MANUAL OF ENVIRONMENTAL MICROBIOLOGY
FOURTH EDITION

Editor in Chief
Marylynn V. Yates
Department of Environmental Sciences
University of California
Riverside, California

Editors
Cindy H. Nakatsu
Department of Agronomy
Purdue University
West Lafayette, Indiana

Robert V. Miller
Department of Microbiology and Molecular Genetics
Oklahoma State University
Stillwater, Oklahoma

Suresh D. Pillai
National Center for Electron Beam Research
Departments of Poultry Science and Nutrition
and Food Science
Texas A&M University
College Station, Texas
Contents

Editorial Board ix
Contributors xi

1.1.1 Introduction / 1.1.1-1
MARYLYNN V. YATES

GENERAL METHODOLOGY
VOLUME EDITOR: SURESH D. PILLAI
SECTION EDITORS: YOICHI KAMAGATA,
CLEBER C. OUVERNEY, DOUGLAS R. CALL,
STEFA N J. GREEN, YILDIZ T. CHAMBERS, AND
JOHN SCOTT MESCHKE

2.1 CULTURE-BASED AND PHYSIOLOGICAL DETECTION
2.1.1 Detection of Specific Taxa Using Chromogenic and Fluorogenic Media / 2.1.1-1
MOHAMMAD MANAFI
2.1.2 Anaerobic Cultivation / 2.1.2-1
TAKASHI NARIHIRO AND YOICHI KAMAGATA
2.1.3 New Devices for Cultivation / 2.1.3-1
YOSHITERU A0I AND SLAVA EPSTEIN

2.2 MICROSCOPIC METHODS
2.2.1 Gold-Based In Situ Hybridization for Phylogenetic Single-Cell Detection of Prokaryotes in Environmental Samples / 2.2.1-1
THILO EICHKORST AND HANNES SCHMIDT
2.2.2 Assessment of Prokaryotic Biological Activity at the Single-Cell Level by Combining Microautoradiography and Fluorescence in situ Hybridization / 2.2.2-1
CLEBER C. OUVERNEY

2.3 TARGET-SPECIFIC DETECTION
2.3.1 Antibody-Based Technologies for Environmental Biodetection / 2.3.1-1
CHERYL L. BAIRD AND SUSAN M. VARNUM

2.3.2 PCR, Real-Time PCR, Digital PCR, and Isothermal Amplification / 2.3.2-1
RACHEL A. BARTHOLOM EW, JANINE R. HUTCHISON, TIMOTHY M. STRAUB,
AND DOUGLAS R. CALL

2.3.3 Microarray-Based Environmental Diagnostics / 2.3.3-1
DARRELL P. CHANDLER

2.3.4 Field Application of Pathogen Detection Technologies / 2.3.4-1
TIMOTHY M. STRAUB, DOUGLAS R. CALL, CINDY BRUCKNER-LEA,
HEATHER COLBURN, CHERYL L. BAIRD, RACHEL A. BARTHOLOM E W,
RICHARD OZANICH, AND KRISTIN JARMAN

2.4 MICROBIAL COMMUNITY ANALYSIS OF ENVIRONMENTAL SAMPLES WITH NEXT-GENERATION SEQUENCING

2.4.1 Introduction to Microbial Community Analysis of Environmental Samples with Next-Generation Sequencing / 2.4.1-1
STEFA N J. GREEN AND JOSH D. NEUFELD

2.4.2 Microbial Community Analysis Using High-Throughput Amplicon Sequencing / 2.4.2-1
DANNY IONESCU, WILL A. OVERHOLT,
MICHAEL D. J. LYNCH, JOSH D. NEUFELD,
ANKUR NAQIB, AND STEFAN J. GREEN

2.4.3 Functional Metagenomics: Procedures and Progress / 2.4.3-1
LAURA S. MORRIS AND JULIAN R. MARCHESI

2.4.4 Metagenomics: Assigning Functional Status to Community Gene Content / 2.4.4-1
NAS EER SANGWAN AND RUP LAL

2.4.5 Generation and Analysis of Microbial Metatranscriptomes / 2.4.5-1
NEHA SARODE, DARREN J. PARRIS, SANGITA GANESH, SHERRY L. SESTON, AND FRANK J. STEWART
3.3.2 Natural Soil Reservoirs for Human Pathogenic and Fecal Indicator Bacteria / 3.3.2-1
MARIA LAURA BOSCHIROLI, JOSEPH FALKINHAM, SABINE FAVRE-BONTÉ, SYLVIE NAZARET, PASCAL PIVETEAU, MICHAEL SADOWSKY, MURULEE BYAPPANAHALLI, PASCAL DELAQUI, AND ALAIN HARTMANN

3.4 Microbial Source Tracking
3.4.1 The Evolving Science of Microbial Source Tracking / 3.4.1-1
VALERIE J. HARWOOD, CHARLES HAGEDORN, AND MICHAEL SADOWSKY

3.4.2 Validation of Microbial Source Tracking Markers and Detection Protocols: Considerations for Effective Interpretation / 3.4.2-1
ASJA KORAJKIC, DON STOECKEL, AND JOHN F. GRIFFITH

3.4.3 Overview of Microbial Source Tracking Methods Targeting Human Fecal Pollution Sources / 3.4.3-1
ORIN C. SHANKS, HYATT GREEN, ASJA KORAJKIC, AND KATHARINE G. FIELD

3.4.4 Methods of Targeting Animal Sources of Fecal Pollution in Water / 3.4.4-1
ANICET R. BLANCH, ELISENDA BALLESTÉ, JENNIFER WEIDHAAS, JORGE SANTO DOMINGO, AND HODON RYU

3.4.5 Microbial Source Tracking: Field Study Planning and Implementation / 3.4.5-1
JULIE KINZELMAN AND WARISH AHMED

3.4.6 Fecal Indicator Organism Modeling and Microbial Source Tracking in Environmental Waters / 3.4.6-1
MEREDITH B. NEVERS, MURULEE BYAPPANAHALLI, MANTHA S. PHANIKUMAR, AND RICHARD L. WHITMAN

3.5 Microbial Risk Assessment
3.5.1 Risk Assessment Framework / 3.5.1-1
MARYLYNN V. YATES

3.5.2 Exposure Assessment / 3.5.2-1
SUSAN R. PETERSON AND NICHOLAS J. ASHBOILT

3.5.3 Dose-Response Modeling and Use: Challenges and Uncertainties in Environmental Exposure / 3.5.3-1
MARK H. WEIR

Microbial Ecology
VOLUME EDITOR: ROBERT V. MILLER
SECTION EDITORS: LARRY J. FORNEY, ROBERT H. FINDLAY, BRIAN P. HEDLUND, AND JULIAN R. MARCHESI

4.1 Theory

Phylogenomic Networks of Microbial Genome Evolution / 4.1.1-1
TAL DAGAN, OVIDIU POPA, THORSTEN KLÖSGES, AND GIDDY LANDAN

Evolutionary Ecology of Microorganisms: From the Tamed to the Wild / 4.1.2-1
JAY T. LENNON AND VINCENT J. DENEF

Aquatic Environments
4.2.1 The Microbial Ecology of Benthic Environments / 4.2.1-1
ROBERT H. FINDLAY AND TOM J. BATTIN

Heterotrophic Planktonic Microbes: Viruses, Bacteria, Archaea, and Protozoa / 4.2.2-1
JED A. FUHRMAN AND DAVID A. CARON

Aquatic Biofilms: Development, Cultivation, Analyses, and Applications / 4.2.3-1
JOHN R. LAWRENCE, THOMAS R. NEU, ARMELLE PAULE, DARREN R. KORBER, AND GIDEON M. WOLFARDO

Extreme Environments
4.3.1 The Microbiology of Extremely Acidic Environments / 4.3.1-1
D. BARRIE JOHNSON AND ANGELES AGUILERA

Life in High Salinity Environments / 4.3.2-1
AHARON OREN

Microbial Life in Extreme Low-Biomass Environments: A Molecular Approach / 4.3.3-1
KASTHURI VENKATESWARAN, MYRON T. LADUC, PARAG VAISHAMPAYAN, AND JAMES A. SPRY

Life in High-Temperature Environments / 4.3.4-1
BRIAN P. HEDLUND, SCOTT C. THOMAS, JEREMY A. DODSWORTH, AND CHUANLUN L. ZHANG

Animal-Gut Microbiomes
4.4.1 Invertebrate Gut Associations / 4.4.1-1
DANIELE DAFFONCHIO, ALBERTO ALMA, GUIDO FAVIA, LUCIANO SACCHI, AND CLAUDIO BANDI

Studying the Mammalian Intestinal Microbiome Using Animal Models / 4.4.2-1
FLOOR HUGENHOLTZ, JING ZHANG, PAUL W. O’TOOLE, AND HAUKE SMIDT

Animal Gut Microbiomes / 4.4.3-1
RICHARD J. ELLIS AND CHRISTOPHER S. MCSWEENEY

Biodegradation and Biotransformation
VOLUME EDITOR: CINDY H. NAKATSU
SECTION EDITORS: CINDY H. NAKATSU AND CHRISTOPHER RENSING
5.1 BIODEGRADATION

5.1.1 Genomic Features and Genome-Wide Analysis of Dioxin-Like Compound Degraders / 5.1.1-1
MASAKI SHINTANI AND KAZUHIDE KIMBARA

5.1.2 Biodegradation of Organochlorine Pesticides / 5.1.2-1
YUJI NAGATA, MICHIRO TABATA, YOSHIYUKI OHTSUBO, AND MASATAKA TSUDA

5.1.3 Anaerobic Degradation of Aromatic Compounds / 5.1.3-1
WEIMIN SUN, VALDIS KRUMINS, DONNA E. FENNELL, LEE J. KERKHOF, AND MAX M. HÄGGBLOM

5.1.4 Microbial Electrochemical Technologies Producing Electricity and Valuable Chemicals from Biodegradation of Waste Organic Matters / 5.1.4-1
TAEHO LEE, AKIHIRO OKAMOTO, SOKHEE JUNG, RYUHEI NAKAMURA, JUNG RAE KIM, KAZUYA WATANABE, AND KAZUHITO HASHIMOTO

5.1.5 A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds / 5.1.5-1
KENGO INOUE, ONRUTHAI PINYAKONG, KANO KASUGA, AND HIDEAKI NOJIRI

5.1.6 Environmental Systems Microbiology of Contaminated Environments / 5.1.6-1
TERRY C. HAZEN AND GARY S. SAYLER

5.2 BIOTRANSFORMATION

5.2.1 Breathing Iron: Molecular Mechanism of Microbial Iron Reduction by *Shewanella oneidensis* / 5.2.1-1
REBECCA E. COOPER, JENNIFER L. GOFF, BEN C. REED, RAMANAN SEKAR, AND THOMAS J. DICHRISTINA

5.2.2 Experimental Geomicrobiology: From Field to Laboratory / 5.2.2-1
TIMOTHY S. MAGNUSON AND RHESA N. LEDBETTER

5.2.3 Microbial Uses in the Remediation of Metal-Impacted Soils / 5.2.3-1
TIMBERLEY ROANE AND MUNIRA LANTZ

Index I-1
Editorial Board

Mark P. Buttner Section 3.2
School of Community Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154

Douglas R. Call Section 2.3
Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164

Yildiz T. Chambers Section 2.5
CSC Science, Engineering, and Mission Support, Alexandria, VA 22310

Robert H. Findlay Section 4.2
University of Alabama, Department of Biological Sciences, Tuscaloosa, AL 35487

Larry J. Forney Section 4.1
Department of Biological Sciences, University of Idaho, Moscow, ID 83844

Stefan J. Green Section 2.4
Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612

Valerie J. Harwood Section 3.4
Department of Integrative Biology, University of South Florida, Tampa, FL 33620

Brian P. Hedlund Section 4.3
School of Life Sciences, Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV 89154

Yoichi Kamagata Section 2.1
Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan

Julian R. Marchesi Section 4.4
School of Biosciences, Cardiff University, Centre for Digestive and Gut Health, Imperial College London, Cardiff, Wales CF10 3AT, United Kingdom

John Scott Meschke Section 2.6
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105

Cleber C. Ouverney Section 2.2
Department of Biological Sciences, San Jose State University, San Jose, CA 95192

Christopher Rensing Section 5.2
Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark

Ed Topp Section 3.3
Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada

Gary A. Toranzos Section 3.1
Department of Biology, University of Puerto Rico, San Juan, PR 00932, Puerto Rico
CONTRIBUTORS

