments / 5.1.6-1
TERRY C. HAZEN AND GARY S. SAYLER

5.2 Biotransformation

5.2.1 Breathing Iron: Molecular Mechanism of Microbial Iron Reduction by Shewanella oneidensis / 5.2.1-1
REBECCA E. COOPER, JENNIFER L. GOFF, BEN C. REED, RAMANAN SEKAR, AND THOMAS J. DICHRISTINA

5.2.2 Experimental Geomicrobiology: From Field to Laboratory / 5.2.2-1
TIMOTHY S. MAGNUSON AND RHESA N. LEDBETTER

5.2.3 Microbial Uses in the Remediation of Metal-Impacted Soils / 5.2.3-1
TIMBERLEY ROANE AND MUNIRA LANTZ
EDITORIAL BOARD

Mark P. Buttner Section 3.2
School of Community Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154

Douglas R. Call Section 2.3
Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164

Yildiz T. Chambers Section 2.5
CSC Science, Engineering, and Mission Support, Alexandria, VA 22310

Robert H. Findlay Section 4.2
University of Alabama, Department of Biological Sciences, Tuscaloosa, AL 35487

Larry J. Forney Section 4.1
Department of Biological Sciences, University of Idaho, Moscow, ID 83844

Stefan J. Green Section 2.4
Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612

Valerie J. Harwood Section 3.4
Department of Integrative Biology, University of South Florida, Tampa, FL 33620

Brian P. Hedlund Section 4.3
School of Life Sciences, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV 89154

Yoichi Kamagata Section 2.1
Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan

Julian R. Marchesi Section 4.4
School of Biosciences, Cardiff University, Centre for Digestive and Gut Health, Imperial College London, Cardiff, Wales CF10 3AT, United Kingdom

John Scott Meschke Section 2.6
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105

Cleber C. Ouverney Section 2.2
Department of Biological Sciences, San Jose State University, San Jose, CA 95192

Christopher Rensing Section 5.2
Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark

Ed Topp Section 3.3
Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada

Gary A. Toranzos Section 3.1
Department of Biology, University of Puerto Rico, San Juan, PR 00932, Puerto Rico
CONTRIBUTORS

MORTEZA ABBASZADEGAN
Arizona State University, Tempe, AZ 85287

ANGELES AGUILERA
Centro de Astrobiología (INTA-CSIC), Madrid 28850, Spain

WARISH AHMED
CSIRO Land and Water Queensland Biosciences Precinct, St. Lucia, Queensland 4067, Australia

ALBERTO ALMA
Department of Agriculture, Forestry and Food Sciences
DISAFA, University of Turin, Grugliasco I-10095, Italy

ABSAR ALUM
Arizona State University, Tempe, AZ, 85287

YOSHITERU AOI
Institute of Sustainable Sciences and Development, Hiroshima University, Hiroshima 739-8529 Japan, and Northeastern University, Boston, MA 02115

MATTHEW J. ARDUINO
Centers for Disease Control and Prevention, Division of Healthcare Quality Promotion, Atlanta, GA 30329

NICHOLAS J. ASHBOLT
School of Public Health, University of Alberta, Edmonton, AB T6G 2G7, Canada

CHERYL L. BAIRD
Pacific Northwest National Laboratory, Biochemistry and Structural Biology, Fundamental and Computational Sciences Division, Richland, WA 99352

ELISENDA BALLESTÉ
Department of Microbiology, University of Barcelona, Barcelona 08028, Spain

CLAUDIO BANDI
Department of Veterinary Sciences and Public Health, University of Milan, Milan I-20133, Italy

RACHEL A. BARTHOLOMEW
Pacific Northwest National Laboratory, Chemical and Biological Signature Sciences Group, National Security Directorate, Richland, WA 99354

TOM J. BATTIN
Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland

NITIN BHARDWAJ
Advanced Medical Research Institute of Canada, Sudbury, ON P3E 5J1, Canada

PASCALE BLAIS LECOURS
Centre deRecherché, University Institute of Cardiology and Pulmonology of Québec, Université de Laval, Québec, QC G1K7P4, Canada

ANICET R. BLANCH
Department of Microbiology, University of Barcelona, Barcelona 08028, Spain

MARIA LAURA BOSCHIROLI
ANSES French Agency for Food, Environmental & Occupational Health Safety, Maisons-Alfort Animal Health Laboratory, Bacterial Zoonoses Unit, Maisons-Alfort 94706, France

JULIE BRASSARD
Agriculture and Agri-Food Canada, Food Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada

ELLEN BRAUN-HOWLAND
Laboratory of Environmental Biology, NYSDOH, Wadsworth Center, Biggs Laboratory, Empire State Plaza, Albany, NY 12201

KELLY R. BRIGHT
University of Arizona, Tempe, AZ 85287

JOHN BROOKS
Genetics and Precision Agriculture Unit, USDA-ARS, Mississippi State University, Mississippi State, MS 39762

GARY S. BROWN
Lockheed Martin Corporation, Scientific, Engineering, Response, Analytical Services, Las Vegas, NV 89119

CINDY BRUCKNER-LEA
Pacific Northwest National Laboratory, Richland, WA 99354
CONTRIBUTORS

MARK P. BUTTNER
School of Community Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154

MURULEE BYAPPANAHALLI
USGS Great Lakes Science Center, Ann Arbor, MI 48105

DOUGLAS R. CALL
Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164

DAVID A. CARON
Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089

YILDIZ T. CHAMBERS
CSC Science, Engineering, and Mission Support, Alexandria, VA 22310

DARRELL P. CHANDLER
Akonni Biosystems, Inc., Frederick, MD 21701

HEATHER COLBURN
Pacific Northwest National Laboratory, Richland, WA 99354

KEVIN K. CONNELL
Science & Engineering Line of Service, CSC, Alexandria, VA 22310

REBECCA E. COOPER
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

PATRICIA CRUZ
School of Community Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154

DANIELE DAFFONCHIO
Department of Food, Environmental and Nutritional Sciences, DeFENS, University of Milan, Milan I-20133, Italy

TAL DAGAN
Institute of Microbiology, Christian-Albrechts-University of Kiel, Kiel 24118, Germany

RICHARD E. DANIELSON
BioVir Laboratories, Inc., Benicia, CA 94510

PASCAL DELAQUIS
Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, BC V0H 1Z0, Canada

VINCENT J. DENEF
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109

GEORGE D. DI GIOVANNI
Environmental and Occupational Health Sciences, University of Texas School of Public Health, El Paso Regional Campus, El Paso, TX 79902

THOMAS J. DICHRISTINA
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

JEREMY A. DODSWORTH
Department of Biology, California State University, San Bernardino, CA 92407

SAMUEL DOREVITCH
U of Illinois at Chicago, School of Public Health, Chicago, IL 60612

CAROLINE DUCHAINE
Department of Biochemistry and Microbiology, Université Laval, Québec, QC G1K7P4, Canada

THILO EICKHORST
Soil Microbial Ecology, University of Bremen, Bremen 28359, Germany

RICHARD J. ELLIS
Animal and Plant Health Agency, Specialist Scientific Support Department, New Haw, Surrey KT15 3NB, United Kingdom

SLAVA EPSTEIN
Department of Biology, Northeastern University, Boston, MA 02115

JOSEPH FALKINHAM
III, Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061

GUIDO FAVIA
School of Biosciences and Biotechnology, University of Camerino, Camerino I-62032, Italy

SABINE FAVRE-BONTÉ
Microbial Ecology Laboratory, UMR 5557, CNRS/University Lyon I, Villeurbanne 69622, France

DONNA E. FENNELL
Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901

KATHARINE G. FIELD
Oregon State University, Department of Microbiology, Corvallis, OR 97331

BARRY S. FIELDS
Division of Global Disease Detection & Emergency Response, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333

ROBERT H. FINDLAY
University of Alabama, Department of Biological Sciences, Tuscaloosa, AL 35487

JED A. FUHRMAN
Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
CONTRIBUTORS

ALVIN GAJADHAR
Canadian Food Inspection Agency, Centre for Foodborne and Animal Parasitology, Saskatoon, SK S7N 2R3, Canada

SANGITA GANESH
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

JENNIFER L. GOFF
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

HYATT GREEN
US EPA, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45268

STEFAN J. GREEN
Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612

JOHN F. GRIFFITH
Southern California Coastal Water Research Program, Costa Mesa, CA 92626

SERGEY A. GRINSHPUN
University of Cincinnati, Center for Health-Related Aerosol Studies, Cincinnati, OH 45267

CHARLES HAGEDORN
Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061

MAX M. HÄGGBLOM
Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901

ALAIN HARTMANN
Agroecology Unit, UMR 1347, INRA/University of Burgundy/AgroSup Dijon, Dijon 21065, France

VALERIE J. HAVEN
Department of Integrative Biology, University of South Florida, Tampa, FL 33620

KAZUHITO HASHIMOTO
Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan

TERRY C. HAZEN
Department of Civil & Environmental Engineering, University of Tennessee/Oak Ridge National Laboratory, Knoxville, TN 37996

BRIAN P. HEDLUND
School of Life Sciences, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV 89154

VINCENT HILL
Centers for Disease Control and Prevention, Atlanta, GA 30333

FLOOR HUGENHOLTZ
Wageningen University, Laboratory of Microbiology, TI Food and Nutrition, Netherlands Consortium for Systems Biology, University of Amsterdam, Wageningen 6703HB, The Netherlands

JANINE R. HUTCHISON
Pacific Northwest National Laboratory, Chemical and Biological Signature Sciences Group, National Security Directorate, Richland, WA 99354

M. KHALID IJAZ
R&D Surface Care and Germ Protection, Reckitt Benckiser LLC., Montvale, NJ 07645

KENGO INOUE
University of Miyazaki, Biochemistry and Applied Biosciences, Miyazaki 889-2192, Japan

DANNY IONESCU
Leibniz Institute for Freshwater Ecology and Inland Fisheries, Neuglobsow, Stechlin 16775, Germany

KRISTIN JARMAN
Pacific Northwest National Laboratory, Applied Statistics and Computational Modeling Group, Fundamental and Computational Sciences Directorate, Richland, WA 99354

ECKARDT JOHANNING

D. BARRIE JOHNSON
College of Natural Sciences, Bangor University, Bangor LL57 2UW, United Kingdom

SOKHEE JUNG
School of Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Korea

YOICHI KAMAGATA
Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan

KANO KASUGA
Akita Prefectural University, Department of Biotechnology, Akita 010-0195, Japan

SCOTT P. KEELY
United States Environmental Protection Agency, Cincinnati, OH 45268

LEE J. KERKHOF
Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901

JUNG RAE KIM
School of Chemical and Biomolecular Engineering, Pusan National University, Pusan 609-735, Korea
KAZUHIDE KIMBARA
Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan

JULIE KINZELMAN
City of Racine Health Department, Racine, WI 53403

THORSTEN KLÖSGES
Institute of Molecular Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany

ASJA KORAJKIC
US Environmental Protection Agency, Cincinnati, OH 45268

DARREN R. KORBER
Department of Food and Bioproduct Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada

PAULA KRAUTER
Sandia National Laboratories (retired), Livermore, CA 94550

VALDIS KRUMINS
Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901

MYRON T. LA DUC
Jet Propulsion Lab, California Institute of Technology, Pasadena, CA 91109

