Molecular Genetics of Mycobacteria

2ND EDITION

EDITED BY

GRAHAM F. HATFULL
Department of Biological Sciences,
University of Pittsburgh, Pittsburgh, PA 15260

AND

WILLIAM R. JACOBS, JR.
Howard Hughes Medical Institute,
Albert Einstein College of Medicine, Bronx, NY 10461

ASM Press
Washington, DC
Contents

Contributors ix
Preface xvii

I. GENOMES, GENOMICS, AND GENETIC EXCHANGE

1. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment 3
 William R. Jacobs, Jr.

2. Mycobacterial Pathogenomics and Evolution 27
 Daria Bottai, Timothy P. Stinear, Philip Supply, and Roland Brosch

3. BCG Vaccines 49
 Vanessa Tran, Jun Liu, and Marcel A. Behr

 Keith M. Derbyshire and Todd A. Gray

5. Molecular Genetics of Mycobacteriophages 81
 Graham F. Hatfull

6. Genetics of Phage Lysis 121
 Madalena Pimentel
II. GENE EXPRESSION AND REGULATION

7. Sigma Factors: Key Molecules in Mycobacterium tuberculosis Physiology and Virulence 137
Riccardo Manganelli

8. Transcription Factor Binding Site Mapping Using ChIP-Seq 161
SUMA JAINI, ANNA LYUBETSKAYA, ANTONIO GOMES, MATTHEW PETERSON, SANG TAE PARK, SAHADEVAN RAMAN, GARY SCHOOLNIK, AND JAMES GALAGAN

9. Noncoding RNA in Mycobacteria 183
KRISTINE B. ARNVIG, TERESA CORTES, AND DOUGLAS B. YOUNG

10. Two-Component Regulatory Systems of Mycobacteria 209
TANYA PARISH

11. Regulated Expression Systems for Mycobacteria and Their Applications 225
DIRK SCHNAPPINGER AND SABINE EHRT

III. THE MYCOBACTERIAL PROTEOME

12. Mycobacterium tuberculosis in the Proteomics Era 241
MARTIN GENGENBACHER, JEPPE MOURITSEN, OLGA T. SCHUBERT, RUEDI AEBERSOLD, AND STEFAN H. E. KAUFMANN

13. Structural Annotation of the Mycobacterium tuberculosis Proteome 261
NAGASUMA CHANDRA, SANKARAN SANDHYA, AND PRAVEEN ANAND

14. Cyclic AMP Signaling in Mycobacteria 281
GWENDOWLYN S. KNAPP AND KATHLEEN A. MCDONOUGH

IV. METABOLISM

15. The Physiology and Genetics of Oxidative Stress in Mycobacteria 299
BRIDGETTE M. CUMMING, DIRK LAMPRECHT, RYAN M. WELLS, VIKRAM SAINI, JAMES H. MAZORODZE, AND ADRIE J. C. STEYN

16. Metabolomics of Central Carbon Metabolism in Mycobacterium tuberculosis 323
ANTHONY D. BAGUHN AND KYU Y. RHEE

17. Mycobacterial Lipidomics 341
EMILIE LAYRE, REEM AL-MUBARAK, JOHN T. BELISLE, AND D. BRANCH MOODY

18. Genetics of Mycobacterial Trehalose Metabolism 361
RAINER KALSCHEUER AND HENDRIK KOLIWER-BRANDL
19. Metallobiology of Tuberculosis 377
G. MARCELA RODRIGUEZ AND OLIVIER NEYROLLES

20. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria 389
GREGORY M. COOK, KIEL HARDS, CATHERINE VILCHÈZE, TRAVIS HARTMAN, AND MICHAEL BERNEY

V. GENETICS OF DRUG RESISTANCE

KEIRA A. COHEN, WILLIAM R. BISHAI, AND ALEXANDER S. PYM

22. Resistance to Isoniazid and Ethionamide in *Mycobacterium tuberculosis*: Genes, Mutations, and Causalities 431
CATHERINE VILCHÈZE AND WILLIAM R. JACOBS, JR.