MORTEZA ABBASZADEGAN
Arizona State University, Tempe, AZ 85287

ANGELES AGUILERA
Centro de Astrobiología (INTA-CSIC), Madrid 28850, Spain

WARISH AHMED
CSIRO Land and Water Queensland Biosciences Precinct, St. Lucia, Queensland 4067, Australia

ALBERTO ALMA
Department of Agriculture, Forestry and Food Sciences DISAFA, University of Turin, Grugliasco I-10095, Italy

ABSAR ALUM
Arizona State University, Tempe, AZ 85287

YOSHITERU AOI
Institute of Sustainable Sciences and Development, Hiroshima University, Hiroshima 739-8529 Japan, and Northeastern University, Boston, MA 02115

MATTHEW J. ARDUINO
Centers for Disease Control and Prevention, Division of Healthcare Quality Promotion, Atlanta, GA 30329

NICHOLAS J. ASHBOLT
School of Public Health, University of Alberta, Edmonton, AB T6G 2G7, Canada

CHERYL L. BAIRD
Pacific Northwest National Laboratory, Biochemistry and Structural Biology, Fundamental and Computational Sciences Division, Richland, WA 99352

ELISENDA BALLESTÉ
Department of Microbiology, University of Barcelona, Barcelona 08028, Spain

CLAUDIO BANDI
Department of Veterinary Sciences and Public Health, University of Milan, Milan I-20133, Italy

RACHEL A. BARTHOLOMEW
Pacific Northwest National Laboratory, Chemical and Biological Signature Sciences Group, National Security Directorate, Richland, WA 99354

TOM J. BATTIN
Stream Biofilm and Ecosystem Research Laboratory, Ecole Polytechnique Fédérale Lausanne, CH-1015 Lausanne, Switzerland

NITIN BHARDWAJ
Advanced Medical Research Institute of Canada, Sudbury, ON P3E 5J1, Canada

PASCALE BLAIS LECOURS
Centre deRecherché, University Institute of Cardiology and Pulumonology of Québec, Université de Laval, Québec, QC G1K7P4, Canada

ANICET R. BLANCH
Department of Microbiology, University of Barcelona, Barcelona 08028, Spain

MARIA LAURA BOSCHIROLI
ANSES French Agency for Food, Environmental & Occupational Health Safety, Maisons-Alfort Animal Health Laboratory, Bacterial Zoonoses Unit, Maisons-Alfort 94706, France

JULIE BRASSARD
Agriculture and Agri-Food Canada, Food Research and Development Centre, Saint-Hyacinthe, QC J2S 8E3, Canada

ELLEN BRAUN-HOWLAND
Laboratory of Environmental Biology, NYSDOH, Wadsworth Center, Biggs Laboratory, Empire State Plaza, Albany, NY 12201

KELLY R. BRIGHT
University of Arizona, Tempe, AZ 85287

JOHN BROOKS
Genetics and Precision Agriculture Unit, USDA-ARS, Mississippi State University, Mississippi State, MS 39762

GARY S. BROWN
Lockheed Martin Corporation, Scientific, Engineering, Response, Analytical Services, Las Vegas, NV 89119

CINDY BRUCKNER-LEA
Pacific Northwest National Laboratory, Richland, WA 99354
CONTRIBUTORS

MARK P. BUTTNER
School of Community Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154

MURULEE BYAPPANAHALLI
USGS Great Lakes Science Center, Ann Arbor, MI 48105

DOUGLAS R. CALL
Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164

DAVID A. CARON
Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089

YILDIZ T. CHAMBERS
CSC Science, Engineering, and Mission Support, Alexandria, VA 22310

DARRELL P. CHANDLER
Akonni Biosystems, Inc., Frederick, MD 21701

HEATHER COLBURN
Pacific Northwest National Laboratory, Richland, WA 99354

KEVIN K. CONNELL
Science & Engineering Line of Service, CSC, Alexandria, VA 22310

REBECCA E. COOPER
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

PATRICIA CRUZ
School of Community Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154

DANIELLE DAFFONCHIO
Department of Food, Environmental and Nutritional, Sciences, DeFENS, University of Milan, Milan I-20133, Italy

TAL DAGAN
Institute of Microbiology, Christian-Albrechts-University of Kiel, Kiel 24118, Germany

RICHARD E. DANIELSON
BioVir Laboratories, Inc., Benicia, CA 94510

PASCAL DELAQUIS
Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, BC V0H 1Z0, Canada

VINCENT J. DENEF
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109

GEORGE D. DI GIOVANNI
Environmental and Occupational Health Sciences, University of Texas School of Public Health, El Paso Regional Campus, El Paso, TX 79902

THOMAS J. DICHRISTINA
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

JEREMY A. DODSWORTH
Department of Biology, California State University, San Bernardino, CA 92407

SAMUEL DOREVITCH
U of Illinois at Chicago, School of Public Health, Chicago, IL 60612

CAROLINE DUCHAINE
Department of Biochemistry and Microbiology, Université Laval, Québec, QC G1K7P4, Canada

THILO EICKHORST
Soil Microbial Ecology, University of Bremen, Bremen 28359, Germany

RICHARD J. ELLIS
Animal and Plant Health Agency, Specialist Scientific Support Department, New Haw, Surrey KT15 3NB, United Kingdom

SLAVA EPSTEIN
School of Biology, Georgia Institute of Technology, Atlanta, GA 30332

GUIDO FAVIA
Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061

GUIDO FAVIA
School of Biosciences and Biotechnology, University of Camerino, Camerino I-62032, Italy

SABINE FAVRE-BONTÉ
Microbial Ecology Laboratory, UMR 5557, CNRS/University Lyon I, Villeurbanne 69622, France

DONNA E. FENNELL
Division of Global Disease Detection & Emergency Response, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333

BARRY S. FIELDS
Division of Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333

ROBERT H. FINDLAY
University of Alabama, Department of Biological Sciences, Tuscaloosa, AL 35487

JED A. FUHRMAN
Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
ANKUR NAQIB
DNA Services Facility, University of Illinois at Chicago,
Chicago, IL, 60613

TAKASHI NARIHIRO
Bioproduction Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST) Tsukuba
605-8566, Japan, and Department of Civil and Environmental
Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL 61801

SYLVIE NAZARET
Microbial Ecology Laboratory, UMR 5557, CNRS/University
Lyon I, Villeurbanne 69622, France

THOMAS R. NEU
River Ecology, Helmholtz Centre for Environmental Research,
Magdeburg 39114, Germany

JOSH D. NEUFELD
Department of Biology, University of Waterloo, Waterloo, ON
NSL 3G1, Canada

MEREDITH B. NEVERS
U.S. Geological Survey, Great Lakes Science Center, Porter,
IN 46304

JUDITH NOBLE-WANG
Centers for Disease Control and Prevention, Division of
Healthcare Quality Promotion, Atlanta, GA 30329

HIDEAKI NOJIRI
The University of Tokyo, Biotechnology Research Center,
Tokyo 13-8657, Japan

YOSHIYUKI OHTSUBO
Department of Environmental Life Sciences, Graduate School of
Life Sciences Tohoku University, Hatahira, Sendai 980-8577,
Japan

AKIHIRO OKAMOTO
Department of Earth Sciences, University of Southern
California, Los Angeles, CA 90089

AHARON OREN
Department of Plant and Environmental Sciences, Institute of
Life Sciences, The Hebrew University of Jerusalem, Jerusalem
91904, Israel

ROBIN K. OSHIRO
Engineering and Analysis Division, USEPA Headquarters,
Washington, DC 20460

PAUL W. OTTOOLE
School of Microbiology & Alimentary Pharmabiotic Centre,
University College Cork, Cork T12 YN60, Ireland

TIMOTHY G. OTTEN
Department of Microbiology, Oregon State University,
Corvallis, OR 97331

CLEBER C. OUVERNEY
Department of Biological Sciences, San Jose State University,
San Jose, CA 95192

WILL A. OVERHOLT
School of Biology, Georgia Institute of Technology, Atlanta,
GA 30332

RICHARD OZANICH
Pacific Northwest National Laboratory, Richland,
WA 99355

HANS W. PAERL
Institute of Marine Sciences, University of North Carolina at
Chapel Hill, Morehead City, NC 28557

DARREN J. PARRIS
School of Biology, Georgia Institute of Technology, Atlanta,
GA 30332

ARMELLE PAULE
Global Institute for Water Security, Saskatoon, SK S7N3H5,
Canada

SUSAN R. PETTERSON
Water & Health Pty Ltd, Salamander Bay, NSW 2317,
Australia

MANTHA S. PHANIKUMAR
Michigan State University, Department of Civil and
Environmental Engineering, East Lansing, MI 48824

ONRUTHAI PINYAKONG
Chulalongkorn University, Department of Microbiology,
Bangkok 10330, Thailand

PASCAL PIVETEAU
Agroecology Unit, UMR 1347 INRA/University of Burgundy/
AgroSup Dijon, Dijon 21065, France

OVIDIU POPA
Institute of Microbiology, Christian-Albrechts-University of
Kiel, Kiel 24118, Germany

GRACIELA RAMÍREZ TORO
Centro de Educación, Conservación e Interpretación
Ambiental, Universidad Intenamericana de Puerto Rico, San
Germán, PR 00683, Puerto Rico

BEN C. REED
School of Biology, Georgia Institute of Technology, Atlanta,
GA 30332

TIMBERLEY ROANE
Department of Integrative Biology, University of Colorado,
Denver, Denver, CO 80217

LAURA J. ROSE
Centers for Disease Control and Prevention, Division of
Healthcare Quality Promotion, Atlanta, GA 30329
CONTRIBUTORS

PARAG VAISHAMPAYAN
Jet Propulsion Lab, California Institute of Technology, Pasadena, CA 91109

SUSAN M. VARNUM
Pacific Northwest National Laboratory, Biochemistry and Structural Biology, Fundamental and Computational Sciences Division, Richland, WA 99352

KASTHURI VENKATESWARAN
Jet Propulsion Lab, California Institute of Technology, Pasadena, CA 91109

ERIC N. VILLEGAS
United States Environmental Protection Agency, Cincinnati, OH 45268

KAZUYA WATANABE
School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan

JENNIFER WEIDHAAS
West Virginia University, Civil and Environmental Engineering, Morgantown, WV 26506

MARK H. WEIR
Department of Public Health, Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122

RICHARD L. WHITMAN
U.S. Geological Survey, Great Lakes Science Center, Porter, IN 46304

KLAUS WILLEKE
University of Cincinnati, Cincinnati, OH 45267

GIDEON M. WOLFAARDT
Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B2K3, Canada

CHIN S. YANG
Prestige EnviroMicrobiology, Voorhees, NJ 08043

MARYLYNN V. YATES
Department of Environmental Sciences, University of California, Riverside, Riverside, CA 92521

CHUANLUN L. ZHANG
State Key Laboratory of Marine Geology School of Ocean and Earth Sciences, Tongji University, Shanghai 201804, China

JING ZHANG
Wageningen University, Laboratory of Microbiology, Wageningen 6703HB, The Netherlands

NICOLETTE A. ZHOU
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105
Subject Index