RUP LAL
Department of Zoology, University of Delhi, Delhi 110007, India

GIDDY LANDAN
Institute of Microbiology, Christian-Albrechts-University of Kiel, Kiel 24118, Germany

MUNIRA LANTZ
Department of Integrative Biology, University of Colorado, Denver, Denver, CO 80217

JOHN R. LAWRENCE
Environment Canada, Saskatoon, SK S7N3H5, Canada

RHESA N. LEDBETTER
Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322

TAEHO LEE
Department of Environmental Engineering, Pusan National University, Pusan 609-735, Korea

JAY T. LENNON
Department of Biology, Indiana University, Bloomington, IN 47405

ESTELLE LEVETIN
Department of Biological Science, The University of Tulsa, Tulsa, OK 74104

DE-WEI LI
Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095

CLARESSA E. LUCAS
Division of Bacterial Diseases, National Center for Infectious Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333

MICHAEL D.J. LYNCH
Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada

TIMOTHY S. MAGNUSON
Department of Biological Sciences, Idaho State University, Pocatello, ID 83209

GEDIMINAS MAINELIS
Rutgers University, New Brunswick, NJ 08901

MOHAMMAD MANAFI
Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna 1090, Austria

JULIAN R. MARCHESI
School of Biosciences, Cardiff University, Centre for Digestive and Gut Health, Imperial College London, Cardiff, Wales CF10 3AT, United Kingdom

J. VAUN MCARTHR
Savannah River Ecology Laboratory, Aiken, SC 29803

CHRISTOPHER S. MCSWEENEY
CSIRO Animal, Food and Health Services, Queensland Biosciences Precinct, St. Lucia, Queensland 4067, Australia

JOHN SCOTT MESCHE
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105

HARVEY MINNIGH
Gabriella and Paul Rosenbaum Foundation, Bryn Mawr, PA 19010

ALAN JEFF MOHR
Life Sciences Division, U.S. Army, Dugway Proving Ground, Dugway, UT 84022

LAURA S. MORRIS
School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AT, United Kingdom

YUJI NAGATA
Department of Environmental Life Sciences, Graduate School of Life Sciences Tohoku University, Hatahira, Sendai 980-8577, Japan

RYUHEI NAKAMURA
Department of Applied Chemistry, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
ANKUR NAQIB
DNA Services Facility, University of Illinois at Chicago, Chicago, IL, 60613

TAKASHI NARIHIRO
Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba 605-8566, Japan, and Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801

SYLVIE NAZARET
Microbial Ecology Laboratory, UMR 5557, CNRS/University Lyon I, Villeurbanne 69622, France

THOMAS R. NEU
River Ecology, Helmholtz Centre for Environmental Research, Magdeburg 39114, Germany

JOSH D. NEUFELD
Department of Biology, University of Waterloo, Waterloo, ON NSL 3G1, Canada

MEREDITH B. NEVERS
U.S. Geological Survey, Great Lakes Science Center, Porter, IN 46304

JUDITH NOBLE-WANG
Centers for Disease Control and Prevention, Division of Healthcare Quality Promotion, Atlanta, GA 30329

HIDEAKI NOJIRI
The University of Tokyo, Biotechnology Research Center, Tokyo 13-8657, Japan

YOSHIYUKI OHTSUBO
Department of Environmental Life Sciences, Graduate School of Life Sciences Tohoku University, Hatahir, Sendai 980-8577, Japan

AKIHIRO OKAMOTO
Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089

AHARON OREN
Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

ROBIN K. OSHIRO
Engineering and Analysis Division, USEPA Headquarters, Washington, DC 20460

PAUL W. OTTOLE
School of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Cork T12 YN60, Ireland

TIMOTHY G. OTTEN
Department of Microbiology, Oregon State University, Corvallis, OR 97331

CLEBER C. OUVERNEY
Department of Biological Sciences, San Jose State University, San Jose, CA 95192

WILL A. OVERHOLT
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

RICHARD OZANICH
Pacific Northwest National Laboratory, Richland, WA 99355

HANS W. PAERL
Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC 28557

DARREN J. PARRIS
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

ARMELLE PAULE
Global Institute for Water Security, Saskatoon, SK S7N3H5, Canada

SUSAN R. PETTERSON
Water & Health Pty Ltd, Salamander Bay, NSW 2317, Australia

MANTHA S. PHANIKUMAR
Michigan State University, Department of Civil and Environmental Engineering, East Lansing, MI 48824

ONRUTHAI PINYAKONG
Chulalongkorn University, Department of Microbiology, Bangkok 10330, Thailand

PASCAL PIVETEAU
Agroecology Unit, UMR 1347 INRA/University of Burgundy/AgroSup Dijon, Dijon 21065, France

OVIDIU POPA
Institute of Microbiology, Christian-Albrechts-University of Kiel, Kiel 24118, Germany

GRACIELA RAMÍREZ TORO
Centro de Educación, Conservación e Interpretación Ambiental, Universidad Interamericana de Puerto Rico, San Germán, PR 00683, Puerto Rico

BEN C. REED
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

TIMBERLEY ROANE
Department of Integrative Biology, University of Colorado, Denver, Denver, CO 80217

LAURA J. ROSE
Centers for Disease Control and Prevention, Division of Healthcare Quality Promotion, Atlanta, GA 30329
HODON RYU
US EPA NRMRL/WSWRD/MCCB, Cincinnati, OH 45268

LUCIANO SACCHI
Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia I-27100, Italy

MICHAEL SADOWSKY
BioTechnology Institute, University of Minnesota, St. Paul, MN 55108

NASEER SANGWAN
Department of Zoology, University of Delhi, Delhi 110007, India

TASHA M. SANTIAGO-RODRIGUEZ
Department of Biology, Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407

JORGE SANTO DOMINGO
US EPA NRMRL/WSWRD/MCCB, Cincinnati, OH 45268

NEHA SARODE
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

SYED A. SATTAR
Centre for Research on Environmental Microbiology, University of Ottawa, Ottawa, ON K1H 8M5, Canada

GARY S. SAYLER
Department of Microbiology, University of Tennessee, Knoxville, TN 37996

HANNES SCHMIDT
Soil Microbial Ecology, University of Bremen, Bremen 28359, Germany

RAMANAN SEKAR
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

SHERRY L. SESTON
Department of Biology, Alverno College, Milwaukee, WI 53234

ORIN C. SHANKS
US EPA, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45268

MASAKI SHINTANI
Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Hamamatsu, Shizuoka 432-8561, Japan

LAURA Y. SIFUENTES
University of Arizona, Tempe, AZ 85287

HAUKE SMIDT
 Wageningen University, Laboratory of Microbiology, TI Food and Nutrition, Netherlands Consortium for Systems Biology, University of Amsterdam, Wageningen 6703HB, The Netherlands

JAMES A. SPRY
Jet Propulsion Lab, California Institute of Technology, Pasadena, CA 91109

LINDA D. STETZENBACH
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

DON STOECKEL
Batelle Memorial Institute, Columbus, OH 43201

TIMOTHY M. STRAUB
Pacific Northwest National Laboratory, Chemical and Biological Signature Sciences Group, National Security Directorate, Richland, WA 99354

GREGORY D. STURBAUM
ALS Laboratory Group, Molecular Biology, Scoresby, VIC 3179, Australia

WEIMIN SUN
Department of Biochemistry and Microbiology, Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901

MICHIRI TABATA
Department of Environmental Life Sciences, Graduate School of Life Sciences Tohoku University, Hatahira, Sendai 980-8577, Japan

SCOTT C. THOMAS
School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154

ERIC C. THOMPSON
King County Environmental Laboratory, Seattle, WA 98119

PETER S. THORNE
Department of Occupational and Environmental Health, The University of Iowa, College of Public Health, Iowa City, IA 52246

GARY A. TORANZOS
Department of Biology, University of Puerto Rico, San Juan, PR 00932, Puerto Rico

MASATAKA TSUDA
Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Hatahira, Sendai 980-8577, Japan

R. CARY TUCKFIELD
ECOSTATys LLC., Aiken, SC 29803
CONTRIBUTORS

PARAG VAISHAMPAYAN
Jet Propulsion Lab, California Institute of Technology, Pasadena, CA 91109

SUSAN M. VARNUM
Pacific Northwest National Laboratory, Biochemistry and Structural Biology, Fundamental and Computational Sciences Division, Richland, WA 99352

KASTHURI VENKATESWARAN
Jet Propulsion Lab, California Institute of Technology, Pasadena, CA 91109

ERIC N. VILLEGAS
United States Environmental Protection Agency, Cincinnati, OH 45268

KAZUYA WATANABE
School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan

JENNIFER WEIDHAAS
West Virginia University, Civil and Environmental Engineering, Morgantown, WV 26506

MARK H. WEIR
Department of Public Health, Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122

RICHARD L. WHITMAN
U.S. Geological Survey, Great Lakes Science Center, Porter, IN 46304

KLAUS WILLEKE
University of Cincinnati, Cincinnati, OH 45267

GIDEON M. WOLFAARDT
Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B2K3, Canada

CHIN S. YANG
Prestige EnviroMicrobiology, Voorhees, NJ 08043

MARYLYNN V. YATES
Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92521

CHUANLUN L. ZHANG
State Key Laboratory of Marine Geology School of Ocean and Earth Sciences, Tongji University, Shanghai 201804, China

JING ZHANG
Wageningen University, Laboratory of Microbiology, Wageningen 6703HB, The Netherlands

NICOLETTE A. ZHOU
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105
Subject Index

ABC transporter, for organochloride pesticide assimilation in bacteria, 5.1.2-14
Abundance
- definition, 4.2.1-1, 4.2.2-2
- relative, 4.2.1-2, 4.2.2-2, 4.2.3-2

Acanthamoeba
- A. polyphaga, 4.2.3-13
- airborne, 3.2.1-10
- biofilm grazing, 4.2.3-13
- soil, 3.3.1-3, 3.3.1-7–3.3.1-8, 3.3.1-10
- in wastewater, 2.6.4-10
- waterborne infections, 3.1.4-7–3.1.4-8