23. The Molecular Genetics of Fluoroquinolone Resistance in *Mycobacterium tuberculosis* 455
CLAUDINE MAYER AND HOWARD TAKIFF

24. Mechanisms of Pyrazinamide Action and Resistance 479
YING ZHANG, WANLIANG SHI, WENHONG ZHANG, AND DENIS MITCHISON

25. Genetic Strategies for Identifying New Drug Targets 493
ANDREJ TRAUNER, CHRISTOPHER M. SASSETTI, AND ERIC J. RUBIN

VI. GENETICS OF MEMBRANE AND CELL WALL BIOSYNTHESIS

26. Genetics of Peptidoglycan Biosynthesis 513
MARTIN S. PAVELKA, JR., SEBABRATA MAHAPATRA, AND DEAN C. CRICK

27. Genetics of Mycobacterial Arabinogalactan and Lipoarabinomannan Assembly 535
MONIKA JANKUTE, SHIPRA GROVER, HELEN L. BIRCH, AND GURDYAL S. BESRA

28. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids 559
MAMADOU DAFFÉ, DEAN C. CRICK, AND MARY JACKSON

29. The Molecular Genetics of Mycolic Acid Biosynthesis 611
JAKUB Pawełczyk AND LAURENT KREMER
VII. GENETICS OF MACROMOLECULAR BIOSYNTHESIS

30. Nucleotide Metabolism and DNA Replication 635
 Digby F. Warner, Joanna C. Evans, and Valerie Mizrahi

31. Double-Strand DNA Break Repair in Mycobacteria 657
 Michael S. Glickman

32. The Pup-Proteasome System of Mycobacteria 667
 Nadine J. Bode and K. Heran Darwin

33. Mycobacterium tuberculosis Serine/Threonine
 Protein Kinases 681
 Sladjana Prisic and Robert N. Husson

VIII. THE MYCOBACTERIAL LIFESTYLE, PERSISTENCE,
 AND MACROPHAGE SURVIVAL

34. The Spectrum of Drug Susceptibility in Mycobacteria 711
 Bree B. Aldridge, Iris Keren, and Sarah M. Fortune

35. The Sculpting of the Mycobacterium tuberculosis Genome by Host
 Cell–Derived Pressures 727
 David G. Russell, Wonsik Lee, Shumin Tan, Neelima Sukumar,
 Maria Podinovskaia, Ruth J. Fahey, and Brian C. VanderVen

36. Evasion of Innate and Adaptive Immunity by
 Mycobacterium tuberculosis 747
 Michael F. Goldberg, Neeraj K. Saini, and Steven A. Porcelli

37. Mycobacterial Biofilms 773
 Jacobs P. Richards and Anil K. Ojha

Index 785
Contributors

RUEDI AEBERSOLD
Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, and Faculty of Science, University of Zurich, 8057 Zurich, Switzerland

BREE B. ALDRIDGE
Department of Molecular Biology & Microbiology and Department of Biomedical Engineering, Tufts University, Boston, MA 02111, and Medford, MA 02155

REEM AL-MUBARAK
Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523

PRAVEEN ANAND
Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India

KRISTINE B. ARNVIG
Mycobacterial Research Division, National Institute for Medical Research, London NW7 1AA, United Kingdom

ANTHONY D. BAOUGH
Department of Microbiology, University of Minnesota, 420 Delaware St. SE, MMC196, Mayo Building Room 1020, Minneapolis, MN 55455

MARCEL A. BEHR
McGill International TB Centre, Montreal, Quebec, Canada, H3G 1A4
Contributors

John T. Belisle
Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523

Michael Berney
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

Gurdyal S. Besra
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

Helen L. Birch
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

William R. Bishai
Johns Hopkins School of Medicine, The Center for TB Research, 1550 Orleans St., CRBII, Room 103, Baltimore, MD 21287