ABC transporter, for organochloride pesticide assimilation in bacteria, 5.1.2-14
Abundance
definition, 4.2.1-1, 4.2.2-2
relative, 4.2.1-2, 4.2.2-2, 4.2.3-2
Acanthamoeba
A. polyphaga, 4.2.3-13
airborne, 3.2.1-10
biotrophic grazing, 4.2.3-13
soil, 3.3.1-3, 3.3.1-7-3.3.1-8, 3.3.1-10
in wastewater, 2.6.4-10
waterborne infections, 3.1.4-7-3.1.4-8
Acantharia, 4.2.2-12
Acetobacter pomorum, 4.2.3-13
Acid mine drainage, 4.1.2-4-4.1.2-5
Acid mines, 5.2.2-3
Acidilamus, 4.3.1-15
Acidic environments, 4.3.1-4.3.1-18
adaptation mechanisms
eukaryotic acidophiles, 4.3.1-4.3.1-5
prokaryotic acidophiles, 4.3.1-3-4.3.1-4
biotechnological use of acidophilic microorganisms, 4.3.1-18
diversity of eukaryotic acidophiles, 4.3.1-5-4.3.1-9
euglenoids, 4.3.1-8
fungi, 4.3.1-8-4.3.1-9
microalgae, 4.3.1-5-4.3.1-8
protozoa, 4.3.1-8
yeasts, 4.3.1-9
electron donors, 4.3.1-9-4.3.1-11
carbon, organic, 4.3.1-10
free energy change, 4.3.1-9
hydrogen, 4.3.1-10
iron, 4.3.1-10
sulfur, 4.3.1-10
microbial ecology, 4.3.1-15-4.3.1-17
nature and diversity of environments, 4.3.1-4.3.1-2
phylogenetics of prokaryotic acidophiles, 4.3.1-11-4.3.1-15
Actinobacteria, 4.3.1-13-4.3.1-14
Aquificae, 4.3.1-13
Crenarchaeota, 4.3.1-15
Firmicutes, 4.3.1-14
Nitrospirae, 4.3.1-13
Proteobacteria, 4.3.1-11-4.3.1-13
Verrucomicrobia, 4.3.1-13
physiological diversity of prokaryotic acidophiles, 4.3.1-9-4.3.1-11
carbon fixation, 4.3.1-11
electron acceptors, 4.3.1-11
electron donors, 4.3.1-9-4.3.1-11
nitrogen fixation, 4.3.1-11
Acidic pools, 4.3.4-2-4.3.4-3
Acidithiobacillus, 4.3.1-11-4.3.1-12
Acidophilus, 4.3.1-11
Acidiphilum, 4.3.1-11-4.3.1-12, 4.3.1-15
A. cryptum, 4.3.1-8, 4.3.1-12,
5.2.2-6
microbial fuel cell, 5.1.4-5
Acidiplasma, 4.3.1-14
Aciditerrimonas ferrireducens, 4.3.1-14
Acidithiobacillus, 4.3.1-13-4.3.1-15, 5.2.3-3
A. albertensis, 4.3.1-13
A. caldus, 4.3.1-10, 4.3.1-13,
5.2.3-3
A. ferridurans, 4.3.1-10, 4.3.1-13
A. ferrivoxans, 4.3.1-10, 4.3.1-13,
4.3.1-17-4.3.1-18
A. ferrooxidans, 4.3.1-3-4.3.1-12,
4.3.1-13, 4.3.1-18
biofilms, 4.2.3-5
bioleaching of metals, 5.2.3-3
electron transfer, 5.1.4-6-5.1.4-7
Acidithiobacillus thiooxidans, 4.3.1-10-4.3.1-11
Acidobacteria, 5.2.3-6
Acidocella, 4.3.1-10-4.3.1-12, 5.2.3-3
Acidocella aromatica, 4.3.1-10
Acidophiles
biotechnological use of, 4.3.1-18
eukaryotic adaptation mechanisms, 4.3.1-4-4.3.1-5
diversity, 4.3.1-5-4.3.1-9
euglenoids, 4.3.1-8
fungi, 4.3.1-8-4.3.1-9
microalgae, 4.3.1-5-4.3.1-8
protozoa, 4.3.1-8
yeasts, 4.3.1-9
prokaryotic
Actinobacteria, 4.3.1-13-4.3.1-14
adaptation mechanisms, 4.3.1-3-4.3.1-14
A. baumanni, 4.3.1-13
carbon fixation, 4.3.1-11
Crenarchaeota, 4.3.1-15
electron acceptors, 4.3.1-11
electron donors, 4.3.1-9-4.3.1-11
Firmicutes, 4.3.1-14
nitrogen fixation, 4.3.1-11
Nitrosirinae, 4.3.1-13
physlogenetics of, 4.3.1-11-4.3.1-15
physiological diversity of, 4.3.1-9-4.3.1-11
Proteobacteria, 4.3.1-11-4.3.1-13
Verrucomicrobia, 4.3.1-13
Acidoarcus sp. KKSI02, 5.1.1-3
Acinetobacter
A. baumanni, outer membrane vesicles of, 4.1.1-5
A. baylyi, transformation of, 4.1.1-2-4.1.1.3
A. calcoacticus, 5.2.3-6, 5.1.4-6-5.1.4-7
airborne, 3.2.6-3
electron transfer, 5.1.4-6-5.1.4-7
Acinetum cymatium, 4.3.1-8
Acromonium
A. oblatum, 3.2.5-13
airborne, 3.2.5-5
spore discharge, 3.2.5-2
volatile organic compounds (VOCs), 3.2.5-13
Actinobacteria
acidophiles, 4.3.1-13-4.3.1-14
organochlorine biodegradation, 5.1.2-7
Actinomycetes, airborne, 3.2.1-1, 3.2.6-2, 3.2.6-5
Actinophrys, 4.3.1-7-4.3.1-8
Acylovir, for varicella-zoster virus, 3.2.7-7
Acylation homoserine lactone (AHIL), 4.2.3-1, 4.2.3-5, 4.2.3-12-4.2.3-13
Adenoviridae, 3.1.5-1-3.1.5-2
Biofilms
acidophiles, 4.3.1-5–4.3.1-6
advantages of, 4.2.1-3
analysis of microbial communities, 4.2.3-13–4.2.3-16
at community scale, 4.2.3-15–4.2.3-16
at landscape scale, 4.2.3-16
aquatic, 4.2.3-1–4.2.3-20
analysis of microbial communities, 4.2.3-13–4.2.3-16
anthropogenic stress on structure and function, 4.2.3-16–4.2.3-17
bacteriophage, 4.2.3-12
Bdellovibrio, 4.2.3-12
bioconcentration/biodegradation of contaminants, 4.2.3-17–4.2.3-18
cultivation under in situ conditions, 4.2.3-8
ecotaxonomical risk/assessment, 4.2.3-18–4.2.3-20
interactions in biofilm communities, 4.2.3-9–4.2.3-10
landscape approach to study, 4.2.3-2, 4.2.3-16
macroinvertebrate grazers, 4.2.3-9–4.2.3-11
prostis, 4.2.3-11–4.2.3-12
on artificial surfaces, 4.2.3-6–4.2.3-8
continuous-flow slide culture, 4.2.3-7–4.2.3-8
under lab conditions, 4.2.3-6–4.2.3-8
microstats, 4.2.3-8
microtiter plate-based systems, 4.2.3-7
Robbins device, 4.2.3-7
rotating annular bio reactors (RABs), 4.2.3-8
rotating disk biofilm reactors, 4.2.3-7
under in situ conditions, 4.2.3-8
substratum selection, 4.2.3-8
attached to microbial fuel cell anodes, 5.1.4-4
attachment recruitment, 4.2.3-3–4.2.3-4
benthic environment, 4.2.1-3, 4.2.1-5, 4.2.1-9
cell-cell signaling, 4.2.3-12–4.2.3-13
colonyization, 4.2.3-3
concepts and definitions, 4.2.3-3–4.2.3-5
cultivation, 5.2.2-4
dispersion, 4.2.3-5
exopolymers substances (EPS), 4.2.3-4, 4.2.3-6, 4.2.3-8–4.2.3-9
formation processes, 4.2.3-3
Legionella, 3.2.9-4
maturation, 4.2.3-4–4.2.3-5
metal-transforming microbes, 5.2.2-3–5.2.2-4
on natural surfaces, 4.2.3-5–4.2.3-6
surface conditioning films, 4.2.3-3
BioFire Film Array, 2.3.4-1, 2.3.4-6
BioFire RAZOR system, 2.3.4-1, 2.3.4-5–2.3.4-6, 2.3.4-11
Biogeochemistry, benthic environment, 4.2.1-9
BioGuardian Air Sampler, 3.2.2-4, 3.2.2-7
Biodegrading, of metal-impacted soils, 5.2.3-3
Biological activity assessment in complex microbial communities, 2.2.2-1–2.2.2-6
cell transfer to PTFE-coated cover glass, 2.2.2-3

Data collection and interpretation, 2.2.2-3–2.2.2-5
ecological applications and significance, 2.2.2-5–2.2.2-6
FISH, 2.2.2-3
incubation with radioactive substrate, 2.2.2-3
photographic emulsion, 2.2.2-3
sample collection and preparation, 2.2.2-2–2.2.2-3
selection of radionuclide, 2.2.2-3
single-cell metabolism without cultivation, 2.2.2-2
Biological and Toxic Weapons Convention, 3.2.8-13
Biological observation matrix (BIOM), 2.4.2-17–2.4.2-18
Biological oxygen demand (BOD), 2.6.4-1, 3.1.3-2–3.1.3-5
Biological weapon agents airborne, 3.2.1-3, 3.2.1-8–3.2.1-9
biothreat level classification, 3.2.1-9
plant pathogens, 3.2.8-13–3.2.8-14
BIOM (biological observation matrix), 2.4.2-17–2.4.2-18
Biomass, definition, 4.2.1-1, 4.2.2-2
Bioreactors, for anaerobic cultivation, 2.1.2-5–2.1.2-7
Bioremediation
anaerobic degradation of aromatic compounds, 5.1.3-2
bacterially facilitated soil selenium remediation, 5.2.3-5
dioxin-like compound degraders, 5.1.1-5–5.1.1-6
metal-impacted soils, 5.2.3-1–5.2.3-6
microbial electrochemical technology applications, 5.1.4-9
organochloride pesticides, 5.1.2-1–5.1.2-23
Biostimulation
for organochlorine degradation, 5.1.2-21–5.1.2-22
Biosurfactants, 5.2.3-2, 5.2.3-4
Biotechnological use of acidophilic microorganisms, 4.3.1-18
Biotechnology products, airborne, 3.2.1-3
Bioest RCS, 3.2.2-3, 3.2.2-5–3.2.2-6
Biothreats, products for sampling and detection of, 2.3.4-2–2.3.4-3
Biotransformation
experimental geomicrobiology, 5.2.2-1–5.2.2-6
iron reduction by Shewanella oneidensis, 5.2.1-1–5.2.1-9
remediation of metal-impacted soils, 5.2.3-1–5.2.3-6
Bioturbation
of benthic sediment, 4.2.1-7, 4.2.1-9
definition, 4.2.1-1
BioWarfare Agent Detection Devices (BADD), 2.3.4-5
Biopolis, airborne, 3.2.8-7
BiSKit system, 2.3.4-4
BK virus receptors, 3.1.5-7
BLAST (Basic Local Alignment Search Tool), 2.4.4-1, 2.4.4-3–2.4.4-4, 2.4.5-11–2.4.5-14, 3.1.2-9
BLAST-like Alignment Tool (BLAT), 2.4.5-13
BLASTN, 2.4.5-11
Blastocystis hominis, in wastewater, 2.6.4-10
Blastomyces dermatitidis, 3.2.5-7
BLASTX, 2.4.4-2, 2.4.4-4, 2.4.5-12, 2.4.5-14
Blue mold, 3.2.8-7
BOD (biological oxygen demand), 2.6.4-1, 3.1.3-2–3.1.3-5
Bodo salts, 4.2.3-13
Bootstrap, 3.5.3-8–3.5.3-10
Bottom-up approach, 5.1.6-1–5.1.6-2
Bovine herpesvirus, 3.2.7-4, 3.2.7-5
Bovine respiratory syncytial virus, 3.2.7-5
Bovine rhinotracheitis virus, 3.2.7-4
Bovine viral diarrhea virus, 3.2.7-5
Bowie, 2.4.5-11
Brachionus, in predator-prey study, 4.1.2-8
Bradyrhizobium, organochlorine biodegradation by, 5.1.2-4
Bray-Curtis metric, 3.5.3-8
Brevibacterium, microbial source tracking (MST) markers and, 3.4.4-6, 3.4.4-9–3.4.4-10
Brevitoxin, 3.1.4-8
Brines, 4.3.2-1–4.3.2-2
5-bromo-4-chloro-3-indolyl-β-D-glucopyranoside (XGLU), 2.1.1-5
Bst polymerase, 2.3.2-8
BTEX
aerobic biodegradation, 5.1.5-1–5.1.5-4
anaerobic biodegradation, 5.1.3-1, 5.1.3-3, 5.1.3-5, 5.1.3-9
chemistry and structure, 5.1.3-1–5.1.5-2
Buchnera, 4.4.1-3
Bug traps, 5.2.2-2–5.2.2-3
Building materials, airborne microorganisms from, 3.2.1-3, 3.2.1-5–3.2.1-6, 3.2.1-8
Building pressure
airborne bacteria, 3.2.6-4–3.2.6-5
airborne fungi, 3.2.5-4–3.2.5-6, 3.2.5-8
endotoxin exposure, 3.2.6-8–3.2.6-9, 3.2.6-11–3.2.6-12
mycotoxicosis, 3.2.5-12
Dose-response modeling, 3.5.3-1