Acannahia, 4.2.2-12

Acetobacter pomorum, 4.2.3-13

Acidic pools, 4.3.4-2–4.3.4-3

Acidobacteria, 4.3.1-13
- hydrogen, 4.3.1-10
- free energy change, 4.3.1-9
- yeasts, 4.3.1-9
- nitrogen fixation, 4.3.1-11
- organohalogen biodegradation, 4.3.1-9–4.3.1-11
- carbon fixation, 4.3.1-11
- electron acceptors, 4.3.1-11
- electron donors, 4.3.1-9–4.3.1-11
- nitrogen fixation, 4.3.1-11
- Acidic pools, 4.3.4-2–4.3.4-3
- Acidiclastus, 4.3.1-10
- Acidiphilum, 4.3.1-11–4.3.1-12, 4.3.1-15
- A. cryptum, 4.3.1-8, 4.3.1-12, 5.2.2-6
- microbailial cell, 5.1.4-5
- Acidiplasma, 4.3.1-14
- Aciditerrimonas ferrireducens, 4.3.1-14
- Acidithiobacillus, 4.3.1-13–4.3.1-15, 5.2.3-3
- A. albertensis, 4.3.1-13
- A. caldus, 4.3.1-10, 4.3.1-13, 5.2.3-3
- A. ferridurans, 4.3.1-10, 4.3.1-13
- A. ferrooxidans, 4.3.1-10, 4.3.1-13, 4.3.1-17–4.3.1-18
- A. ferrooxidans, 4.3.1-9-4.3.1-11, 4.3.1-13, 4.3.1-15
- biofilms, 4.3.1-5
- bioleaching of metals, 5.2.3-3
- electron transfer, 5.1.4-6–5.1.4-7
- Acidithiobacillus thiooxidans, 4.3.1-10–4.3.1-11, 4.3.1-13, 4.3.1-17
- Acidithiocyanobacteria, 5.2.3-6
- Acidocella, 4.3.1-10–4.3.1-12, 5.2.3-3
- Acidocella aromatica, 4.3.1-10
- Acidophilus
- biotechnological use of, 4.3.1-18
- eukaryotic adaptation mechanisms, 4.3.1-4–4.3.1-5
- diversity, 4.3.1-5–4.3.1-9
- euglenoids, 4.3.1-8
- fungi, 4.3.1-8–4.3.1-9
- microalgae, 4.3.1-5–4.3.1-8
- protozoa, 4.3.1-8
- yeasts, 4.3.1-9
- prokaryotic
- Actinobacteria, 4.3.1-13–4.3.1-14
- adaptation mechanisms, 4.3.1-3–4.3.1-4
- Aquificae, 4.3.1-13
- carbon fixation, 4.3.1-11
- Crenarchaeota, 4.3.1-15
- electron acceptors, 4.3.1-11
- electron donors, 4.3.1-9–4.3.1-11
- Firmicutes, 4.3.1-14
- nitrogen fixation, 4.3.1-11
- Nitrospirae, 4.3.1-13
- phylogenetics of, 4.3.1-11–4.3.1-15
- physiological diversity of, 4.3.1-9–4.3.1-11
- Proteobacteria, 4.3.1-11–4.3.1-13
- Verrucomicrobia, 4.3.1-13
- Acidovorax sp. KKS102, 5.1.1-3

Actinobacterium
- A. baumannii, outer membrane vesicles of, 4.1.1-5
- A. baumii, transformation of, 4.1.1-2–4.1.1.3
- A. calcoaceticus, 3.1.4-6–5.1.4-7
- airborne, 3.2.6-3
- electron transfer, 5.1.4-6–5.1.4-7

Acinetobacter
- A. oblattum, 3.2.5-13
- airborne, 3.2.5-5
- spore discharge, 3.2.5-2
- volatile organic compounds (VOCs), 3.2.5-13

Actinobacteria
- acidophiles, 4.3.1-13–4.3.1-14
- organochlorine biodegradation, 5.1.2-7
- Actinomycetes, airborne, 3.2.1-1, 3.2.6-2, 3.2.6-5
- Actinophyta, 4.3.1-7–4.3.1-8
- Acyclovir, for varicella-zoster virus, 3.2.7-7
- Acylated homoserine lactone (AHIL), 3.2.1-4, 3.2.1-5, 4.2.3-12–4.2.3-13
- Adenoviridae, 3.1.5-1–3.1.5-2
to decrease bacterial contamination in pulmonary samples from wastewater, 2.6.4-9
removal from wastewater, 3.1.3-8
use in farmed animals, 4.4.1-3
Antibiotic and Secondary Metabolites Shell (antiSMASH), 2.4.3-8
Antibiotic resistance genes functional metagenomic screens, 2.4.3-2–2.4.3-3, 2.4.3-8
in wastewater, 3.1.3-9
Antibiotic Resistance Genes Database (ARGD), 2.4.3-8
Antibiotic resistant bacteria (ARGs), 2.4.3-2
antibiotics, 2.4.3-4
Antibody structure, 2.3.1-2
libraries, 2.3.1-4
Antibody-based technologies, 2.3.1-5
assay types, 2.3.1-5–2.3.1-9
bead-based microarrays, 2.3.1-6
biosensors, 2.3.1-6–2.3.1-9
ELISA, 2.3.1-5
lateral flow assay (LFA), 2.3.1-5–2.3.1-6
planar microarrays, 2.3.1-6
basic concepts, 2.3.1-1–2.3.1-5
antibodies, 2.3.1-5
antibody generation and engineering, 2.3.1-3–2.3.1-5
antibody structure, 2.3.1-2–2.3.1-3
immunoassay performance characteristics, 2.3.1-2
immunoassay types, 2.3.1-1–2.3.1-2
biosensors, 2.3.1-6–2.3.1-9
applications, 2.3.1-8–2.3.1-9
cantilever-based, 2.3.1-8
electrochemical, 2.3.1-8
mechanical, 2.3.1-8
microfluid integrated with biosensors, 2.3.1-8
optical, 2.3.1-7–2.3.1-8
optical ring resonator-based, 2.3.1-7–2.3.1-8
optical wavelength-based, 2.3.1-7
photonic crystal, 2.3.1-8
piezoelectric, 2.3.1-8
surface plasmon resonance (SPR), 2.3.1-7
antiSMASH (Antibiotic and Secondary Metabolites Shell), 2.4.3-8
AOAC, 2.3.4-10–2.3.4-13
Aphanizomenon, 3.1.2-2, 3.1.2-4, 3.1.2-11
Apple scab, 3.2.8-7–3.2.8-8
AQDS (anthraquinone-2,6-disulfonate), 5.1.4-4, 5.2.1-1, 5.2.1-3, 5.2.1-5–5.2.1-7
Anthax Bio-Threat Alert, 2.3.4-5
Antibiotic(s), 2.4.1-3
in anaerobic cultivation, 2.1.2-8
A. flavus
hypersensitivity pneumonitis, 3.2.5-9
mycotoxins, 3.2.5-11
A. fumigatus
airborne, 3.2.1-10, 3.2.5-7
mycotoxins, 3.2.5-10–3.2.5-12
culture, 3.2.5-2
A. mellea
3.2.5-7
A. niger
airborne, 3.2.5-4–3.2.5-5, 3.2.5-7
Archaea, 4.3.4-5–4.3.4-6
Acinetobacter
acidiphilic, 4.2.1-3, 4.3.1-9–4.3.1-15
airborne, 3.2.1-8, 3.2.6-5–3.2.6-6
molecular biology methods for, 3.2.6-6
toxicity, murine studies on, 3.2.6-6
benthic environment, 4.2.1-3
characteristics of, 3.2.6-5
definition, 4.2.1-1
halophilic, 4.3.2-2–4.3.2-8
high-temperature environments, 4.3.4-4, 4.3.6-4, 4.3.9
human exposures to, 3.2.6-5
low-biomass environments, 4.3.3-6
planktonic, 4.2.2-6–4.2.2-12
rumen methanogenesis, 4.4.3-2
Archaeoglobales, 4.3.4-4, 4.3.6-4
ARGD (Antibiotic Resistance Genes Database), 2.4.3-8
Argentine hemorrhagic fever, 3.2.7-8
Arthromycetes, 5.1.5-3
ARISA (automated ribosomal intergenic spacer analysis), 2.4.1-2
Aromatic compounds, 5.1.5-3, 5.1.5-10
anaerobic degradation of, 5.1.3-1–5.1.3-9
detection of functional genes, 5.1.3-7
enrichment cultures, 5.1.3-1–5.1.3-2
genetic fingerprinting, 5.1.3-2, 5.1.3-4
high-throughput techniques, 5.1.3-8–5.1.3-9
identification and enumeration of active members, 5.1.3-4–5.1.3-5
microbial communities, 5.1.3-1–5.1.3-4
characterization of, 5.1.3-1–5.1.3-4
overview, 5.1.3-1
single-cell techniques, 5.1.3-8–5.1.3-9
stable isotope probing, 5.1.3-4–5.1.3-6
studies, 5.1.3-3–5.1.3-4
Arthrobacter, 5.1.2-4, 5.1.2-8
A. globiformis, 5.1.2-4, 5.1.2-8
aromatic compound biodegradation, 5.1.5-3
precipitation of metals, 5.2.3-3
Artificial neural networks, 3.4.6-7
Ascosporeas, 3.2.5-3, 3.2.8-3, 3.2.8-8–3.2.8-9
Ascotricha, 3.2.5-5
A. chartarum, 3.2.5-5
A. erinacea, 3.2.5-5
airborne, 3.2.5-3, 3.2.5-5
Aspergillus, 3.2.5-5
A. flavus
hypersensitivity pneumonitis, 3.2.5-9
mycotoxins, 3.2.5-11
A. fumigatus
airborne, 3.2.1-10, 3.2.5-7
mycotoxins, 3.2.5-10–3.2.5-12
culture, 3.2.5-2
disease and affected tissue, 3.2.5-7
A. mellea, 3.2.5-5
A. niger
airborne, 3.2.5-4–3.2.5-5, 3.2.5-7
Subject Index