Nadine J. Bode
Department of Microbiology, New York University School of Medicine, 550 First Avenue, MSB 236, New York, NY 10016

Daria Bottai
Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia Università di Pisa, Pisa, Italy

Roland Brosch
Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France

Nagashuma Chandra
Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India

Keira A. Cohen
KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, 719 Umbilo Road, Durban, South Africa, and Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115

Gregory M. Cook
University of Otago, Department of Microbiology and Immunology, Dunedin, New Zealand

Teresa Cortes
Mycobacterial Research Division, National Institute for Medical Research, London NW7 1AA, United Kingdom

Dean C. Crick
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682

Bridgette M. Cumming
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa
Contributors

Mamadou Daffé
CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, and the Université de Toulouse Paul Sabatier, F-31077 Toulouse, France

K. Heran Darwin
Department of Microbiology, New York University School of Medicine, 550 First Avenue, MSB 236, New York, NY 10016

Keith M. Derbyshire
Division of Genetics, Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, University at Albany, Albany, NY 12201

Sabine Ehrt
Department of Microbiology and Immunology, Weill Medical College, and Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065

Joanna C. Evans
Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, P/Bag X3, Rondebosch 7700, South Africa

Ruth J. Fahey
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Sarah M. Fortune
Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115

James Galagan
Department of Biomedical Engineering, Bioinformatics Program, and National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02215, and Broad Institute of MIT and Harvard, Cambridge, MA 02142

Martin Gengenbacher
Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, 10117 Berlin, Germany

Michael S. Glickman
Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10803

Michael F. Goldberg
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

Antonio Gomes
Bioinformatics Program, Boston University, Boston, MA 02215

Todd A. Gray
Division of Genetics, Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, University at Albany, Albany, NY 12201
SHIPRA GROVER
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

KIEL HARDIS
University of Otago, Department of Microbiology and Immunology, Dunedin, New Zealand

TRAVIS HARTMAN
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

GRAHAM F. HATFULL
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260

ROBERT N. HUSSON
Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115

MARY JACKSON
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682

WILLIAM R. JACOBS, JR.
Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

SUMA JAINI
Department of Biomedical Engineering and National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02115

MÓNICA JANKUTE
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

RAINER KALSCHEUER
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany

STEVEN H. E. KAUFMANN
Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, 10117 Berlin, Germany

IRIS KEREN
Antimicrobial Discovery Center and Department of Biology, Northeastern University, Boston, MA 02115

GWENDOWLYN S. KNAPP
Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002

HENDRIK KOLIWER-BRANDL
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
Contributors

LAURENT KREMER
Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier 2 et 1, CNRS; UMR 5235, case 107; and INSERM, DIMNP, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France

DIRK LAMPRECHT
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa

EMILIE LAYRE
Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115

WONSEK LEE
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

JUN LIU
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8

ANNA L YUBetskaya
Bioinformatics Program, Boston University, Boston, MA 02215

SEBABRATA MAHAPATRA
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523

RICCARDO MANGANELLI
Department of Molecular Medicine, University of Padova, Italy

CLAUDINE MAYER
Unité de Microbiologie Structurale, Institut Pasteur; UMR 3528 du CNRS; and Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 75015, Paris, France

JAMES H. MAZORODZE
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa

KATHLEEN A. McDONOUGH
Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, and Department of Biomedical Sciences, University at Albany, Albany, NY 12222

DENIS MITCHISON
Centre for Infection, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom

VALERIE MIZRAHI
Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, P/Bag X3, Rondebosch 7700, South Africa
Contributors

D. Branch Moody
Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115

Jeppe Mouritsen
Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland

Olivier Neyrolles
Centre National de la Recherche Scientifique & Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France

Anil K. Ojha
Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261

Tanya Parish
Infectious Disease Research Institute, Seattle, WA 98102, and Queen Mary University of London, London, United Kingdom