DNA synthesis, as measure of activity, 2.3.2-1

DNA polymerases, thermal stable, 2.3.2-1

DNA microarray

Disturbance

in benthic environment, 4.2.1-4

Diversity

acidophiles, 4.3.1-5

spatial patterns of biodiversity, 4.1.2-6

dN/dS ratio, 4.1.2-4

DNA extraction

extracellular, 4.2.3-9

metagenomic, 4.2.3-1

methylation, 4.1.2-8

microbial source tracking (MST) markers, 4.3.2-3

soil, 3.3.1-3

from soil and soil particulates, 3.3.2-5

DNA hybridization

Legionella, 3.2.9-7

microbial community analysis, 2.4.1-2

DNA microarray

biofilm communities, 4.2.3-15

low-biomass environments, 4.3.3-5

DNA polymers, thermal stable, 2.3.2-1

DNA purification, for high-throughput sequencing, 2.4.2-12

DNA sequencing. See Next-generation sequencing

DNA synthesis as measure of activity, 4.2.1-11

DNAses, 2.4.5-5

Dolakonia, 4.2.2-12

Dolichoctopercum, 3.1.2-4

DOM. See Dissolved organic matter

Dormancy, 4.1.2-7

Dose-response assessment, 3.5.1-3

Dose-response modeling, 3.5.3-1

advanced, 3.5.3-1

concept, 3.5.3-1

host age dependent, 3.5.3-12

physiological and pathogen dynamics, 3.5.3-15

post inoculation dependent, 3.5.3-14

best fitting model, 3.5.3-6

data from, 3.5.3-2

derivation of model, 3.5.3-2

environmental matrices, 3.5.3-10

future of, 3.5.3-11

goodness of fit, 3.5.3-6

optimization of model, 3.5.3-4

univariate analysis, 3.5.3-10

overview, 3.5.3-1

as yardstick, 3.5.3-1

Dot/Icm system, 3.2.9-2

Drechslera, 3.2.8-2

Drinking water, 3.1.7-1

burden of disease, 3.1.7-5

climate change and disease, 3.1.7-7

disease-causing microorganisms, 3.1.7-2

bacteria, 3.1.7-2

indicator microorganisms, 3.1.7-2

parasites, 3.1.7-2

viruses, 3.1.7-2

dose-response modeling, 3.5.3-1

epidemiology of waterborne disease, 3.1.4-7

outbreaks, 3.1.4-6

sporadic cases, 3.1.4-6

microbial indicators, 3.1.1-1

microbial source tracking, 3.4.6-5

nonvirus exposure via treated drinking water, 3.5.2-8

regulations, 3.1.7-6

Droplet model, viability of airborne microorganisms, 3.2.4-7

Drug discovery, functional metagenomic screens and, 2.4.3-2

Dry deposition, 3.2.4-8

dSTORM (direct stochastical optical reconstruction microscopy), 4.2.3-14

Dual-index sequencing, 2.4.2-9

Dunaliella, 3.4.1-4

D. acidophila, 3.4.1-4

D. salina, 3.4.2-2

Earth Microbiome Project, 2.4.1-3

Earthworms, symbionts of, 4.4.1-4

EBPR (enhanced biological phosphorus removal) process, 5

Echovirus

case-fatality rates, 3.5.1-6

genomic and morphological characteristics, 3.5.1-2

ID50 (infectious dose 50%), 3.5.1-5

receptors, 3.5.1-7

secondary attack rate, 3.5.1-6

waterborne, 3.1.5-1

E*Coli, 3.1.1-4

Ecosystem processes, 4.2.3-2

Ecosystem services, 4.2.3-2

Ecotoxicology, of aquatic biofilms, 4.2.3-1

edgeR, 2.4.5-13

eDNA (extracellular DNA), 4.2.3-9

EET. See Extracellular electron transfer

Effluent, wastewater, 2.6.4-1

eggNOG database, 2.4.5-12

El Ninó-Southern Oscillation (ENSO), 3.1.7-7

Electric charge, effect on airborne microorganisms viability, 3.2-8

Electrochemical biosensors, 2.3.1-8

Electrochemical technology. See Microbial electrochemical technology

Electron acceptors, acidophile, 4.3.1-11

Electron donors, in acidic environments, 4.3.1-9

free energy change, 4.3.1-9

hydrogen, 4.3.1-10

electron transfer, extracellular. See Extracellular electron transfer

Electron transfer microorganisms,

in anode, 5.1.4-5

in biocathode, 5.1.4-6

diversity, 5.1.4-6

Electrotransport system activity, as measure of activity, 3.2.1-1

Electrostatic Aerosol Sampler, 3.2.2-7

Electrostatic force, bioaerosol, 3.2.4-8

Electrostatic precipitation, 3.2.2-1

Elemental cycles, in benthic environment, 4.2.1-7

ELISA. See Enzyme-linked immunosorbent assay

Eluents for surface sampling, 2.6.2-6

Emergilla, 3.2.1-10

Emiliana, 4.2.2-16

EMFlter software package, 2.4.2-20

Encephalitozoon, in wastewater, 2.6.1-10

Endocrine-disrupting compounds in wastewater, 3.1.3-10

Endotoxin

airborne, 3.2.1-3

concentrations of endotoxin, 3.2.6-7

evaluations with low concentrations of endotoxin, 3.2.6-2

evaluations with moderate concentrations of endotoxin, 3.2.6-2

evaluations with high concentrations of endotoxin, 3.2.6-2

environments with low concentrations of endotoxin, 3.2.6-2

environments with moderate concentrations of endotoxin, 3.2.6-2

indoor exposure, 3.2.6-8

lung inflammation, 3.2.6-7

occupational exposure, 3.2.6-7

variability of endotoxin responsiveness, 3.2.6-7

environments with high concentrations of endotoxin, 3.2.6-2

in environments with moderate concentrations of endotoxin, 3.2.6-2
assessment methods, 3.2.6-9–3.2.6-10, 3.2.6-12
chemical methods, 3.2.6-10, 3.2.6-12
immunassays, 3.2.6-12
Limonus amoebocyte lysate (LAL) assay, 3.2.6-9–3.2.6-10
quality assurance, 3.2.6-12
definition, 3.2.6-6
disease associations, 3.2.6-7
ashma, 3.2.6-7
asthma-like syndrome, 3.2.6-7
hypersensitivity pneumonitis, 3.2.6-7
organic dust toxic syndrome, 3.2.6-7
Limonus amoebocyte lysate (LAL) test, 3.2.3-4
recognition and signaling, 3.2.6-6
structure, 3.2.6-6

Enhanced biological phosphorus removal (EBPR) process, 5
Enrichment cultures, of aromatic compound biodegraders, 5.1.3-1–5.1.3-2
Entamoeba coli, ID$_{50}$ (infectious dose 50%), of, 3.5.1-5
Entamoeba histolytica
soil, 3.3.1-3, 3.3.1-7
in wastewater, 2.6.4-10
waterborne disease, 3.1.7-3
Enteric bacteria
culture, 3.2.3-4
soil, 3.3.2-2–3.3.2.4, 3.3.2-6
Enteric viruses
drinking water regulation by EPA, 3.1.7-8
exposure via lettuce crops, 3.5.2.13–3.5.2.14
ratio of clinical illness to subclinical infection, 3.5.1-6
secondary attack rates, 3.5.1-6
soil, 3.3.1-3–3.3.1.2, 3.3.1-10
wastewater, 2.6.4-5, 2.6.4-8
waterborne, 3.1.5-1–3.1.5-8
chronology of milestones, 3.1.5-2
detection methodologies, 3.1.5-4–3.1.5-8
distribution, 3.1.5-3–3.1.5-4
diversity, 3.1.5-1–3.1.5-3
 genomic and morphological characteristics, 3.1.5-2
pathobiology and prevalence, 3.1.5-5
receptors, 3.1.5-7
recovery efficiency from water, 3.1.5-6
virion shapes and structures, 3.1.5-3

Enterobacter
drinking water, 3.2.6-1, 3.2.6-3
E. aerogenes as culture control, 2.5.3-3
E. agglomerans, 3.2.6-1, 3.2.6-3
E. cloacae, 3.2.6-3

Enterobacteriaceae
airborne, 3.2.6-1, 3.2.6-4
chronic and fluorogenic media, 2.1.1-1–2.1.1-4
soil, 3.3.2-3

Enterococci
chronic and fluorogenic media, 2.1.1-5, 2.1.1-7
as indicator of fecal contamination, 3.1.1-2–3.1.1-3
qPCR detection method, 3.1.1-3
soil, 3.3.2-2–3.3.2.4, 3.3.2-6
vancomycin-resistant enterococci (VRE), 2.1.1-7
in wastewater, 2.6.4-6–2.6.4-8, 3.1.3.6–3.1.3.7
wastewater disinfection, 3.1.3-7
waterborne disease outbreaks, 3.1.4-4–3.1.4-5

Enterococcus
airborne, 3.2.6-1
beach sand, 3.3.2-6
E. avium, 2.1.1-5
E. casseliflavus, 2.1.1-5, 3.4.4-10
E. durans, 2.1.1-5
E. faecalis, 2.1.1-5
E. faecium, 2.1.1-5
microbial source tracking (MST), 3.4.4-10, 3.4.5-2
in wastewater, 3.1.3-6
E. gallinarum, 2.1.1-5
microbial source tracking (MST), 3.4.4-10, 3.4.5-2
in wastewater, 3.1.3-6
E. gallinarum, 2.1.1-5
microbial source tracking (MST), 3.4.4-10, 3.4.5-2
in wastewater, 3.1.3-6
Enteroctoynus bienius, in wastewater, 2.6.4-10
Entersoll, 3.1.1-2
Enterophages, 3.1.1-3
Enteroviruses
microbial source tracking (MST) targeting animal sources of fecal water pollution, 3.4.4-7, 3.4.4-13–3.4.4-14
virion shape and structure, 3.1.5-3
in wastewater, 2.6.4-8
waterborne, 3.1.5-1–3.1.5-3, 3.1.5-5–3.1.5-8, 3.1.7-3–3.1.7-4, 3.1.7-11
Envirochek filter, 2.6.4-11
Environmental diagnostics, 2.3.3-1–2.3.3-8
challenges, current and future, 2.3.3-7–2.3.3-8
definition, 2.3.3-1–2.3.3-2
microarray-based, 2.3.3-2–2.3.3-8
Environmental Protection Agency (EPA)
Cryptosporidium and Giardia detection in wastewater, 2.6.4-11
drinking water standards, 3.1.7-6–3.1.7-7, 3.1.7-17
metal-impacted soils, 3.2.3-1
National Pollutant Discharge Elimination System (NPDES), 2.6.4-5–2.6.4-6
Quality Assurance Project Plan (QAPP) mandate, 2.6.4-2, 2.6.4-4
risk assessment, 3.5.1-1
Environmental Relative Moldsiness Index (ERM), 3.2.5-8
Environmental Sample Processor, 2.4.5-4
Environmental systems microbiology of contaminated environments, 5.1.6-1–5.1.6-9
field test plan, 5.1.6-2–5.1.6-6
boundaries of environmental system, 5.1.6-3–5.1.6-4
budget, 5.1.6-4
hypotheses, 5.1.6-2
hypothesis testing, 5.1.6-3–5.1.6-4
measurements, 5.1.6-4–5.1.6-5
quality assurance and quality control, 5.1.6-4
resources, 5.1.6-4
sampling, 5.1.6-4
models and case studies, 5.1.6-6–5.1.6-9
Deepwater Horizon oil spill, 5.1.6-7–5.1.6-8
radiouclide-contaminated site, 5.1.6-8–5.1.6-9
single organism ecosystem, 5.1.6-6–5.1.6-7
systems framework, 5.1.6-1–5.1.6-2
Environmental waters, fecal indicator organism (FIO) modeling and, 3.4.6-1–3.4.6-10
Enzyme-linked immunosorbent assay (ELISA), 2.3.1-1, 2.3.1-5
bioassemblar analysis, 3.2.3-3
cyanobacteria, 3.1.2-5–3.1.2-7
Naegleria fowleri, 3.1.6-15–3.1.6-18
soil pathogens, 3.3.1-8
EPA. See Environmental Protection Agency
Epipoccum
airborne, 3.2.1-9, 3.2.5-4, 3.2.8-2, 3.2.8-7
spore discharge, 3.2.5-2
Epidemiology, of waterborne disease, 3.1.4-1–3.1.4-10
Cholera and Other Vibrio Illness Surveillance (COVIS) system, 3.1.4-2
climate change and, 3.1.4-9
cohort studies, 3.1.4-2–3.1.4-3
drinking water transmission, 3.1.4-6–3.1.4-7
emerging methods, 3.1.4-9
etiologic agents, 3.1.4-4
Harmful Algal Bloom-Related Illness Surveillance System (HABISS), 3.1.4-2
health care utilization data analysis, 3.1.4-3
improvements in clinical diagnostics, 3.1.4-9
methods, 3.1.4-1–3.1.4-3
microbial toxins, 3.1.4-8–3.1.4-9
outbreak investigations, 3.1.4-1–3.1.4-2
overview, 3.1.4-1
randomized controlled trials (RCTs), 3.1.4-3
recreational waterborne illness, 3.1.4-3–3.1.4-6
respiratory infections, 3.1.4-7–3.1.4-8
Waterborne Outbreak Disease Surveillance System (WBDROSS), 3.1.4-2
Epifluorescence microscopy, 4.2.2-1–4.2.2-5
Epigenetics, 4.1.2-8
EPS. See Exopolymeric substances (EPS), biofilm
Equilibrium relative humidity (ERH), 3.2.5-2
Equine herpesvirus, 3.2.7-6
Ergosterol, 3.2.3-4
Ergot, 3.2.5-10
ERH (equilibrium relative humidity), 3.2.5-2
ERM (Environmental Relative Moldsiness Index), 3.2.5-8
Error-correcting Golay codes, 2.4.2-9