- 1-9

microscopic identification and enumeration, 3.1.1-2, 3.1-2, 5-3, 1.2, 6-7
monitoring approaches, 3.1.2-1, 3.3.1-4
nitrification, 4.2.2-19
nucleic acid analysis, 3.1.2-7, 3.1.1-12
oxygenic photosynthesis, 3.1.2-1
photographs, 3.1.2-2
planktonic, 4.2.2-3, 4.2.2-5, 4.2.2-10, 4.2.2-12
4.2.2-16, 4.2.2-18, 4.2.2-29
sample collection and storage, 3.1.2-4, 3.1.2-5
sampling considerations, 3.1.2-4
toxins, 3.1.2-1, 3.1.2-11, 3.1.8-3, 3.1-4, 3.1-9
vires, 4.2.2-16
Cyanobacteria, 3.1.2-1
cyanopatholin, 3.1.2-1
Cycloclasticus, 4.3.3-2
Cyclospora cayetanensis, 3.1.2-1, 3.1.2-10
Cystospora bellii, in wastewater, 2.6.4-10
Cysts
Balantidium coli, 3.3.1-4
Entamoeba, 3.3.1-3
Giardia, 2.5.5-1-2, 2.5.5-2, 2.6.4-10-
2.6.4-11, 3.1.6-1-3, 3.1.6-4-
3.1.6-6, 3.1.6-9, 3.3.1-4
Cytchrome, in iron reduction mecha-
nisms, 5.1.1-1-5
Cyttoplasmic bridges, 4.1.3-1, 4.1.1-14
Cytoscape software package, 2.4.2-20
Dairy barns, airborne bacteria and,
3.2.6-2
DALYs (disability-adjusted life years),
3.5.1-7, 3.1.5-18
Data processing, of high-throughput
sequencing data, 2.4.2-14, 2.4.2-20
Data visualization, high-throughput
sequencing, 2.4.2-20-
2.4.2-21
Dry day, airborne bacteria and,
3.2.6-4
DDD, 5.1.2-8, 5.1.2-9
DDE, 5.1.2-8, 5.1.2-9
DDT, 5.1.2-8
Death constant, 3.2.4-7
Dead-end ultrafiltration, 2.6.1-6
Death constant, 3.2.4-7
Dechlorohalobacterium, 5.1.4-6, 5.1.4-7
Deep sequencing, 2.4.4-5, 4.4.3-4
Deepwater Horizon oil spill, 5.1.6-5,
5.1.6-6, 5.1.6-7
Depth 2, 5.1.2-4
Dipper, 2.3.4-5
Direct fluorescent antibody (DFA) test, for
Legionella, 3.2.9-7, 3.2.9-8
Direct stochastic optical reconstruction
microscopy (dSTORM), 4.2.3-14
Disability-adjusted life years (DALYS),
3.5.1-7, 3.5-1-8
Disease forecasting, for plant pathogens,
3.2.8-15
Disease risk assessment, 3.5.1-6
Denaturing gradient gel electrophoresis
(DGGE), 5.1.2-8
Aromatic compound biodegraders,
5.1.3-2, 5.1.3-4
Microbial community analysis, 2.4-1-2
Denoising, 2.4-2-14
Dental clinics, airborne bacteria and,
3.2.6-5
Deoxynivalenol, 3.2.5-12, 3.2.8-8
Deposition, bioaerosol, 3.2.4-8
Dry deposition, 3.2.4-8
Wet deposition, 3.2.4-8
DESeq, 2.4-5-13
Desulfitobacterium, 5.1.3-2
Desulfofobacter, precipitation of metals by,
5.2.3-3
Desulfofomicrobium, precipitation of metals by,
5.2.3-3
Desulfofilum tidei, 5.1.3-2
Desulfovibrio
D. desulfuricans, 4.1.1-4, 5.2.3-5
D. vulgaris, 4.1.2-9
Precipitation of metals, 5.2.3-3
Desulfobacteriales, 4.3.4-6
Desulfococcoles, 4.3.4-4, 4.3.4-6, 4.3.4-9
DGGE, See Denaturing gradient gel
electrophoresis
Diagnose, definition, 2.3.3-1
Diagnosis, definition, 2.3.3-1
Diagnostic, definition, 2.3.3-1
Diatomeous earth filtration, 2.6.4-7
DIC (differential interference contrast
microscopy), 2.5.5-1
Dictyoglaumenes, 4.3.4-6
Dictyosporales, 3.2.8-8
Diphylerea, 3.2.8-7
Differential interference contrast micro-
scopy (DIC), 2.5.5-1
Diffusion chamber, 2.1-3, 2-3
Diluents for surface sampling, 2.6.2-6
Dinoflagellates, 3.1.4-8
Dioxin-like compound degraders,
5.1.1-1-5, 5.1.1-6
Acidovorax sp. KKS102, 5.1.1-3
Dorreactivation, 5.1.1-5, 5.1.1-6
Burkholderia xenovorans LB400, 5.1.1-1
Comamonas testosteroni TK102,
5.1.1-3, 5.1.1-4, 5.1.1-6
dioxynugenases, 5.1.1-3
Environmental response of,
5.1.1-5, 5.1.1-6
Genomes, 5.1.1-3
Geobacillus sp. J8, 5.1.1-4
Metabolic pathways, 5.1.1-2
Mobile genetic elements, 5.1.1-4, 5.1.1-5
Pseudomonas pseudokatalogenes KF707,
5.1.1-3
Rhodococcus jostii RHA1, 5.1.1-1, 5.1.1-3
Rhodococcus jostii RHA1, 5.1.1-1
Sphingomonas wittichii RW1, 5.1.1-3,
5.1.1-5, 5.1.1-6
Dip slides, for surface sampling, 2.6.2-8
Dipel, 2.3.4-5
Disinfectants
eutraceutical agents, 2.6.2-5
residual effect on surface sampling, 2.6.2-3
Disinfected effluent, 2.6.4-2
Dispersal, 4.1.2-5–4.1.2-6
Dispersion, biofilm, 4.2.3-5
Dispersion models, viability of airborne microorganisms, 3.2.4–7–3.2.4-8
Dissolved organic matter (DOM)
 benthic environment, 4.2.1-5–4.2.1-6,
 4.2.1-13–4.2.1-14
 consumption, 2.2.2-6
 ocean, 4.2.2-18
Disturbance
 in benthic environment, 4.2.1-4–4.2.1-5
 definition, 4.2.3-2
Diversity, 4.2.1-1
 acidophiles, 4.3.1-5–4.3.1-9
 spatial patterns of biodiversity, 4.1.2-6
 dN/dS ratio, 4.1.2-4
DNA
 extraction
 of aromatic compound biodegraders, 5.1.3-2
 for functional metagenomics, 4.2.3-3–4.2.3-4
 for high-throughput sequencing, 2.4.2-2–2.4.2-3
 soil, 3.3.1-6–3.3.1-8
 from soil and soil particulates, 3.3.2-5
DNA hybridization
 Legionella, 3.2.9-7
 microbial community analysis, 2.4.1-2
DNA microarray
 biofilm communities, 4.2.3-15
 low-biomass environments, 4.3.3-5
DNA polymers, thermal stable, 2.3.2-1
DNA purification, for high-throughput sequencing, 2.4.2-12
DNA sequencing. See Next-generation sequencing; Sequencing DNA synthesis. See activity of, 4.2.1-11
DNases, 2.4.5-5
Dolichospermum, 3.2.1-10, 3.2.5-3
DOM. See Dissolved organic matter
Dormancy, 4.1.2-7
Dose-response assessment, 3.5.1-4–3.5.1-6
Dose-response modeling, 3.5.3.1–3.5.3.16
 advanced, 3.5.3-11–3.5.3-16
 concept, 3.5.3-11–3.5.3-12
 host age dependent, 3.5.3-12–3.5.3-14
 physiological and pathogen dynamics, 3.5.3-15–3.5.3-16
 time post inoculation dependent, 3.5.3-14–3.5.3-15
 best fitting model, 3.5.3-6
 data from, 3.5.3-2
 derivation of model, 3.5.3-2–3.5.3-4
 environmental matrices, 3.5.3-10–3.5.3-11
 future of, 3.5.3-11–3.5.3-16
 goodness of fit, 3.5.3-6
 optimization of model, 3.5.3.4–3.5.3.6
 optimization uncertainty, 3.5.3.6–3.5.3.10
 overview, 3.5.3-1–3.5.3-2
 as yardstick, 3.5.3-1
 Dot/Icm system, 3.2.9-2
 Drechslera, 3.2.8-2–3.2.8-7
 Drinking water, 3.1.7-1–3.1.7-12
 bacteriological standards/guidelines, 3.1.1-4–3.1.1-5
 burden of disease, 3.1.7-5–3.1.7-6
 classification of water-related diseases, 3.1.7-1–3.1.7-2
 climate change and disease, 3.1.7-7,
 3.1.7-9–3.1.7-12
 disease-causing microorganisms, 3.1.7-2–3.1.7-5
 bacteria, 3.1.7-2–3.1.7-3, 3.1.7-10
 indicator microorganisms, 3.1.7-2,
 3.1.7-5
 parasites, 3.1.7-2–3.1.7-3, 3.1.7-10
 viruses, 3.1.7-2–3.1.7-4, 3.1.7-10
 dose-response modeling, 3.5.3-1
 epidemiology of waterborne disease, 3.1.4-6–3.1.4-7
 outbreaks, 3.1.4-6
 sporadic cases, 3.1.4-6–3.1.4-7
 microbial indicators, 3.1.1-1–3.1.1-7,
 3.1.7-2–3.1.7-5
 microbial source tracking, 3.4.6-5
 nonvirus exposure via treated drinking water, 3.5.2-8–3.5.2-10
 regulations, 3.1.7-6–3.1.7-9
 Droplet model, viability of airborne microorganisms, 3.2.4–7–3.2.4-8
 Drug discovery, functional metagenomic screens and, 2.4.3-2
 Dry deposition, 3.2.4-8
 dSTORM (direct stochastical optical reconstruction microscopy), 4.2.3-14
Dual-index sequencing, 2.4.2-9
Dunaliella, 4.3.1.5–4.3.2.2–4.3.2-4, 4.3.2-6–4.3.2-7
D. acidiphila, 4.3.1-4
D. salina, 4.3.2-2
Earth Microbiome Project, 2.4.1-3, 2.4.2-3, 2.4.2-12
Earthworms, symbionts of, 4.2.1-1
Eartworms, symbionts of, 4.4.1-4
EBPR (enhanced biological phosphorus removal) process, 5
Echovirus
 case-fatality rates, 3.5.1-6
 genomic and morphological characteristics, 3.1.5-2
 ID₅₀ (infectious dose 50%), 3.5.1-5
 receptors, 3.1.5-7
 secondary attack rate, 3.5.1-6
 waterborne, 3.1.5-1–3.1.5-2, 3.1.5-5–3.1.5-7, 3.1.7-4
 E*Colite, 3.1.5-1–3.1.5-2
 Ecosystem processes, 4.2.3-2
 Ecosystem services, 4.2.3-2
 Ecotoxicology, of aquatic biofilms, 4.2.3-18–4.2.3-20
 edgeR, 2.4.5-13
cDNA (extracellular DNA), 4.2.3-9
EET. See Extracellular electron transfer
Effluent, wastewater, 2.6.4-1–2.6.4-2
eggNOG database, 2.4.5-12
El Niño-Southern Oscillation (ENSO), 3.1.7-7
Electric charge, effect on airborne microorganisms, viability, 3.2.6-3
Electrochemical biosensors, 2.3.1-8
Electrochemical technology. See Microbial electrochemical technology
Electron acceptors, acidophile, 4.3.1-11
Electron donors, in acidic environments, 4.3.1-9–4.3.1-11
Electron donors, in wastewater, 2.6.4-10
Electron flow, 5.1.4-4–5.1.4-6
Electron transport system activity, as measure of activity, 4.2.1-7
Electrostatic Aerosol Sampler, 3.2.2-7
Electrostatic force, bioaerosol, 3.2.4-8
Electrostatic precipitation, 3.2.2-2,
 3.2.2-7–3.2.2-8
Elemental cycles, in benthic environment, 4.2.1-7–4.2.1-9
ELISA. See Enzyme-linked immunosorbent assay
Eluted for surface sampling, 2.6.2-6
Emeriella, 3.2.1-10, 3.2.5-3
Emiliania, 2.4.2-16
EMFlor software package, 2.4.2-20
Encaphalitozoon, 3.2.2-13
Endocline-disrupting compounds in wastewater, 3.1.3-10
Endotoxin
 airborne
 3.2.1-1–3.2.1-2, 3.2.1-8,
 3.2.3-3–3.2.3-4, 3.2.6-1–3.2.6-4,
 3.2.6-6–3.2.6-12
 assessment methods, 3.2.6-9–3.2.6-10, 3.2.6-12
 disease associations, 3.2.6-7
 environments with high concentrations of endotoxin, 3.2.6-1–3.2.6-3
 environments with low concentrations of endotoxin, 3.2.6-2–3.2.6-4
 environments with moderate concentrations of endotoxin, 3.2.6-2–3.2.6-4
 indoor exposure, 3.2.6-8–3.2.6-9,
 3.2.6-11–3.2.6-12
 lung inflammation, 3.2.6-7
 occupational exposure, 3.2.6-7–3.2.6-8
 variability of endotoxin responsiveness, 3.2.6-7
Function metagenomics (Continued)
DNA extraction	2.4.3-1, 2.4.3-3
DNase concentration	2.4.3-1, 2.4.3-3
DNA extraction	2.4.3-4, 2.4.3-5, 2.4.3-8
DNase concentration	2.4.3-4, 2.4.3-5, 2.4.3-8
DNA extraction and characterization	2.4.3-8
sequencing metagenomics compared	2.4.3-1, 2.4.3-2
size of screen needed	2.4.3-8
success studies, table of	2.4.3-6, 2.4.3-7
vector choice	2.4.3-4
Functional redundancy	4.2.3-2
Functional similarity	4.2.3-2
Fusobacterium	culture, 2.1.2-2
F. nucleatum	4.2.3-5
Galaxy	2.4.5-3
GALAXY Web server	2.4.5-13
Galáctica	4.3.1-6, 4.3.1-8
Galderia sulphuraria	4.3.1-7
Gambicin	4.4.1-3
Gambaricidae toxicus	3.1.4-8
Gamma diversity	4.2.1-2
γ-HCH	appearance and evolution of
γ-HCH-degrading strains	5.1.2-20, 5.1.2-21
biodegradation	5.1.2-5, 5.1.2-7
genomes of γ-HCH-degrading strains	5.1.2-14, 5.1.2-16
mobile genetic elements of	5.1.2-18, 5.1.2-20
Gas chromatography-mass spectrometry	5.2.2-2
chemical source tracking	5.2.2-3
for endotoxin quantification	5.2.2-4
3.2.6-10, 3.2.6-12	
GASP (growth advantage in stationary	4.1.2-7
phase)	4.1.2-8
Gassing manifold	2.1.2-2, 2.1.2-3
Gastrointestinal disease	2.1.4-7, 2.1.4-10
waterborne	3.1.4-1, 3.1.4-10
Gaussian plume model, viability of airborne	3.2.4-7, 3.2.4-8
microorganisms	3.2.4-7, 3.2.4-8
GCRMS (Global Cereal Rust Monitoring	3.2.8-11
System)	3.2.8-12
GDGTs (glycerol dialkyl glycerol tetrahydroxymethyl)	4.3.4-7, 4.3.4-8
Gel micro-droplets (GMDs)	2.1.3-1, 2.1.3-5, 2.1.3-6
Gene transfer agents (GTAs)	4.1.1-2, 4.1.1-4
GeneMarkS	2.4.5-12
Genetic drift	4.1.2-4
Genetic fingerprinting	5.1.3-2, 5.1.3-4
Genetically engineered microorganisms	3.2.1-3
for bioaugmentation	5.1.2-22
Genome assembly algorithms	2.4.4-1, 2.4.4-2
Genome shuffling	5.1.2-22
Genomes of organism chloride pesticide-degrading	5.1.2-14, 5.1.2-18
bacteria	5.1.2-20, 5.1.2-21
sphingomonois	5.1.2-16, 5.1.2-18
symbions, invertebrate gut	4.4.1-1, 4.4.1-3
Genomic DNA	2.4.2-1, 2.4.2-3, 2.4.2-10, 2.4.2-11, 2.4.3-3, 2.4.3-4
Genomics	5.2.2-2
genome bioinformatics	5.2.2-4, 5.2.2-5
Joint Genome Institute Integrated	5.2.2-6
Microbial Genomes interface	5.2.2-6
Genotyping	Cryptosporidium
future of	3.1.6-17, 3.1.6-18
Giardia	3.1.6-7, 3.1.6-9, 3.1.6-17–3.1.6-18
Naegleria fowleri	3.1.6-7, 3.1.6-17–3.1.6-18
protozoa in surface and finished	3.1.6-7, 3.1.6-17–3.1.6-18
waters	3.1.6-7, 3.1.6-17–3.1.6-18
Neocallimastigomycota	sp. JFB
Neocallimastigomycota	electron transfer
G. metalldraudens	5.1.4-6, 5.1.4-7
GeoChip	4.3.2-8, 5.1.3-9
Geochemistry	5.2.2-1, 5.2.2-6
characterization of isolates	5.2.2-3, 5.2.2-4
biofilm physiology studies	5.2.2-3, 5.2.2-4
microscopy	5.2.2-4
culture-dependent methods	5.2.2-5, 5.2.2-3
growth in simulated environment	5.2.2-2
high-throughput cultivation	5.2.2-5, 5.2.2-3
metal-transforming extremophiles	5.2.2-3
in situ methods	5.2.2-2
use of proper substrates	5.2.2-3
culture-independent methods	5.2.2-4, 5.2.2-6
genomics and metagenomics	5.2.2-4, 5.2.2-5
protocinetics and metaproteomics	5.2.2-6
transcriptomics and metatranscriptomics	5.2.2-5, 5.2.2-6
definition	5.2.2-1
field site selection and considerations	5.2.2-1, 5.2.2-2
future directions and developments	5.2.2-6
Geothermal sites, as acidic environments	5.2.2-1, 5.2.2-2
Gephi software package	5.2.2-6
Germ-free animals	4.2.4-5
Giardia	classification
climate sensitivity	3.1.7-7
culture	3.1.6-7
description	3.1.6-1
detection	2.6.4-5
in surface and finished waters	3.1.6-7, 3.1.6-9
sample hold time	2.6.4-5
in wastewater	2.6.4-5, 2.6.4-10, 2.6.4-11
drinking water regulation by EPA	3.1.6-7
exposure assessment	3.1.6-7, 3.1.6-9
genotyping	5.1.6-1, 5.1.6-9
16S rRNA	5.1.6-17–3.1.6-18
ID30 (infectious dose 30%))	5.1.5-1
infection cycle and disease symptoms	3.1.6-1, 3.1.6-3
microbial source tracking (MST)	5.1.6-17–3.1.6-18
of, 3.1.6-1, 3.1.6-2, 3.1.6-11–3.1.6-12	
species and assemblages	3.1.6-1, 3.1.6-2, 3.1.6-11–3.1.6-12
soil	3.1.6-17–3.1.6-18
quality-control for analyses	2.6.4-5
seasonal variations	3.1.6-12
soil	3.1.6-1, 3.1.6-2, 3.1.6-11–3.1.6-12
High-throughput sequencing