Subject Index ■ I-11

Downloaded from www.asmscience.org by
IP: 54.70.40.11
Fungi

acidophiles, 4.3.1-8-4.3.1-9
airborne, 3.2.1-2–3.2.1-3, 3.2.1-9–3.2.1-10, 3.2.3-1–3.2.3-2, 3.2.5-1–3.2.5-13
human health and, 3.2.5-1–3.2.5-13
mutations, 3.2.5-6–3.2.5-13
indoor sources, 3.2.4-5–3.2.4-6
plant pathogens, 3.2.8-7–3.2.8-13
culture, 3.2.3-1–3.2.3-3
halophiles, 4.3.2-3
heteroreactive proteins, 4.3.2-5
infection, 3.2.5-6–3.2.5-7
mycotoxins, 3.2.5-9–3.2.5-13
organic dust toxic syndrome, 3.2.5-9
respiratory diseases, 3.2.5-7–3.2.5-9
low-biomass environments, 4.3.3-6
mycotoxins (See Mycotoxins)
overview, 3.2.5-1
plant pathogens, 3.2.8-7–3.2.8-13
Anthracnose, 3.2.8-8
apple scab, 3.2.8-7–3.2.8-8
 Fusarium head blight, 3.2.8-7–3.2.8-9
rusts, 3.2.8-9–3.2.8-12
smuts, 3.2.8-12–3.2.8-13
spores, 3.2.5-1–3.2.5-8, 3.2.8-2–3.2.8-4, 3.2.8-7–3.2.8-13
discharge mechanisms, 3.2.5-2–3.2.5-3
dispersal mechanisms, 3.2.8-2–3.2.8-5
survival in atmosphere, 3.2.8-3–3.2.8-4
substrates, 3.2.5-2
volatile organic compounds (VOCs), 3.2.5-1, 3.2.5-3
water activity, 3.2.5-2–3.2.5-3
Fusarium
airborne, 3.2.5-5, 3.2.5-8, 3.2.8-3, 3.2.8-7
F. graminearum
airborne, 3.2.1-10, 3.2.8-3
 Fusarium head blight, 3.2.8-8–3.2.8-9
mycotoxins, 3.2.5-12
F. nivale
hypersensitivity pneumonitis and, 3.2.5-9
F. sporotrichioides
airborne, 3.2.1-10
mycotoxins, 3.2.5-12
mycotoxin, 3.2.5-10–3.2.5-12
spore dispersal, 3.2.5-2, 3.2.8-3
 Fusarium head blight, 3.2.8-8–3.2.8-9
Fusidanes, 3.2.5-10
Fusobacterium
culture, 2.1.2-2
F. nucleatum, 4.2.3-5
Galaxy, 2.4.5-3
GALXY Web server, 2.4.5-13
Galdäura, 4.3.1-6–4.3.1-8
Galdäura sulphuraria, 4.3.1-7
Gambicin, 4.4.1-3
Gamhiericus toxicus, 3.1.4-8
Gamma diversity, 4.2.1-2
γ-HCH
appearance and evolution of γ-HCH-degrading strains, 5.1.2-20–5.1.2-21
biodegradation, 5.1.2-5–5.1.2-7
genomes of γ-HCH-degrading strains, 5.1.2-14–5.1.2-16
mobile genetic elements of γ-HCH-degrading strains, 5.1.2-18–5.1.2-20
Gas chromatography-mass spectrometry chemical source tracking, 3.2.4-2
for endotoxin quantification, 3.2.6-10, 3.2.6-12
GASP (growth advantage in stationary phase), 4.1.2-7
Gassing manifold, 2.1.2-2–2.1.2-3
Gastrointestinal disease, epidemiology of waterborne, 3.1.4-1–3.1.4-10
Gaussian plume model, viability of airborne microorganisms, 3.2.4-7–3.2.4-8
GCRMS (Global Cereal Rust Monitoring System), 3.2.8-11
GDGTs (glycerol dialkyl glycerol tetraethers), 4.3.4-7–4.3.4-8
Gel micro-droplets (GMDs), 2.1.3-1, 2.1.3-5–2.1.3-6
Gene calling, 2.4.4-1
Gene expression, heterologous, 2.4.3-4–2.4.3-5
Gene expression microarrays, 2.4.5-1
Gene flow, 4.1.2-5
Gene ontology, 2.4.4-3
Gene prediction algorithms, 2.4.4-3
Gene transfer, lateral. See Lateral gene transfer
Gene transfer agents (GTAs), 4.1.1-2, 4.1.1-4
GeneMarkS, 2.4.5-12
Genetic drift, 4.1.2-4
Genetic fingerprinting, 5.1.3-2, 5.1.3-4
Genetically engineered microorganisms airborne, 3.2.1-3
for bioaugmentation, 5.1.2-22
Genome assembly algorithms, 2.4.4-1–2.4.4-2
Genome shuffling, 5.1.2-22
Genomes
of organochloride pesticide-degrading bacteria, 5.1.2-14–5.1.2-18
sphingomonads, 5.1.2-16–5.1.2-18
symbionts, invertebrate gut, 4.4.1-1–4.4.1-3
Genomic DNA, 2.4.2-1–2.4.2-3, 2.4.2-10–2.4.2-11, 2.4.3-3–2.4.3-4
Genomics
geomicrobiology, 5.2.2-4–5.2.2-5
Joint Genome Institute Integrated Microbial Genomes interface, 5.2.2-6
Genotyping
Cryptospiridium, 3.1.6-7–3.1.6-9, 3.1.6-17–3.1.6-18
future of, 3.1.6-17–3.1.6-18
Giardia, 3.1.6-7–3.1.6-9, 3.1.6-17–3.1.6-18
Naegleria fowleri, 3.1.6-17
protozoa in surface and finished waters, 3.1.6-7–3.1.6-9, 3.1.6-17–3.1.6-18
Geobacillus sp. JFB, 5.1.1-4
Geobacter
electron transfer, 5.1.4-2, 5.1.4-4, 5.1.4-5–5.1.4-7
G. metallireducens, 5.1.4-6–5.1.4-7
GeoChip, 4.3.2-8, 5.1.3-9
Geomicrobiology, 5.2.2-1–5.2.2-6
calcification of, 5.2.2-3–5.2.2-4
biofilm, biofilm studies, 5.2.2-3–5.2.2-4
microscopy, 5.2.2-4
culture-dependent methods, 5.2.2-5–5.2.2-3
growth in simulated environment, 5.2.2-2
high-throughput cultivation, 5.2.2-2–5.2.2-3
metals and transforming extremophiles, 5.2.2-3
in situ methods, 5.2.2-2
use of proper substrates, 5.2.2-3
culture-independent methods, 5.2.2-4–5.2.2-6
genomics and metagenomics, 5.2.2-4–5.2.2-5
proteomics and metatranscriptomics, 5.2.2-6
transcriptomics and metatranscriptomics, 5.2.2-5–5.2.2-6
definition, 5.2.2-1
field site selection and considerations, 5.2.2-1–5.2.2-2
future directions and developments, 5.2.2-6
Geothermal sites, as acidic environments, 4.3.1-4–4.3.1-2
Gephi software package, 2.4.2-20
Germ-free animals, 4.4.2-5
Giangi
atlas, 3.1.6-4
climate sensitivity, 3.1.7-7
climate, 3.1.6-7
description, 3.1.6-1
molecular methods, 3.1.6-7–3.1.6-9
sample hold time, 2.6-4.5
in surface and finished waters, 3.1.6-3–3.1.6-12
in wastewater, 2.6-4.5, 2.6-4.10–2.6-4.11
drinking water regulation by EPA, 3.1.7-8
exposure assessment, 3.5.2-7, 3.5.2-11
geotopic, 3.1.6-7–3.1.6-9, 3.1.6-17–3.1.6-18
ID50 (infectious dose 50%), 3.5.1-5
infection cycle and disease symptoms, 3.1.6-1–3.1.6-3
microbial source tracking (MST) and, 3.1.6-1
quality control for analyses, 2.5.5-1
seasonal variations, 3.1.6-12
soil, 3.1.4-1, 3.1.5-4–3.1.5-1
species and assemblies, 3.1.6-1–3.1.6-2, 3.1.6-11–3.1.6-12
Heterotrophic planktonic microbes
 (Continued)
 protocol, 4.2.2.5–4.2.2.6,
 4.2.2.12–4.2.2.14
 body plans and size ranges, 4.2.2.13
 diversity and biogeography, 4.2.2.14
 diversity and distribution,
 4.2.2.12–4.2.2.14
 ecological strategies, 4.2.2.14
 iron release by, 4.2.2.19
 life histories, 4.2.2.14
 parasitism, 4.2.2.21
 predation, 4.2.2.20–4.2.2.21
 trophic activities, 4.2.2.20–4.2.2.21
 research trends, 4.2.2.22–4.2.2.24
 viruses, 4.2.2.15–4.2.2.17
 HFMC (hollow fiber membrane chamber),
 2.1.3–5
 Hidden Markov models, 2.4.4–1
 High-performance liquid chromatography
 (HPLC), 3.1.2–6
 High-salinity environments,
 4.3.2.1–4.3.2.8
 adaptations to, 4.3.2.4
 athalassohaline, 4.3.2.1
 carotenoid pigments, 4.3.2.6–4.3.2.7
 diversity of environments,
 4.3.2.1–4.3.2.2
 diversity of microorganisms, 4.3.2.4–4.3.2.5
 functional diversity of microorganisms
 in, 4.3.2.4–4.3.2.5
 microbial activities in, 4.3.2.5
 microbial communities
 culture-dependent studies, 4.3.2.3–4.3.2.6
 culture-independent studies, 4.3.2.7–4.3.2.8
 polar lipids, 4.3.2.6
 polyelectrophilic halophiles, 4.3.2.3–4.3.2.4
 thalassohaline, 4.3.2.1
 High-temperature environments,
 4.3.4–1–4.3.4.10
 bioenergetic challenges, 4.3.4.7
 carbon cycle, 4.3.4.9
 continental subsurface, 4.3.4.1
 marine hydrothermal systems, 4.3.4.3–4.3.4.4
 microbial diversity and composition,
 4.3.4.8–4.3.4.9
 nitrogen cycle, 4.3.4.9
 terrestrial geothermal systems, 4.3.4.1–4.3.4.3
 thermophiles and hyperthermophiles
 definitions, 4.3.4.4–4.3.4.5
 lipids, 4.3.4.7–4.3.4.8
 physiological diversity, 4.3.4.5
 4.3.4.8
 High-throughput sequencing
 amplicon quality control,
 2.4.2.4–2.4.2.5
 barcode design, 2.4.2.8
 benthic environment samples, 4.2.1.13
 data processing, 2.4.2.14–2.4.2.20
 chimera removal, 2.4.2.15
 clustering sequences into OTUs
 (operational taxonomic units),
 2.4.2.15–2.4.2.16
 demultiplexing, 2.4.2.14
 denoising, 2.4.2.14
 normalizing sequence counts,
 2.4.2.17–2.4.2.18
 OTU table analysis, 2.4.2.18
 paired-end read merging, 2.4.2.14
 quality trimming, 2.4.2.14
 resemblance matrix generation,
 2.4.2.18–2.4.2.19
 secondary bioinformatics and
 statistics, 2.4.2.16–2.4.2.17
 data storage, 2.4.2.1–2.4.2.21
 data visualization, 2.4.2.20–2.4.2.21
 error sources, 2.4.2.9–2.4.2.10
 experimental/sampling design, 2.4.2.2
 gut microbiome, 4.3.4.3
 heterotrophic planktonic microbes,
 4.2.2.9
 metagenomic clones, 2.4.3.3–2.4.3.5
 metatranscriptome, 2.4.5–9
 microbial community analysis,
 2.4.2.1–2.4.2.21
 network analysis, 2.4.2.20–2.4.2.21
 nucleic acid extraction, 2.4.2.2–2.4.2.3
 nucleic acid quality control, 2.4.2.3
 PCR amplification strategies,
 2.4.2.3–2.4.2.5
 PCR setup, 2.4.2.10–2.4.2.11
 DNA concentration, 2.4.2.1–2.4.2.10
 number of cycles, 2.4.2.11
 primer size and concentration,
 2.4.2.1–2.4.2.10
 primer selection, 2.4.2.5
 reaction volume, 2.4.2.10
 technical replicates,
 2.4.2.10–2.4.2.11
 pooling strategies, 2.4.2.11–2.4.2.12
 primer set selection, 2.4.2.5–2.4.2.9
 purification strategies, 2.4.2.12–2.4.2.16
 raw data, 2.4.2.13
 sequencing protocol, 2.4.2.12–2.4.2.13
 statistical testing, 2.4.2.19–2.4.2.20
 a priori hypothesis testing, 2.4.2.19
 detecting differentially abundant taxa,
 2.4.2.19–2.4.2.20
 workflow steps, 2.4.2.2–2.4.2.20
 Histoplasma capsulatum, 3.2.5–7
 HIV-1, 3.2.7–8
 Hodgkinia cicadiformis, 4.4.1–1
 Hollow fiber membrane chamber (HFMC),
 2.1.3–5
 Hollow fiber ultrafiltration, 2.6.1–5
 Homoanaerobius, 3.2.1–4
 HPLC (high-performance liquid chroma-
 tography), 3.1.2–6
 Human Microbiome Project, 2.4.2.8,
 2.4.3–1
 Humanized pigs, 4.4.2–5
 Human Microbiome Project database,
 2.4.5–12
 Human Microbiome Project (HMP),
 2.4.4–1–2.4.4.4
 Humanized anatoxin-a, 3.1.2–4
 HYPERSPLIT (hybrid single-particle Laser-
 gian integrated trajectory) model,
 3.2.8–2, 3.2.8–7, 3.2.8–10
 ID50 (infectious dose 50%), 3.5.1–5
 IMG/M Web server, 2.4.4–3–2.4.4.4,
 2.4.5–3, 2.4.5–13
 iMicrobe Project database, 2.4.5–12
 Immersion, surface sampling, 2.6.2–8
 Immunity, symbiosis and, 4.4.1–3
 Immunosassays
 bioaerosol analysis, 3.2.3–3
 endotoxin assessment, 3.2.6–12
 pathogen detection, field application,
 2.3.4–5
 performance characteristics, 3.1.2–4
 types, 3.1.1–2.3.1–2
 Immunomagnetic capture, of soil patho-
 gens, 3.3.2–5
 Immunomagnetic separation, 2.5.5–1,
 2.6.4–11
 Immunomagnetic separation/adenosine tri-
 phosphate (IMS/ATP) method,
 2.6.4–8
 Impaction, bioaerosol sampling, 3.2.2–1
 3.2.2.2–3.2.2.3, 3.2.9–4
 Impactor samplers, 3.2.2.3–3.2.2.5
 Impingement samplers, 3.2.2.5–3.2.9–4
 in situ colonization studies, 2.1.2–7
 in situ hybridization (ISH), 2.2.1–1.2.2.18
 in vitro diagnostic (IVD) product,
 2.3.1–1–2.3.3–8
 in vitro transcription (IVT), 2.4.5–6–2.4.5.7
 Incidence of infection, 3.5.2–6
 Incubation conditions, 3.5.1–4
 Incubator, anaerobic, 2.1.2–2
 Incubator, anaerobic, 3.2.1–4
 Incubator, anaerobic, 3.2.1–5
 Indicator bacteria/microorganisms
 recreational waterborne illness, 3.1.4–5
 wastewater, 2.6.4–6, 3.1.3–3.1.3–4,
 3.1.3–6
 Industry, airborne microorganisms
 from, 3.2.1–3, 3.2.1–6–3.2.1–7
 Inert particle dispersion model, viability of
 airborne microorganisms, 3.2.4–7
 Infection
 fungi, 3.2.5–6–3.2.5–7
 ID50 (infectious dose 50%), 3.5.1–5
 risk assessment, 3.1.4–3.1.5–6
 Infectious bronchitis viruses, 3.2.7–5
 infection, statistical, 2.5.6–4–2.5.6–5
 considerations for undertaking based on
 microbial data sets, 3.5.2–5
 definition, 3.5.2–5
null hypothesis, 2.5.6-5
Nitrogen fixation
acidophiles, 4.3.1-11
NITROGEN
null hypothesis, 2.5.6-5
Nucleic acid sequence-based amplification
Nucleic acid extraction/purification
Nucleic acid analysis
Nostoc,
Norwalk virus, 3.1.5-2
Nodularia,
Nitrogen
effect on heterotrophic planktonic microbes, 4.2.2-19
stable isotope ratios, 4.2.1-14
Nitrogen cycle, in high-temperature environments, 4.3.4-9
Nitrogen fixation
acidophiles, 4.3.1-11
evolutionary ecology, 4.1.2-2
in marine environment, 4.2.2-19
Nitromonas europaea, 2.6.4-7
Nitrosopira, 2.6.4-7
Nitrospiraceae, 4.3.3-6
Nitrosipire, 4.3.1-13
Nocardioides, 5.1.2-4, 5.1.2-11, 5.1.5-7, 5.1.13
Nodularia, 3.1.2-2, 3.1.2-4
Nodularin A, 3.1.2-1, 3.1.2-4
NObase, 2.4.5-13
Nonribosomal peptide synthesis, siderephore biosynthesis via, 5.2.1-6
Nontuberculosis mycobacteria, airborne, 3.2.1-8
Nonviruses
airborne, 3.2.7-1
dose-response modeling, 3.5.3-11
exposure via treated drinking water, 3.5.2-8–3.5.2-10
ID50 (infectious dose 50%), 3.5.1-5
secondary attack rate, 3.5.1-6
soil, 3.3.1-1–3.3.1-2
virion shape and structure, 3.1.5-3
in wastewater, 2.6.4-8, 3.1.3-6–3.1.3-7
waterborne, 3.1.5-1–3.1.5-8, 3.1.7-4, 3.4-5, 3.4-1
waterborne disease epidemiology, 3.1.4-1, 3.1.4-7, 3.1.4-9
Norwalk virus, 3.1.5-2
Nostoc, 3.1.2-4
Nostrophogium, 5.1.2-15, 5.1.2-17–5.1.2-18
aromatic compound biodegradation, 5.1.5-7
N. aromaticornis, 5.1.1-4, 5.1.2-18
N. penamating, 5.1.5-7
NPDPS (National Pollutant Discharge Elimination System),
2.6.4-5–2.6.4-6
NSOM (nearfield scanning optical microscopy), 4.2.3-14
Nucleic acid analysis
bioses associated with, 5.1.6-3
of cyanobacteria, 3.1.2-7–3.1.2-11
Nucleic acid extraction/purification
from eukaryotic microbes, 2.6.4-11
for high-throughput sequencing,
2.4.2-2, 2.4.2-3
quality control, 2.4.2-3
soil, 3.3.1-6–3.3.1-8
Nucleic acid sequence-based amplification (NASBA), 2.3.2-9, 3.1.6-6
Null hypothesis, 2.5.6-5
Nutrients
effect of inorganic on heterotrophic planktonic microbes, 4.2.2-19
removal from wastewater, 3.1.3-8
Nutrition
gut symbiosis and, 4.4.1-3–4.4.1-4
piglet model for infant nutrition and development, 4.4.2-5–4.4.2-6
Oak Ridge National Laboratory Field Site,
5.1.6-6, 5.1.6-9
Occupational exposure, to airborne endotoxin,
3.2.6-7–3.2.6-8
Occupational Safety and Health Administration (OSHA), 2.5.2-2
Oceanospirales, 5.1.6-7–5.1.6-8
Ochrotrichum, 4.3.1-5, 4.3.1-8
Office environments, airborne bacteria and,
3.2.6-4–3.2.6-5
OMNI 1200 sampler, 3.2.4-2, 3.2.2-7
On the Origin of Species (Darwin), 4.1.2-3
Onchocerca volvulus, 2.3.4-9
Ongoing precision and recovery (OPR),
2.5.3-3, 2.5.5-1–2.5.5-2
ONPG, 3.1.1-2
Oocysts
Cryptosporidium, 2.5.5-1–2.5.5-2
C. parvum, 2.6.4-10–2.6.4-11, 3.1.6-1–3.1.6-9,
3.1.6-11, 3.1.7-2, 3.3.1-4–3.3.1-5, 3.3.1-8, 3.5.2-10–3.5.2-13
Cyclospora cayetanensis, 3.3.1-5
Toxoplasma gondii, 3.3.1-5
Opamines
airborne, 3.2.8-5–3.2.8-7, 3.2.8-13
plant pathogens, 3.2.8-5–3.2.8-7, 3.2.8-13
blue mold, 3.2.8-7
late blight of potato, 3.2.8-5–3.2.8-7
sudden oak death, 3.2.8-13
OPER (ongoing precision and recovery),
2.5.3-3, 2.5.5-1, 2.5.5-2
Optical Biosensors, 2.3.1-7–2.3.1-8
Optical ring resonator-based biosensors,
2.3.1-7–2.3.1-8
Optical wavelength-based biosensors, 2.3.1-7
Oral cavity, microbiome, 4.4.2-1
Organic amendments, to metal-impaired soils, 5.2.3-4
Organic dust toxic syndrome airborne bacteria, 3.2.6-3
airborne fungi, 3.2.5-9
endotoxin, 3.2.6-7
Organic flocculation, 2.6.4-9
Organochloride pesticides
assimilation in bacteria, factors required for,
5.1.2-13–5.1.2-14
Oxidation of pollutants
porphyrin degradation, 2.6.4-11
PAHs, 2.6.4-11
Oxidative stress
inactivation of antibiotics, 2.6.4-11
Oxidative stress resistance
of parasites, 5.1.2-14
Oxygen concentration
effect on airborne microorganism viability, 3.2.4-2
on heterotrophic planktonic microbes, 4.2.2-19–4.2.2-20
Oxygen consumption, benthic environment,
4.2.1-11
Oxygen plasma gas, for removal of airborne viruses, 3.2.7-11
Oxygen uptake rate, 3.1.3-5
Ozone
removal of airborne viruses, 3.2.7-11, 3.2.7-13, 3.2.7-16–3.2.7-17
wastewater disinfection, 2.6.4-2, 3.1.3-7
P-values, 2.5.6-1–2.5.6-2, 2.5.6-4–2.5.6-6
Packaging surface samples, 2.6.2-10
Packaging surface treatments, 2.6.2-10
Packaging surface treatments
inactivation of antibiotics, 2.6.4-11
Pacilomyces airborne, 3.2.1-10, 3.2.5-4, 3.2.5-5, 3.2.5-8
mycoxotxins, 3.2.5-11
Paenibacillus, 3.3.1-5–3.3.1-7
PAHs. So Polycyclic aromatic hydrocarbons
Paired-end read merging, 2.4.2-14
PAM (primary amoebic meningoencephalitis), 3.1.6-12–3.1.6-14
Pandorea promenusta, 5.1.1-5
Pandorea promenusta, 5.1.2-9
PANGEA database, 2.4.2-20
Pantoica, 5.2.3-3
Papillomaviruses, 3.2.7-7–3.2.7-8
Subject Index