High-salinity environments, 4.3.2-6
thermophiles and hyperthermophiles

diversity of microorganisms, 4.3.2-4
virology, 4.2.2-17

HCM (hollow fiber membrane chamber), 2.1.3-5
Hidden Markov models, 2.4.4-1
High-performance liquid chromatography (HPLC), 3.1.2-6
High-salinity environments, 4.3.2-1–4.3.2-8
adaptations to, 4.3.2-4
athelaxasolithic, 4.3.2-1
carotenoid pigments, 4.3.2-6–4.3.2-7
diversity of environments, 4.3.2-1–4.3.2-2
diversity of microorganisms, 4.3.2-4–4.3.2-3
functional diversity of microorganisms in, 4.3.2-4–4.3.2-5
microbial activities in, 4.3.2-5
microbial communities

culture-dependent studies, 4.3.2-3–4.3.2-6
culture-independent studies, 4.3.2-7–4.3.2-8
polar lipids, 4.3.2-6
polyeukromophilic halophiles, 4.3.2-3
thalaxasolithic, 4.3.2-1

High-temperature environments, 4.3.4-1–4.3.4-10
bioenergetic challenges, 4.3.4-7
carbon cycle, 4.3.4-9
continental subsurface, 4.3.4-1
marine hydrothermal systems, 4.3.4-3–4.3.4-4

microbial diversity and composition, 4.3.4-8–4.3.4-9
nitrifer cycle, 4.3.4-9

terrestrial geothermal systems, 4.3.4-1–4.3.4-3
thermophiles and hyperthermophiles definitions, 4.3.4-4–4.3.4-5
lipids, 4.3.4-7–4.3.4-8
physiological diversity, 4.3.4-5, 4.3.4-8

High-throughput sequencing

amplicon quality control, 2.4.2-4–2.4.2-5
barcode design, 2.4.2-9
benthic environment samples, 4.2.1-13
data processing, 2.4.2-14–2.4.2-20
chimera removal, 2.4.2-15
clustering sequences into OTUs (operational taxonomic units), 2.4.2-15–2.4.2-16
denovo, 2.4.2-14
denosing, 2.4.2-14
normalizing sequence counts, 2.4.2-17–2.4.2-18

OTU table analysis, 2.4.2-18

paired-end read merging, 2.4.2-14
quality trimming, 2.4.2-14
resemblance matrix generation, 2.4.2-18–2.4.2-19
secondary bioinformatics and statistics, 2.4.2-16–2.4.2-17
data storage, 2.4.2-20–2.4.2-21
data visualization, 2.4.2-20–2.4.2-21
error sources, 2.4.2-9–2.4.2-10
experimental/sampling design, 2.4.2-2

gut microbiome, 4.3.4-3
heterotrophic planktonic microbes, 4.2.2-9

of metagenomic clones, 2.4.3-3, 2.4.3-5
metatranscriptome, 2.4.5-9
microbial community analysis, 2.4.2-1–2.4.2-21

network analysis, 2.4.2-20–2.4.2-21

nucleic acid extraction, 2.4.2-2–2.4.2-3
nucleic acid quality control, 2.4.2-3
PCR amplification strategies, 2.4.2-3–4
PCR setup, 2.4.2-10–2.4.2-11
DNA concentration, 2.4.2-10
enzyme/master mix selection, 2.4.2-10
number of cycles, 2.4.2-11
primer size and concentration, 2.4.2-10
reaction volume, 2.4.2-10

technical replicates, 2.4.2-10–2.4.2-11
pooling strategies, 2.4.2-11–2.4.2-12
primer set selection, 2.4.2-5–2.4.2-9
purification strategies, 2.4.2-12
quality control, 2.4.2-10

raw data, 2.4.2-13

sequencing protocol, 2.4.2-12–2.4.2-13
statistical testing, 2.4.2-19–2.4.2-20

a posteriori hypothesis testing, 2.4.2-19
detecting differently abundant taxa, 2.4.2-19

workflows, 2.4.2-2–2.4.2-20

H. capsulatum, 3.2.5-7
HIV-1, 3.2.7-8
Hodgkinia cicadelliformis (HCM), 2.1.3-5

Hollow fiber ultrafiltration, 2.6.1-5

Hologenome theory of evolution, 4.1.2-9

Homoanatoxin-a, 3.1.2-4
HPLC (high-performance liquid chromatography), 3.1.2-6
Human Microbiome Project, 2.4.2-8, 2.4.3-1
Humanized pigs, 4.2.4-5
Humanized rodents, 4.2.4-5
HUMAnN, 2.4.3-2–2.4.4-4, 2.4.5-13–2.4.5-14
Humidifiers, airborne bacteria and, 3.2.6-5
Humidity

bioaerosol effects, 3.2.4-1–3.2.4-7
spore desiccation, 3.2.8-3

Huguekk technique, 2.1.2-1–2.1.2-2, 2.2.1-4
HVAC (heating, ventilation, and air circulation) systems airborne microorganisms, 3.2.1-3–3.2.1-4, 3.2.1-8
Legionella, 3.2.9-4, 3.2.9-9
Hydrogen, electron donors in acidic environments, 4.3.1-10

Hydrogen peroxide, for removal of airborne viruses, 3.2.7-11

Hydrogen sulfide, in volcanic gases, 4.3.1-1
Hydrogen sulfide producers, as microbial indicators, 3.1.1-4
Hydrogen utilization in the rumen, 4.4.1-3

Hydrogenimonas thermophila, 2.2.2-7

Hydrogenobacter, 4.3.4-5

Hydrogenobaculum, 4.3.1-13, 4.3.4-2, 4.3.4-5

Hydrogenobaculum acidiiphilum, 4.3.1-10

Hydrothermal systems, marine, 4.3.4-3–4.3.4-4

Hypersaline environments. See High-salinity environments

Hypersensitivity, airborne fungi and, 3.2.5-7–3.2.5-8

Hypersensitivity pneumonitis, 3.2.5-9, 3.2.6-7

Hypertrophicenergies, 4.3.4-1–4.3.4-10

Hypothetical, statistical, 2.5.6-5

HYSSPLIT (hybrid single-particle Lagrangian integrated trajectory) model, 3.2.8-2, 3.2.8-7, 3.2.8-10

ID50 (infectious dose 50%), 3.5.1-5

IMG/M Web server, 2.4.4-3–2.4.4-4, 2.4.5-3, 2.4.5-13

iMicrobe Project database, 2.4.5-12

Immersion, surface sampling, 2.6.2-8

Immunity, symbiosis and, 4.4-1-3

Immunoassays

bioaerosol analysis, 3.2.3-3

endoassay assessment, 3.2.6-12

pathogen detection, field application, 2.3.4-5

performance characteristics, 3.2.1-2, types, 3.2.1-1–3.2.1-2

Immunomagnetic capture, of soil pathogens, 3.3.2-5

Immunomagnetic separation, 2.5.5-1, 2.6.4-11

Immunomagnetic separation/adenosine triphosphate (IMS/ATP) method, 2.6.4-8

Impaction, bioaerosol sampling, 3.2.2-1–3.2.2-2, 3.2.2-3–3.2.3-3, 3.2.9-4

Impactor samplers, 3.2.2.3–3.2.2-5

Impingement samplers, 3.2.2-3, 3.2.9-4

in situ colonization stresses, 2.1.2-7

in situ hybridization (ISH), 2.2.1-1–2.2.1-8

in vitro diagnostic (IVD) product, 2.3.3-1–2.3.3-8

in vitro transcription (IVT), 2.4.5-6–2.4.5-7

Incidence of infection, 3.5.2-6

Incubation conditions, 2.5.3-2–2.5.3-3

Incubator, anaerobic, 2.1.2-2

Indicator bacteria/microorganisms

recreational waterborne illness, 3.1.4-5
wastewater, 3.1.4-5

Indistinguishable from normal (IDN), 3.2.9-4

Inferenza, statistical, 2.5.6-4–2.5.6-5

considations for undertaking based on microbial data sets, 3.5.2-5

definition, 3.5.2-5

Infestation

fungi, 3.2.5-6–3.2.5-7

ID50 (infectious dose 50%), 3.5.1-5

risk assessment, 3.5.1-4–3.5.1-6

Infectious bronchitis virus, 3.2.7-5

Inference, statistical, 2.5.6-4–2.5.6-5

considerations for undertaking based on microbial data sets, 3.5.2-5

definition, 3.5.2-5

III-16 ■ Subject Index
Lipases, in functional metagenomic screens, 2.4.3-2
Lipid A, 3.2.6-6
Lipid A-binding protein, 3.2.6-6
Lipid-based samplers, 3.2.2, 3.2.5-5, 3.2.7-7
Liquid chromatography-mass spectrometry (LC-MS), 3.1.2.6-3, 3.1.2-7
Liquid impingement, bioaerosol sampling, 3.2.2-2, 3.2.3-2, 3.2.5-3
Listeria
airborne, 3.2.6-1
L. ivanovii, 2.1.1-6, 3.2.2-2
L. monocytogenes
airborne, 3.2.5-5
chromogenic and fluorescent media, 2.1.1-6
culture, 3.3.2-4
soil, 3.3.2-2-3, 3.2.2-3, 3.2.6-3-3, 3.2.7-7
typing, 3.2.2-7
LIVE/DEAD BacLight kit, 4.3.2-6
Livestock production areas, airborne contaminants from, 3.2.6-1-3, 3.2.6-2, 3.2.6-5, 3.2.6-7-3, 3.2.6-8
Log books, wastewater sampling, 2.6.4-3
Longlinea, 2.1.2-4
Loop mediated isothermal amplification (LAMP), 2.3.2-7-3, 3.2.8-2
LOS (lipo polysaccharide), 3.2.6-6
Low-biomass environments, 4.3.3-1-4, 3.3-3
anaerobes, 4.3.3-6
archaea, 4.3.3-6
clearroom microcosms, 4.3.3-7-4, 3.3-3
cultivable and problematic extremotolerant microorganisms, 4.3.3-3
fungi, 3.3.3-6
molecular methods to measure microbial diversity, 4.3.3-2-4, 3.3-7
DNA microarray, 4.3.3-5
massively parallel DNA sequencing, 4.3.3-5-4, 3.3-6
Sanger sequencing, 4.3.3-5
molecular microbial community and core microbiome, 4.3.3-4-3, 3.3-5
sample collection and processing, 4.3.3-1-4, 3.3-2
viable but noncultivable microorganisms, 4.3.3-3-4, 3.3-4
lowest common ancestor (LCA), 2.4.4-4
LPS (lipo polysaccharide), 3.2.6-6. See also Endotoxin
airborne, 3.2.1-8, 3.2.3-3-3, 3.2.3-5
LPS-binding protein, 3.2.6-3-6, 3.2.7-7
lung inflammation, endotoxin inhalation
1, 3.2.6-7
Lycogala epidendrum, 3.2.5-4
Lycoperdon, 3.2.5-2
Lyngbya, 3.1.2.2, 3.1.2-4, 3.1.2-11
Lysogenic acid, 3.2.5-10
Lysofacter, 5.1.5-13
Lysozyme, 4.2.2-17
m-Coli Blue 24, 3.1.1-2
m-Entercoccus, 3.1.1-3
MaAsLm software package, 2.4.2-19
Magnesium sulfate (MgSO4) flotation, 2.6.4-11
Maillard reactions, 3.2.4-5
Maintenance energy, 4.3.4-7
Malaria, 4.4.1-3
MALDTOF MS, of dioxin-like compound degraders, 5.1.1-5-5, 5.1-6
Maloney marine salmsa and leukemia virus, 3.2.7-4
Mammatrocinus, 2.6.4-8, 3.1.2-5
Mammalian gut microbiome animal models for studying, 4.2.2-1-4, 4.2.2-7
pigs, 4.2.2-5-4, 4.2.2-7
rodents, 4.2.2-3-4, 4.2.4-5
large intestine, 4.2.2-2
oral cavity, 4.2.2-2
small intestine, 4.2.2-1-4, 4.2.2-7
stomach, 4.2.2-1
in vitro models, 4.2.2-2
Manure spreading, airborne bacteria and, 3.2.6-2
MAPX, 2.4.4-4
MAR-FISH (microautoradiography and fluorescence in situ hybridization), 3.1.3-10, 4.2.3-14, 4.3.2-4
Marburg virus, 3.2.7-6
Marek's disease, virus 3.2.7-4
Marine hydrothermal systems, 4.3.3-3-4, 3.3-4
Marine microbial ecology. See also Heterotrophic planktonic microbes definitions and concepts, 4.2.2-2-4, 4.2.2-7
historical development of marine microbial ecology, 4.2.2-1-4, 4.2.2-3
phylogeny, 4.2.2-3-4, 4.2.2-7
Markov Chain Monte Carlo analysis of Cryptosporidium oocyst concentration in surface water, 3.5.2.11-3, 3.5.2-12
Markov models, 2.4.3-1
MAS-100 samplers, 3.2.2-3, 3.2.5-3, 3.2.6-2
Massively parallel DNA sequencing, in low-biomass environments, 4.3.3-5-3, 3.3-3
Masadenovirus, 2.6.4-8, 3.1.5-2
Matrix spike analyses, 2.5.1-1, 2.5.3-3, 2.5.5-1, 2.5.5-2
Matson/Garvin air sampler, 3.2.2-3, 3.2.2-5, 3.2.2-6
Maximum likelihood estimation, 3.5.3-4, 3.5.3-6
MD-2, 3.2.6-6-3, 3.2.6-7
Mean, 3.5.2-6
Mechanical bioassays, 2.3-1-8
Median, 3.5.2-6
MEGA (Molecular Evolutionary Genetics Analysis), 2.4.3-8
MEGAN (Metagenomic Analyzer), 2.4.2-17, 2.4.4.4-2, 2.4.4.5, 2.4.5-11, 2.4.5-12
MEG database, 2.4.2-20
Melamine deaminase, 5.1.2-13
Membrane biological reactor, 3.1.3-1
Membrane potential, of acidophiles, 4.3.1-3
Memnoniella echinata, 3.2.5-5
MEROPS database, 2.4.3-8
MERS-CoV (Middle East respiratory syndrome coronavirus), 3.2.7-8
Meruliporia incrassata, 3.2.5-3, 3.2.5-7-3, 3.2.5-6
Mesocosms, 4.2.1-10
Message Apm II kit, 2.4.5-6-2, 4.5-7
Messenger RNA (mRNA) half-lives, 2.4.5-4, 4.5-7
metatranscriptomes, 2.4.5-1-2, 4.5-14
protozoa viability testing, 3.1.6-6
RNA-seq, 2.4.1-2, 2.4.1-3
Metabolism
assessing in complex microbial communities, 2.2.1-2, 2.2.2-6
community metabolism correlation with genetic diversity, 2.4.3-2-4, 4.4-4
Metacommunity, 4.2.3-2
MetaCV, 2.4.4-1
Metagene, 2.4.4-1
Metagenomes, phylogenetic networks of shared genes and, 4.1.1-9
Metagenomic DNA, 2.4.3-1-2, 4.3-5
Metagenomics
atomatic compound biodegraders, 5.1.3-8
community metabolism, 2.4.3-3-2, 4.4-4
deep sequencing of metagenomic soil DNA to detect pathogens, 3.2.6-2
functional, 2.4.3-1-2, 4.3-9
functional status assignment to community, 2.4.4-1-2, 4.4-5
gemicrobiology, 5.2.2-4-5, 5.2.2-5
gt microbe, 4.3.4-3-4, 4.3-5
heterotrophic planktonic microbes, 4.2.2-4-2, 4.2-9
high-salinity environments, 3.4.2-8
microbial source tracking (MST), 3.4.1-3-3, 3.4-1-15, 3.4-4-16
sequencing, 2.4.3-1-2, 4.3-2
targeted, 2.4.1-3
tools, 2.4.1-1-2, 2.4-1-3, 2.4-2-1
viruses plankotonic, 4.2.2-16-4, 4.2-17
wastewater samples, 2.6.4-9-2, 2.6.4-10
waterborne disease epidemiology, 3.1.4-9
Metal-impacted soils, bioremediation of, 5.2.3-1-5, 5.2.3-6
Metalloenzymes, 2.2.2-1
Metal resistances, 2.2.2-1
Metal toxicants, 2.2.2-1
Metal uptake, 2.2.2-1
Metal-precipitating agents, 2.2.2-1
Metal uptake, 2.2.2-1
Metal uptake, 2.2.2-1
Metal uptake, 2.2.2-1
Metal uptake, 2.2.2-1
metallomics, 5.2.3-6
microbial bioindicators, 5.2.3-6
microbial sensors, 5.2.3-5
species cooperation, 5.2.3-6
synthetic biology, 5.2.3-6
traditional methods of remediation, 5.2.3-2
Metal-transforming microbes,
M. ruminantium,