Pseudomonas, 5.1.2-9
Pseudoviruses, 3.2.7-9
Pseudoxanthomonas sp. spadix, 5.1.5-3
Public buildings, airborne microorganisms from, 3.2.1-3, 3.2.1-5
Puccinia coronata, 3.2.8-10
Puccinia graminis
airborne, 3.2.8-1
Ug99 lineage, 3.2.8-10–3.2.8-11
wheat rust, 3.2.8-9–3.2.8-11, 3.2.8-13
Puccinia melanocephala, sugarcane rust and, 3.2.8-9
Puccinia triticina, 3.2.8-10
Purge volume, 2.6.1-2
Purpureocillium lilacinum, 4.3.1-8
Pumalala virus, 3.2.7-6
Puo polymerase, 2.3.2-1
PyNast aligner, 2.4.2-15
Pyricularia oryzae, 3.2.8-13–3.2.8-14
Pyrite, 4.3.1-4–3.1-2
Pyrococcus furiosus, 2.3.2-1
Pyrococcus woese, 2.3.2-1
Pyrolobium, 3.1.2-11
Pyrolobus fumarii, 4.3.4-9
Pyronema
airborne, 3.2.5-3, 3.2.5-5
P. domestcum, 3.2.5-5
Pyrolloquinoline quinone-dependent alcohol dehydrogenase, 4.4.1-2
QIME (quantitative insights into microbial ecology), 2.4.2-14–2.4.2-20, 2.4.5-11, 4.4.3-4
QMRA. See Quantitative microbial risk assessment
qPCR. See Quantitative PCR
qPCR high-resolution melt curve (qPCR-HRM), 3.1.6-7
Q Primer scores (Q-scores), 2.4.5-10
Quality assurance. See also Quality control environmental systems microbiology
field test plan, 5.1.6-4
general quality control, 2.5.2-1–2.5.2-4
metatranscriptome data analysis, 2.4.5-10
microbial source tracking (MST), 3.4.4-16–3.4.4-17
principles, 2.5.1.1–2.5.1-3
Quality Assurance Project Plan (QAPP), EPA, 2.6.4-2, 2.6.4-4
Quality Assurance Project Plan (QAPP), 2.6.4-2, 2.6.4-4
Quality assurance record, 2.5.2-2
Quality control
analytical procedures, 2.5.2-3
audits, 2.5.2-4
bacteriological analyses, 2.5.3-1–2.5.3-3
analytical and media controls, 2.5.3-3
incubation conditions, 2.5.3-2–2.5.3-3
media components, 2.5.3-1
media preparation, 2.5.3-1–2.5.3-2
media storage, 2.5.3-2
method-specific quality control checks, 2.5.3-3
sterilization, 2.5.3-2
challenges in environmental microbiological analyses, 2.5.1-1
correction and action, 2.5.2-2
deviations, 2.5.2-1
documentation, 2.5.2-1–2.5.2-2
environmental systems microbiology field test plan, 5.1.6-4
general, 2.5.2-1–2.5.2-2
high-throughput sequencing, 2.4.2-12
improvements in routine analyses, 2.5.1.1–2.5.1-2
laboratory equipment, 2.5.2-3
laboratory facilities, 2.5.2-2–2.5.2-3
laboratory personnel, 2.5.2-3
limits, 2.5.3-2–2.5.3-1
matrix spike analyses, 2.5.1.1–2.5.3-3
microarray-based environmental diagnostics, 2.3.3-3
microbial source tracking (MST), 3.4.4-16–3.4.4-17
nucleic acid QC for high-throughput sequencing, 2.4.2-3
organism type and condition, 2.5.1-2
PCR amplicon, 2.4.2-4–2.4.2-5
principles, 2.5.1.1–2.5.1-3
protozoan analyses, 2.5.5-1–2.5.5-4
controls for PCR, 2.5.5-3
facility design, 2.5.5-2–2.5.5-3
preventing cor contamination, 2.5.5-3
QC checks, 2.5.5-1–2.5.5-2
QC failures for PCR analyses, 2.5.5-3
QC for PCR analyses, 2.5.5-2
tips for technique and lab practices, 2.5.5-3–2.5.5-4
Quality Assurance Project Plan (QAPP), EPA, 2.6.4-2
quantitative spike, 2.5.1-2
record keeping, 2.5.2-3–2.5.2-4
times, 2.5.2-3
sampling procedures, 2.5.3-2
standard operating procedure (SOP), 2.5.2-1–2.5.2-4
study design, 2.5.7-2
techniques/processes, 2.5.2-3
virological analyses, 2.5.4-1–2.5.4-3
analytical procedures, 2.5.4-2
data reduction, 2.5.4-3
equipment, 2.5.4-2
facility design, 2.5.4-1–2.5.4-2
QC checks, 2.5.4-2–2.5.4-3
reagents and supplies, 2.5.4-2
reporting, 2.5.4-3
sample handling procedures, 2.5.4-2
sanitation, 2.5.4-2
training, 2.5.4-1
verification, 2.5.4-3
water sampling, 2.6.1-8–2.6.1-9
Quality trimming, high-throughput sequencing, 2.4.2-14
Quantitative microbial risk assessment (QMRA), 3.4.1-4, 3.4.5-2
QPCR
dose-response modeling, 3.5.3-1–3.5.3-16
Quantitative PCR (qPCR)
absolute quantification, 2.3.2.4–2.3.2.7
airborne archaea, 3.2.6-6
airborne viruses, 3.2.7-7
bioaerosol analysis, 3.2.3-5–3.2.3-6
cyanobacteria, 3.1.2-2–3.1.3-3
3.1.2-8–3.1.2-11
inhibition, overcoming, 2.3.4-9
microbial community analysis, 2.4.1-1
microbial indicator detection, 3.1.1-5–3.1.1-6
enterococci, 3.1.1-3
Escherichia coli, 3.1.1-2
microbial source tracking (MST), 3.4.1-2–3.4.1-3, 3.4.2-2, 3.4.2-6, 3.4.2-9
human fecal pollution sources, 3.6.3-1–3.6.3-3
3.6.3-5–3.6.3-6
targeting animal sources of fecal water pollution, 3.4.4-2–3.4.4-10, 3.4.4-12–3.4.4-18
MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments), 2.3.2-9
Naegleria fowleri, 3.1.6-14–3.1.6-17
principles, 2.3.2-4–2.3.2-8
qPCR high-resolution melt curve (qPCR-HRM), 3.1.6-7
reaction efficiency, 2.3.2-5
relative quantification, 2.3.2-4
3.2.7–2.3.2-8
soil samples, 2.6.3-9
wastewater and biosolids sampling, 2.6.4-7, 2.6.4-10
Quantum dots, 2.3.1-7
Qubit, 2.4.2-3, 2.4.3-5
Quorum sensing, 4.2.3-13
Rabbitpox virus, 3.2.7-6–3.3.7-7
RABs (rotating annular bioreactors), 4.2.3-8
RACS (Raman Activated Cell Sorting), 5.1.3-5
Radioimmunassay, for bioaerosol analysis, 3.2.3-3
Radiolaria, 4.2.12-2, 4.2.2.14
Radionucleotide analysis, 3.2.7-8–3.2.8-3
Rainfall
correlation with microbial indicators in waters, 3.1.1-5
enteric infections, 3.1.1-7
fetal indicator organism (FIO) modeling, 3.4.6-6–3.4.6-8
Raltatonic, aromatic compound biodegradation, 5.1.5-3, 5.1.5-7
R. pickettii, 5.1.5-3
Raman Activated Cell Sorting (RACS), 5.1.3-5
RAMP (Rapid Analyte Measurement Platform), 3.4.5-2
Random block experimental design, 2.6.3-2–2.6.3-3
Random selection, 2.5.6-3
Randomized controlled trials (RCTs), 3.1.4-3
Rapid Analyte Measurement Platform (RAMP), 2.3.4-5
RAPSearch, 2.4.5-13
RAPTOR, 2.3.4-5
Rauscher murine leukemia virus, 3.2.7-4–3.2.7-5
RAZOR EX, 2.3.4-5–2.3.4-6, 2.3.4-11
RCA (rolling circle amplification), 2.3.2-9
RCTs (randomized controlled trials), 3.1.4-3
Real-time PCR, 2.3.2-3–2.3.2-4
intercalating dye chemistry, 2.3.2-3
MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments), 2.3.2-9
multiplexed PCR, 2.3.2-4
oligonucleotide probes, 2.3.2-3–2.3.2-4
soil pathogens, 3.3.1-6, 3.3.1-8
Receptivity, 4.2.3-2
Rotaviruses (Continued)
in wastewater, 2.6.4-8
waterborne, 3.1.5-1, 3.1.5-3–3.1.5-8, 3.1.7-4, 3.1.7-11