M. gottschalkii,
M. wosei,
M. smithii,
metal volatilization, 5.2.3-2
Metal-thiogenic, 5.2.3-2
Metal volatilization, 5.2.3-2
Metal forming ferric, 5.2.3-2
Metallic ions, for wastewater disinfection,
Metatranscriptomes, 5.2.2-6
Metaproteomics, 5.2.2-6
Metaproteome, 2.4.5-1
Metallothioneins, 5.2.3-3
Metal-working fluids, airborne bacteria and,
Microalgae, 4.2.2-6
Microautoradiography and fluorescence
pig GI tract, 4.4.2-5
rumen methanogenesis, 4.4.3-2
Methanocellulosa paludicola, 2.1.2-5
Methanocellulosa, 2.1.2-5
Methanococcus, 2.1.2-5
Methanococcus maripaludis, 4.1.2-9
Methanococcus voltae, 4.1.1-4
Methanocorpusculum laterale, 3.2.6-5
Methanothrix ethanogenes, 2.2.2-7
Methanogenesis, rumen, 4.4.1.2-4.4.1.3
Methanogens, 3.2.6-5
Methanolinoa tarda, 2.1.2-5
Methanomicrobium, 4.4.3-2
Methanomicrococcus, 4.4.3-2
Methanopyrales, 4.3.4-6
Methanopyrus kandleri, 4.3.4-4, 4.3.4.9
Methanorubula bunnii, 2.1.2-4
Methanosaeta, 2.1.2-4
Methanosacchara
airborne, 3.2.6-5
M. mazei, 3.2.6-5
M. succinica, 3.2.6-5
Methanospirillum hungatei, 3.2.6-5
Methanuromtherobacter tenenurum, 2.1.2-5
Methylococcus, 5.2.4-10
Methylation, 4.1.2-9
M. stadtmanae, 3.2.6-5
Microbial association networks, 4.2.2-23
Microbial fuel cell
applications
biodiesel, 5.1.4-9
bioindicators, 5.1.4-9
bioremediation, 5.1.4-9
biosensors, 5.1.4-9
chemical production, 5.1.4-9
bioremediation, 5.1.4-9
reverse electrodialysis, 5.1.4-10
wastewater treatment, 5.1.4-6, 5.1.4-9
electron transfer microorganism diversity, 5.1.4-4
extracellular electron transfer mechanism, 5.1.4-9
future directions, 5.1.4-10
overview, 5.1.4-1-5.1.4-2
Microbial fuel cell
Microbial ecology, 2.4.1-3
Microbial fuel cell
applications
biodiesel, 5.1.4-9
bioindicators, 5.1.4-9
reverse electrodialysis, 5.1.4-10
wastewater treatment, 5.1.4-6, 5.1.4-9
cassette electrode (CE-MFC), 5.1.4-5
future directions, 5.1.4-10
overview, 5.1.4-1-5.1.4-2
Microbial indicators, 3.1.1-1-3.1.1-7. See also Fecal indicator bacteria; Fecal indicator organism
advantages of using, 3.1.1-1
bacteriophages, 3.1.1-3, 3.1.1-5
Clostridium perfringens, 3.1.1-4-3.1.1-6
correlation with enteric pathogens, 3.1.1-5
correlation with environmental factors, 3.1.1-5
current indicators of fecal contamination, 3.1.1-1-3.1.1-4
desirable biological attributes of, 3.1.7-5
detection methods, 3.1.7-5
drinking water-related disease, 3.1.7-5
enterococci, 3.1.1-2-3.1.1-3, 3.1.1-5
Escherichia coli, 3.1.1-1-3.1.1-2,
3.1.1-4-3.1.1-5
fecal source tracking, 3.1.1-5-3.1.1-6,
3.4.5-1-3.4.5-8
hydrogen sulfide producers, 3.1.1-4
importance to public health, 3.1.1-4-3.1.1-5
Legionella, 3.1.4
metal-impacted soils, bioremediation of, 2.5.2-6
Microautotrophs and fluorescence in situ hybridization (MAR-FISH), 3.1.3-10, 4.2.3-14, 4.3.2-4
MICROExpress Bacterial mRNA Enrichment kit, 2.4.5-6
Microbial association networks, 4.2.2-23
Microbial community analysis
animal gut microbiomes, 4.4.3.4-4.4.3.5
aqueous biofilm, 4.2.3-13-4.2.3-16
analysis at community scale, 4.2.3-15-4.2.3-16
analysis at landscape scale, 4.2.3-16
functional status assignment to community gene content, 2.4.4-1-2.4.5-10
Microbial composition, 4.2.3-2
Microbial ecology, 4.2.3-1
acidic environments, 4.3.1-15-4.3.1-17
essential goals of, 4.2.3-1
Metal volatilization, 5.2.3-2
Metal-thiogenic, 5.2.3-2
Metal-impacted soils, bioremediation of,
Pseudonocardia, 5.1.2-9
Pseudoviruses, 3.2.7-9
Pseudoxanthomonas spadix, 5.1.5-3
Public buildings, airborne microorganisms from, 3.2.1-3, 3.2.1-5
Puccinia coronata, 3.2.8-10
Puccinia graminis
Ug99 lineage, 3.2.8-10–3.2.8-11
wheat rust, 3.2.8-9–3.2.8-11, 3.2.8-13
Puccinia melanocephala, sugarcane rust and, 3.2.8-9
Puccinia triticina,
Pyrite, 4.3.1-8
Purge volume, 2.6.1-2
Purpureocillium lilacinum, 4.3.1-8
Pumalalia virus, 3.2.7-6
Puo polymerase, 2.3.2-1
PyNast aligner, 2.4.2-15
Pyricularia oryzae,
Pyrococcus furiosus,
Pyrodinium,
3.1.2-11
Pseudonocardia,
5.1.2-9
Pseudoxanthomonas spadix,
5.1.5-3
Pseudorabies virus, 3.2.7-9
Puccinia graminis
Puccinia coronata,
Ug99 lineage,
3.2.8-10–3.2.8-11
wheat rust,
3.2.8-9–3.2.8-11, 3.2.8-13
Puccinia melanocephala,
sugarcane rust and,
3.2.8-9
Puccinia triticina,
Pyrite, 4.3.1-8
Purge volume, 2.6.1-2
Purpureocillium lilacinum, 4.3.1-8
Pumalalia virus, 3.2.7-6
Puo polymerase, 2.3.2-1
PyNast aligner, 2.4.2-15
Pyricularia oryzae,
Pyrococcus furiosus,
Pyrodinium,
3.1.2-11
Pseudonocardia,
5.1.2-9
Pseudoxanthomonas spadix,
5.1.5-3
Pseudorabies virus, 3.2.7-9
Puccinia graminis
Puccinia coronata,
Ug99 lineage,
3.2.8-10–3.2.8-11
wheat rust,
3.2.8-9–3.2.8-11, 3.2.8-13
Puccinia melanocephala,
sugarcane rust and,
3.2.8-9
Puccinia triticina,
Pyrite, 4.3.1-8
Purge volume, 2.6.1-2
Purpureocillium lilacinum, 4.3.1-8
Pumalalia virus, 3.2.7-6
Puo polymerase, 2.3.2-1
PyNast aligner, 2.4.2-15
Pyricularia oryzae,
Pyrococcus furiosus,
Pyrodinium,
3.1.2-11
Pseudonocardia,
5.1.2-9
Pseudoxanthomonas spadix,
5.1.5-3
Pseudorabies virus, 3.2.7-9
Puccinia graminis
Puccinia coronata,
Ug99 lineage,
3.2.8-10–3.2.8-11
wheat rust,
3.2.8-9–3.2.8-11, 3.2.8-13
Puccinia melanocephala,
sugarcane rust and,
3.2.8-9
Puccinia triticina,
Pyrite, 4.3.1-8
Purge volume, 2.6.1-2
Purpureocillium lilacinum, 4.3.1-8
Pumalalia virus, 3.2.7-6
Puo polymerase, 2.3.2-1
PyNast aligner, 2.4.2-15
Pyricularia oryzae,
Pyrococcus furiosus,
Pyrodinium,
3.1.2-11
Pseudonocardia,
5.1.2-9
Pseudoxanthomonas spadix,
5.1.5-3
Pseudorabies virus, 3.2.7-9
Puccinia graminis
Puccinia coronata,
Ug99 lineage,
3.2.8-10–3.2.8-11
wheat rust,
3.2.8-9–3.2.8-11, 3.2.8-13
Puccinia melanocephala,
sugarcane rust and,
3.2.8-9
Puccinia triticina,
Pyrite, 4.3.1-8
Purge volume, 2.6.1-2
Purpureocillium lilacinum, 4.3.1-8
Pumalalia virus, 3.2.7-6
Puo polymerase, 2.3.2-1
PyNast aligner, 2.4.2-15
Pyricularia oryzae,
Pyrococcus furiosus,
Pyrodinium,
3.1.2-11
Pseudonocardia,
5.1.2-9
Pseudoxanthomonas spadix,
5.1.5-3
Pseudorabies virus, 3.2.7-9
Puccinia graminis
Puccinia coronata,
Ug99 lineage,
3.2.8-10–3.2.8-11
wheat rust,
3.2.8-9–3.2.8-11, 3.2.8-13
Puccinia melanocephala,
sugarcane rust and,
3.2.8-9
Puccinia triticina,
Sampling
animal gut microbiomes, 4.4.1.3
bioaerosol, 3.2.2.1–3.2.2.11
environmental systems microbiology
field test plan, 5.1.6.4
in experimental geomicrobiology, 5.2.2.2
exposure assessment, 3.5.2.5
quality control of procedures, 2.5.2.3
soil, 2.6.3.1–2.6.3.10
surface, 2.6.2.1–2.6.2.10, 3.2.2.11, 3.2.6.10
wastewater and biosolids, 2.6.4.1–2.6.4.11
water for public health-related microbes, 2.6.1.1–2.6.1.12
Sampling bias, 2.5.6.6
Sampling design, for high-throughput sequencing, 2.4.2.2
Sandwich assay, 2.3.1.1
Sanger sequencing, low-biomass environments and, 4.3.3.5
Sanitation, 2.1.1.4
Sapoviruses, 3.1.5.1–3.1.5.2, 3.1.7.4
Sapporo virus, 3.1.5.2
SARS coronavirus (SARS-CoV), 3.2.7.1, 3.2.7.8–3.2.7.9
SAS Super samplers, 3.2.2.3, 3.2.5.2–3.2.5.6
SASS samplers, 3.2.2.4
Saratoxins, 3.2.5.11–3.2.5.12
Saxitoxin, 3.1.2.1, 3.1.2.4, 3.1.2.7, 3.1.2.10, 3.1.4.8
Scanning electron microscopy, 2.2.1.1–2.2.1.8
Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), 2.2.1.1–2.2.1.2, 2.2.1.6–2.2.1.7
Scanning transmission X-ray microscopy (STXM), 4.2.3.14, 4.2.3.18
scFOSs (short-chain fructooligosaccharides), 3.3.2.6
Schools, airborne bacteria and, 3.2.6.4
SCIMM (Sequence Clustering with Interpolated Markov Models), 2.4.4.1
Scleroderma, 3.2.5.2
Secondary effluent, 2.6.4.2
Secondary-ion mass spectrometry (SIMS), 5.1.3.7–5.1.3.8
Secondary transmission, 3.5.1.6
Sedimentation, water sample
collection of concentration of helmith ova in wastewater samples, 2.6.4.11
direct sedimentation by centrifugation, 2.6.1.9–2.6.1.10
virus sedimentation by precipitation and flocculation, water sampling, 2.6.1.10–2.6.1.11
Sediments, in benthic environments, 4.2.1.1–4.2.1.15
SEED database, 2.4.4.3–2.4.4.4, 2.4.5.12
Selenastrum capricornutum, 3.1.3.8, 5.2.3.6
Selenium, bacterially facilitated soil remediation, 5.2.3.5
SELEX (systematic evolution of ligands by exponential enrichment), 2.3.1.5
Sensitivity analysis, 3.5.2.15–3.5.2.16
Seoul virus, 3.2.1.2
Septoria tritici, 3.2.8.3
Sequence-based typing, of Legionelles, 3.2.9.7
Sequence editing software, 2.4.3.8
Sequencing. See also High-throughput sequencing; Next-generation sequencing; Shotgun sequencing
benthic environment samples, 4.2.1.13
biofilm communities, 4.2.3.15
deep, 2.4.4.5, 3.3.2.6
dual-index, 2.4.2.9
error sources, 2.4.2.9–2.4.2.10
heterotrophic planktonic microbes, 4.2.2.9
low-biomass environments, 4.3.3.5–3.3.6
metagenomic soil DNA to detect pathogens, 3.3.2.6
metatranscriptome, 2.4.5.9
microbial community analysis, 2.4.2.1–2.4.2.21
microbial source tracking (MST), 3.4.1.3–3.4.1.4
Serial analysis of gene expression (SAGE), 2.4.1.3
Serratia marcescens
airborne, 3.2.5.3–3.2.5.5, 3.2.5.6
hypersensitivity pneumonitis, 3.2.5.9
S. meleagridis, 3.3.2.6
S. paratyphi, 3.1.7.3
S. enterica
case-fatality rates, 3.5.1.6
chromogenic and fluorogenic media, 3.1.7.7
tection of, 2.3.1.9
S. enteritidis subsp. arizonae, 2.1.1.4
S. meleagris, ID50 (infectious dose 50%) of, 3.5.1.5
S. enterica
airborne, 3.2.6.4–3.2.8.5
climate sensitivity, 3.1.7.7
detection of, 2.3.1.9
S. enteritidis subsp. arizonae, 2.1.1.4
S. meleagris, ID50 (infectious dose 50%) of, 3.5.1.5
S. paratyphi, 2.1.1.4
S. typhi, 2.1.1–4.3.1.7
S. typhimurium
Airm test and, 3.1.3.8
invasion studies, 4.4.2.6
transduction, 4.1.1.4
in wastewater, 2.6.4.6–2.6.4.8
waterborne disease, 3.1.7.3
Salt lakes, 4.3.2.1–4.3.2.2
Sampling, airborne, 3.2.2.3–3.2.2.6
Sample collection
bioaerosol sampling
collection efficiency, 3.2.2.8
methodology, 3.2.2.1–3.2.2.2
time, 3.2.2.9–3.2.2.10
cyanobacteria, 3.1.2.4–3.1.2.5
from low-biomass environments, 3.2.1.2
wastewater sampling, 2.6.4.4
Sample handling
quality control, 2.5.2.3
wastewater sampling, 2.6.4.5
Viral targets, 2.6.4-8
Wastewater treatment, 3.1.3–3.1.3-10
advanced oxygen processes, 3.1.3-1
airborne endotoxin, 3.2.6-8
airborne microorganisms, 3.2.1-7
archaea, 3.2.6-5
bacteria, 3.2.6-3
biological oxygen demand (BOD), 3.1.3-2–3.1.3-5
biosolids, 3.1.3-4–3.1.3-6, 3.1.3-9
decentralized and centralized, 2.6.4-1
disinfection, 2.6.4-2, 3.1.3-6–3.1.3-8
metallic ions, 3.1.3-7–3.1.3-8
ozone, 3.1.3-7
solar radiation, 3.1.3-7
ultrasound, 3.1.3-8
UV radiation, 3.1.3-7
efluent toxicity, testing, 3.1.3-8
emerging issues, 3.1.3-8–3.1.3-10
measures of efficiency, 3.1.3-3–3.1.3-4
nutrients (N and P), 3.1.3-3–3.1.3-4
oxygen demand or depletion, 3.1.3-3–3.1.3-4
quantifying pathogens and indicators, 3.1.3-3–3.1.3-4
toxic constituents, 3.1.3-3–3.1.3-4
microbial electrochemical technology applications, 5.1.4-6, 5.1.4-9
National Pollutant Discharge Elimination System (NPDES) permits, 2.6.4-6
nutrient removal, 3.1.3-8
objectives, 2.6.4-1, 3.1.3-3–3.1.3-4
overview, 2.6.4-1
pathogens, 3.1.3-3–3.1.3-4, 3.1.3-6
assessing disinfection, 3.1.3-6
enumerating, 3.1.3-6
pharmaceutical and personal care products (PPCPs), 3.1.3-3–3.1.3-4, 3.1.3-8–3.1.3-10
pollutant removal and reduction, 3.1.3-4
ponds, 3.1.3-1
process control, 3.1.3-5
sludge treatment, 3.1.3-4–3.1.3-5
total suspended solids, 3.1.3-2–3.1.3-5
Wastewater treatment plants
activated sludge, 3.1.3-1–3.1.3-2
attached growth, 3.1.3-1–3.1.3-2
trickling filter, 3.1.3-1–3.1.3-2
zero-discharge, 3.1.3-1
Water
bioaerosol generation from, 3.2.1-1
cyanothecal harmful algal blooms (CyanoHABs), 3.2.1-2–3.1.3-11
disease associations (see Waterborne disease)
drinking (see Drinking water)
eteric viruses in, 3.1.5-1–3.1.5-8
chronology of milestones, 3.1.5-2
detection methodologies, 3.1.5-4–3.1.5-8
distribution, 3.1.5-5–3.1.5-8
diversity, 3.1.5-1–3.1.5-3
ecological and morphological characteristics, 3.1.5-2
pathobiology and prevalence, 3.1.5-5
receptors, 3.1.5-7
recovery efficiency from water, 3.1.5-6
virology and genotyping, 3.1.5-6
virology and genotyping, 3.1.5-6
virology shapes and structures, 3.1.5-3
exposure assessment
Cryptosporidium oocyst concentration in surface water, 3.5.2-10–3.5.2-13
examples of exposure magnitude and frequency, 3.5.2-9
norovirus exposure via treated drinking water, 3.5.2-8–3.5.2-10
pathogen risk to swimmers at recreational beaches, 3.5.2-14–3.5.2-16
quantifying pathogen concentration in, 3.5.2-5
fecal indicator organism (FIO) modeling, 3.4.6-1–3.4.6-10
freshwater
bacteriological standards/guidelines, 3.1.1-4–3.1.1-5
microbial indicators, 3.1.1-1–3.1.1-7
ingestion of stored reclaimed water, 3.5.1-8–3.5.1-9
microbial indicators, 3.1.1-1–3.1.1-7
microbial source tracking (MST) fecal indicator organism modeling in environmental waters, 3.4.6-1–3.4.6-4
field study, 3.4.5-1–3.4.5-8
methods targeting animal sources of fecal water pollution, 3.4.4-1–3.4.4-19
methods tracking human fecal pollution sources, 3.4.1-3–3.4.3-6
validation, 3.4.2-1–3.4.2-9
protozoa detection in, 3.1.6-1–3.1.6-18
risk calculations, 3.5.1-8–3.5.1-9
sampling (see Water sampling)
surface (See Surface water)
wastewater (see Wastewater treatment)
Water activity, fusion, 3.2.5-2–3.2.5-3
Water and Health Trial for Enteric Risk (WAHTER), 3.1.4-7
Water-based, 3.1.7-1
Water content, effect on airborne microorganism viability, 3.2.4-1–3.2.4-2
Water quality, microbial source tracking (MST) and, 3.4.3-5
Water sampling, 2.6.1-1–2.6.1-12
field sampling techniques, 2.6.1-2–2.6.1-9
composite sampling, 2.6.1-3
large-volume sampling, 2.6.1-3–2.6.1-9
quality control, 2.6.1-8–2.6.1-9
small-volume discrete sampling, 2.6.1-2–2.6.1-3
laboratory sample processing techniques, 2.6.1-9–2.6.1-11
centrifugal filtration techniques, 2.6.1-11
direct sedimentation by centrifugation, 2.6.1-9–2.6.1-10
virus sedimentation by precipitation and flocculation, 2.6.1-10–2.6.1-11
large-volume sampling, 2.6.1-3–2.6.1-8
adsorption-elution techniques, 2.6.1-6–2.6.1-8
continuous flow centrifugation, 2.6.1-3–2.6.1-5
microfiltration, 2.6.1-3
physical separation techniques specific to parasites, 2.6.1-3–2.6.1-5
ultrafiltration techniques, 2.6.1-5–2.6.1-7
for Legionella, 3.2.9-2–3.2.9-8
overview, 2.6.1-1–2.6.1-2
Waterborne Outbreak Disease Surveillance System (WBDOSS), 3.1.4-2
Waterborne Outbreak Disease Surveillance System (WBDOSS), 3.1.4-2
Watershed modeling, 3.4.6-4
Wet deposition, 3.2.4-8
Wet electrostatic precipitator, 3.2.2-7
Wetland removal of metals, 5.2.3-5
Wheat rust, 3.2.8-9–3.2.8-11
WHO. See World Health Organization
Whole effluent tests, 2.6.4-11
Wipes, for surface sampling, 2.6.2-4, 2.6.2-7
X-GAL (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside), 2.1.1-1–2.1.1-2, 3.1.1-2
X-ray-based computed tomography, 2.2.1-1
Xanthomonas
airborne, 3.2.6-1, 3.2.8-3, 3.2.8-4
X. axonopodis, 3.2.8-3
X. citri subsp. citri, citrus canker and, 3.2.8-13
Xanthomonas maltophilia selective medium, 3.3.2-5
Xenorhabdus, 3.2.8-5
Xylene
biodegradation, 5.1.3-1, 5.1.3-3, 5.1.3-6, 5.1.5-1–5.1.5-4
chemistry and structure, 5.1.5-1–5.1.5-2
Yeast
acidophiles, 4.3.1-9
halophilic, 4.3.2-3
Yeast surface display antibody libraries, 2.3.1-1–2.3.1-5
Yersinia enterocolitica
airborne, 3.2.6-1, 3.2.8-3
chromogenic and fluorogenic media, 2.1.1-4
in wastewater, 2.6.4-6–2.6.4-8
waterborne disease, 3.1.7-3
Zearalenone, 3.2.5-10–3.2.5-11, 3.2.8-9
Zinc sulfate (ZnSO4) flotation, 2.6.4-11
Zinderia, 4.4.1-3
Zygnemopsis, 4.3.1-5–4.3.1-6
Zygosporium masonii, 3.2.5-2
Zygomycetes, 3.2.5-7