Roughness, 4.2.1-2
rRNA. See Ribosomal RNA
rRNA-sequel, 2.4.5-11
RT-PCR. See Reverse transcription PCR
Rumen, 4.3.2-4
hydrogen utilization in, 4.4.1-3
methanogenesis, 4.4.1-2, 4.4.1-3
phytotoxin metabolism by microbiota, 4.4.1-1, 4.4.1-2
Ruminococcus albus, 4.2.3-6
Rusts, 3.2.8-9–3.2.8-12
soybean rust, 3.2.8-11
wheat rust, 3.2.8-9–3.2.8-11
Salt lakes, 4.3.2-1

Sample handling
animal gut microbiomes, 4.4.1-3
bioaerosol, 3.2.2-1–3.2.2-11
environmental systems microbiology
field test plan, 5.1.6-4
in experimental geomicrobiology, 5.2.2-2
exposure assessment, 3.5.2-5
quality control of procedures, 2.5.2-3
soil, 2.6.3-1–2.6.3-10
surface, 2.6.2-1–2.6.2-10, 3.2.2-11, 3.2.6-10
wastewater and biosolids, 3.2.6-4–3.2.6-11
water for public health-related microbes, 3.2.6-11–3.2.6-12
Sampling bias, 2.5.6-6
Sampling design, for high-throughput sequencing, 2.4.2-2
Sandwich assay, 2.3.1-1
Sanger sequencing, low-biomass environments and, 4.3.3-5
Sanitation, 2.5.4-2
Sapoviruses, 3.1.5-1, 3.1.5-2–3.1.5-4
Saprospira virus, 3.1.5-2
SARS coronavirus (SARS-CoV), 3.2.7-1, 3.2.7-8–3.2.7-9
SAS Super samplers, 3.2.2-3, 3.2.5-1, 3.2.5-2–3.2.5-6
SASS samplers, 3.2.2-4
Sarotaxis, 3.2.5-11–3.2.5-12
Saxitoxin, 3.1.2-1, 3.1.2-4, 3.1.2-7
S. anatum, as microbial indicator, 3.1.1-5
chromogenic and fluorogenic media,
ID50 (infectious dose 50%) of, 3.5.1-5
S. enterica
airborne, 3.2.6-4, 3.2.8-5
climate sensitivity, 3.1.7-7
detection of, 2.3.1-9
bioaerosol, 3.6.3-2, 3.6.3-7
S. paratyphi,
ID50 (infectious dose 50%), 3.5.1-5
S. enterica subsp. arizonae, 2.1.1-4
S. melogrius, ID50 (infectious dose 50%) of, 3.5.1-5
S. paratyphi, 2.1.1-4
S. typhi, 2.1.1-4, 3.1.7-3
S. typhimurium
Ames test and, 3.1.3-8
invasion studies, 4.4.2-6
transduction, 4.1.1-4
in wastewater, 2.6.4-5, 2.6.4-6–2.6.4-8
waterborne disease, 3.1.7-3
Salt lakes, 4.3.2-1–4.3.2-2
SAMP Air, 3.2.2-3, 3.2.2-5–3.2.2-6
Sample collection
bioaerosol sampling
collection efficiency, 3.2.2-8
collection methods, 3.2.2-1–3.2.2-2
collection time, 3.2.2-9–3.2.2-10
cyanobacteria, 3.1.2-4–3.1.2-5
from low-biomass environments,
3.1.3-2–3.1.3-3
wastewater sampling, 2.6.4-4
Sample handling
quality control, 2.5.2-3
wastewater sampling, 2.6.4-5
Sequencing. See also High-throughput sequencing; Next-generation sequencing; Shotgun sequencing
benthic environment samples, 4.2.1-13
biofilm communities, 4.2.3-15
deep, 2.4.4-5, 3.3.2-6
dual-index, 2.4.2-9
error sources, 2.4.2-9–2.4.2-10
heterotrophic planktonic microbes, 4.2.2-9
low-biomass environments, 4.3.3-5–3.3-6
metagenomic soil DNA to detect pathogens, 3.3.2-6
metatranscriptome, 2.4.5-9
microbial community analysis, 2.4.2-1–2.4.2-21
microbial source tracking (MST), 3.4.1-3–3.4.1-4
Serial analysis of gene expression (SAGE), 2.4.1-3
Serratia marcescens
airborne, 3.2.5-3, 3.2.5-5–3.2.5-6
hypersensitivity pneumonitis, 3.2.5-9
S. paratyphi, 2.1.1-4
obstacles to, 2.4.1-3
S. enterica
chromogenic and fluorogenic media,
ID50 (infectious dose 50%), 3.5.1-5
S. enterica subsp. arizonae, 2.1.1-4
S. melogrius, ID50 (infectious dose 50%) of, 3.5.1-5
S. paratyphi, 2.1.1-4
S. typhi, 2.1.1-4, 3.1.7-3
S. typhimurium
Ames test and, 3.1.3-8
invasion studies, 4.4.2-6
transduction, 4.1.1-4
in wastewater, 2.6.4-5, 2.6.4-6–2.6.4-8
waterborne disease, 3.1.7-3
SHIM (simulator of human intestinal microbial ecosystem), 4.4.2-2
Short-chain fructooligosaccharides
(scFOSs), 4.4.2-5
Shotgun sequencing
annotation of data, 2.4.4-1
disadvantages, 2.4.3-1
architecture, 2.4.4-2
of genomic DNA, 2.4.2-1
microbial community analysis, 2.4.2-1–2.4.2-13
obstacles to, 2.4.1–3–2.4.1-4
SIM (structured illumination microscopy), 4.2.3-14
SIMPER (similarity of percentages test), 2.4.2-19
SIMS (secondary-ion mass spectrometry), 5.1.3-7–5.1.3-8
Ultrasound light (Continued)
spirovirus viability and, 3.2.8-3
for wastewater disinfection, 2.6.4-2
wastewater disinfection by, 3.1.3-7
Uncertainty
definition, 3.5.2-5
dose-response model optimization, 3.5.3-6–3.5.3-10
in exposure assessment, 3.5.2-5
Unculturable microorganisms, 2.1.3-1
airborne bacteria, 3.2.1-1
low-biomass environments, 4.3.3-4.3.3-4
planktonic, 4.2.2-6–4.2.2-7
UNICEF, 3.1.7-5
UniFrac, metric, 2.4.2-1
UniProt/UniRef database, 2.4.4-3, 2.4.5-12
Uranine, 3.2.7-2
Uraninite, 5.1.6-7
Uredospores, 3.2.8-9–3.2.8-11
U.S. EPA Method 1623, 2.5.5-1
USEARCH, 2.4.4-4
Ustilago
plant pathogens, 3.2.8-12
U. brumiva, 3.2.8-13
U. bulata, 3.2.8-13
U. cynodontis, 3.2.8-13
U. kolleti, 3.2.8-13
U. moiydium, 3.2.8-12–3.2.8-13
U. tritici, 3.2.8-13
Vaccinia virus, airborne, 3.2.7-14–3.2.7-15
Vacuum filter sock, for surface sampling, 2.6.2-4, 2.6.2-8–2.6.2-9
van der Waals forces, bioaerosol, 3.2.4-8
Vancomycin-resistant enterococci (VRE), 2.1.1-7
Vaporized hydrogen peroxide, for removal of airborne viruses, 3.2.7-11
Variability
definition, 3.5.2-5
in exposure assessment, 3.5.2-5
measures of, 2.5.6.7–2.5.6.8
Variance
analysis of variance (ANOVA), 2.4.2-19, 2.5.6-7
PERMANOVA (permutational multi-variate analysis of variance), 2.4.2-19
Variation
2.5.6-6–2.5.6-7
coefficient of, 2.5.6-7
counting, 2.5.6-7
differences among technicians, 2.5.6-6–2.5.6-7
lack of homogeneity among sub-samples, 2.5.6-6
sampling bias, 2.5.6-6
Varicella-zoster virus, 3.2.7-7
Varroa (Varroa sp.), 5.1.2-4, 5.1.2-8
Vectors, for functional metagenomics, 2.4.3-4, 2.4.6-6–2.4.8-8
Veillonella, 4.4.2-2
Venezuelan equine encephalitis virus, 3.2.7-6
Venturia
airborne, 3.2.8-2, 3.2.8-7
V. inaequalis, apple scab and, 3.2.8-3
Vernicoflora, 4.3.1-13
VersaTrap, 3.2.2-3, 3.2.2-5
Vesicular stomatitis virus, 3.2.7-4
Via-Cell, 3.2.2-3, 3.2.2-5
Viability assay
Cryptosporidium and Giardia, 3.1.6-5–3.1.6-6
Naegleria fowleri, 3.1.6-14, 3.1.6-16
Viability models of airborne microorganisms, 3.2.4-6–3.2.4-8
carcassophore model, 3.2.4-7
dispersion models, 3.2.4-3–3.2.4-8
exponential decay model, 3.2.4-6
kinetic model, 3.2.4-6
Viable but noncultivable microorganisms
airborne bacteria, 3.2.1-1
low-biomass environments, 4.3.3-3–4.3.3-4
Vibrio
biofilms, 4.2.3-5, 4.2.3-12–4.2.3-13
Cholera and Other Vibrio Illness Surveillance (COVIS) system, 3.1.4-2
chromogenic and fluorogenic media, 2.1.1-4–2.1.1-5
climate change and, 3.1.7-12
V. cholerae, 2.1.1-5
ID 50 (operator dose 50%), 3.5.1-5
transformation, 4.1.1-1
in wastewater, 2.6.4-6–2.6.4-8
waterborne disease, 3.1.7-3, 3.1.7-5, 3.1.11-3.1.17-12
V. fetus, 4.2.3-12–4.2.3-13
V. mornicus, 3.2.1-5
V. parahaemolyticus, 2.1.1-4–2.1.1-5, 4.2.3-5
waterborne disease, 3.1.4-6, 3.1.7-9
Vibrio vulnificus, 2.1.1-4–2.1.1-5
Vibriosis, waterborne disease outbreaks of, 3.1.4–3.1.4-4
VIRADEL, 2.6.1-10
Virological analyses
quality control and,
2.5.6-1–2.5.6-3
analytical procedures, 2.5.4-2
data reduction, 2.5.4-3
equipment, 2.5.4-2
facility design, 2.5.4-1–2.5.4-2
QC checks, 2.5.4-2–2.5.4-3
reagents and supplies, 2.5.4-2
reporting, 2.5.4-3
sample handling procedures, 2.5.4-2
sanitation, 2.5.4-2
training, 2.5.4-2
verification, 2.5.4-3
Virus adsorption-elution (VIRADEL), 2.6.1-6–2.6.1-8, 2.6.4-9
Volatile organic compounds (VOCs).
Volatilization, metal-impacted soils, 5.2.3-2.5.2.3-4.
Volcanic areas, as acidic environments, 4.3.1-1.4.3.1-2.
Volutinota, 3.2.5.12.
VRE (vancomycin-resistant enterococci), 2.1.1-7.

WAHTER (Water and Health Trial for Enteric Risk), 3.1.4-7.

Wallemia sebi, 3.2.5-5.

Warts, 3.2.7-7.3.2.7-8.

Wastewater
agricultural, 2.6.4-1.
definition, 2.6.4-1.
effluent, 2.6.4-1.2.6.4-2.
decentralized and centralized, 2.6.4-1.
disinfection, 2.6.4-2.2.6.4-3.
delivined oxygen demand (BOD), 3.1.3-4.3.1.3-5.
detected, 3.1.3-4.3.1.3-6.
ed coloring, 2.6.4-1.2.6.4-6.
solar radiation, 3.1.3-4.
UV radiation, 3.1.3-4.
effluent toxicity, testing, 3.1.3-4.
exposure limits, 3.1.3-4.3.1.3-5.
exposure to water, 3.1.3-4.3.1.3-5.
exposure to water (US), 3.1.3-4.3.1.3-5.
quantifying pathogen concentration, 3.1.3-4.
regulatory requirements, 3.1.3-4.
aromatics, 3.1.3-4.
polyaromatic hydrocarbons (PAHs), 3.1.3-4.
regulatory sampling limits, 3.1.3-4.
raw (influent), 3.1.3-4.
pathogens in, 3.1.3-4.
quantifying pathogen concentration, 3.1.3-4.
pharmaceutical and personal care products, 3.1.3-4.
emerging issues, 3.1.3-4.
application, 3.1.3-4.
quantifying pathogen concentration, 3.1.3-4.
regulatory requirements, 3.1.3-4.
raw (influent), 3.1.3-4.
log books, 3.1.3-4.
process control, 3.1.3-4.
monitoring, 3.1.3-4.
emerging issues, 3.1.3-4.
application, 3.1.3-4.
quantifying pathogen concentration, 3.1.3-4.
pharmaceutical and personal care products, 3.1.3-4.
emerging issues, 3.1.3-4.
application, 3.1.3-4.
quantifying pathogen concentration, 3.1.3-4.
pharmaceutical and personal care products, 3.1.3-4.
1-34 ■ Subject Index

Waterborne disease
burden of disease, 3.1.7-5–3.1.7-6
classification of water-related diseases,
3.1.7-1–3.1.7-2
climatic change and, 3.1.7-7,
3.1.7-9–3.1.7-12
definition, 3.1.7-1
disease-causing microorganisms,
3.1.7-2–3.1.7-5
epidemiology, 3.1.4-1–3.1.4-10
Cholera and Other Vibrio Illness Surveillance (COVIS) system,
3.1.4-2
climatic change and, 3.1.4-9
cohort studies, 3.1.4-2–3.1.4-3
drinking water transmission,
3.1.4-6–3.1.4-7
emerging methods, 3.1.4-9
etiologic agents, 3.1.4-4
Harmful Algal Bloom-Related Illness Surveillance System (HABISS),
3.1.4-2
health care utilization data analysis,
3.1.4-3
improvements in clinical diagnostics,
3.1.4-9
methods, 3.1.4-1–3.1.4-3
microbial toxins, 3.1.4-8–3.1.4-9
outbreak investigations,
3.1.4-1–3.1.4-2
overview, 3.1.4-1
randomized controlled trials (RCTs),
3.1.4-3
recreational waterborne illness,
3.1.4-3–3.1.4-6
respiratory infections, 3.1.4-7–3.1.4-8
Waterborne Outbreak Disease Surveillance System (WBDOSS),
3.1.4-2
Waterborne Outbreak Disease Surveillance System (WBDOSS), 3.1.4-2
Watershed modeling, 3.4.6-4
Wet deposition, 3.2.4-8
Wet electrostatic precipitator, 3.2.2-7
Wetland removal of metals, 5.2.3-5
Wheat rust, 3.2.8-9–3.2.8-11
WHO. See World Health Organization
Whole effluent tests, 3.1.2-3
Xanthomonas
airborne, 3.2.6-1, 3.2.8-3, 3.2.8-4
X. axonopodis, 3.2.8-3
X. citri subsp. citri, citrus canker and,
3.2.8-13
Xanthomonas malophilia
selective medium,
3.3.2-5
Xenorhabdus, 3.2.8-5
Xylene
biodegradation, 5.1.3-1, 5.1.3-3, 5.1.3-6,
5.1.5-1–5.1.5-4
chemistry and structure, 5.1.5-1–5.1.5-2
Yeast
acidophiles, 4.3.1-9
halophilic, 4.3.2-3
Yeast surface display antibody libraries,
2.3.1-4–2.3.1-5
Yersinia enterocolitica
airborne, 3.2.6-1
chromogenic and fluorogenic media,
2.1.1-4
in wastewater, 2.6.4-6–2.6.4-8
waterborne disease, 3.1.7-3
Yersinia pestis
detection of, 2.3.4-4–2.3.4-6
surface sampling, 2.6.2-3
Zearalenone, 3.2.5-10–3.2.5-11, 3.2.8-9
Zinc sulfate (ZnSO4) flotation,
2.6.4-11
Zinderia, 4.4.1-3
Zooplankton, 4.2.2-3
Zygnemopsis, 4.3.1-5–4.3.1-6
Zygomycetes, 3.2.5-7
Zygosporium masonii, 3.2.5-5
X-ray-based computed tomography,
2.2.1-1
Xanthomonas
airborne, 3.2.6-1, 3.2.8-3, 3.2.8-4
X. axonopodis, 3.2.8-3
X. citri subsp. citri, citrus canker and,
3.2.8-13
Xanthomonas malophilia
selective medium,
3.3.2-5
Xenorhabdus, 3.2.8-5
Xylene
biodegradation, 5.1.3-1, 5.1.3-3, 5.1.3-6,
5.1.5-1–5.1.5-4
chemistry and structure, 5.1.5-1–5.1.5-2
Yeast
acidophiles, 4.3.1-9
halophilic, 4.3.2-3
Yeast surface display antibody libraries,
2.3.1-4–2.3.1-5
Yersinia enterocolitica
airborne, 3.2.6-1
chromogenic and fluorogenic media,
2.1.1-4
in wastewater, 2.6.4-6–2.6.4-8
waterborne disease, 3.1.7-3
Yersinia pestis
detection of, 2.3.4-4–2.3.4-6
surface sampling, 2.6.2-3
Zearalenone, 3.2.5-10–3.2.5-11, 3.2.8-9
Zinc sulfate (ZnSO4) flotation,
2.6.4-11
Zinderia, 4.4.1-3
Zooplankton, 4.2.2-3
Zygnemopsis, 4.3.1-5–4.3.1-6
Zygomycetes, 3.2.5-7
Zygosporium masonii, 3.2.5-5