Sang Tae Park
Macrogen Clinical Laboratory, Macrogen Corp, Rockville, MD 20850

Martin S. Pavelka, Jr.
Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642

Jakub Pawełczyk
Institute for Medical Biology, Polish Academy of Sciences, Lodz, Poland

Matthew Peterson
Department of Biomedical Engineering, Boston University, Boston, MA 02215

Madalena Pimentel
Centro de Patogéneses Molecular, Unidade dos Retrovirus e Infecções Associadas, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal

Maria Podinovskaja
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Steven A. Porcelli
Department of Microbiology and Immunology and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461

Sladjana Prisic
Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115

Alexander S. Pym
KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, 719 Umbilo Road, Durban, South Africa

Sahadevan Raman
National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02215
CONTRIBUTORS

Kyu Y. Rhee
Department of Medicine, Weill Cornell Medical College, 1300 York Avenue
A-431A, New York, NY 10065

Jacobs P. Richards
Department of Infectious Diseases and Microbiology, Graduate School of Public
Health, University of Pittsburgh, Pittsburgh, PA 15261

G. Marcela Rodriguez
Public Health Research Institute Center & Department of Medicine, University
of Medicine and Dentistry of New Jersey, Newark, NJ 07103

Eric J. Rubin
Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115

David G. Russell
Microbiology and Immunology, College of Veterinary Medicine, Cornell
University, Ithaca, NY 14853

Vikram Saini
Department of Microbiology, University of Alabama at Birmingham,
Birmingham, AL 35294

Neeraj K. Saini
Department of Microbiology and Immunology, Albert Einstein College of
Medicine, Bronx, NY 10461

Sankaran Sandhya
Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka
560012, India

Christopher M. Sassetti
University of Massachusetts Medical School, 55 Lake Avenue North, Worcester,
MA 01655

Dirk Schnappinger
Department of Microbiology and Immunology, Weill Medical College, and
Program in Molecular Biology, Weill Graduate School of Medical Sciences of
Cornell University, New York, NY 10065

Gary Schoolnik
Department of Medicine and Department of Microbiology and Immunology,
Stanford Medical School, Stanford, CA 94305

Olga T. Schubert
Department of Biology, Institute of Molecular Systems Biology, ETH Zurich,
Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland

Wanliang Shi
Department of Molecular Microbiology and Immunology, Bloomberg School of
Public Health, Johns Hopkins University, Baltimore, MD 21205

Adrie J. C. Steyn
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH),
Durban, South Africa, and Department of Microbiology, University of Alabama
at Birmingham, Birmingham, AL 35294
Contributors

Timothy P. Stinear
Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia

Neelima Sukumar
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Philip Supply
CNRS UMR 8204; INSERM, U1019; Center for Infection and Immunity of Lille, Institut Pasteur de Lille; and Université Lille Nord de France, Lille, France

Howard Takiff
Laboratorio de Genética Molecular, CMBC, IVIC, Caracas, Venezuela

Shumin Tan
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Vanessa Tran
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8

Andrej Trauner
Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115

Brian C. VanderVen
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Catherine Vilchèze
Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

Digby F. Warner
Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, P/Bag X3, Rondebosch 7700, South Africa

Ryan M. Wells
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa, and Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294

Douglas B. Young
Mycobacterial Research Division, National Institute for Medical Research, London NW7 1AA, United Kingdom

Ying Zhang
Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, and Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China

Wenhong Zhang
Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
Fourteen years have passed since the first edition of *Molecular Genetics of Mycobacteria* was published in 2000, and the mycobacterial field has exploded in the intervening time. In 2000 the *Mycobacterium tuberculosis* genome sequence had recently been reported, and there was considerable optimism for the advances in tuberculosis genetics that this would stimulate. This Second Edition of *Molecular Genetics of Mycobacteria* offers insights into how these promises have been realized, as well as the substantial impact of the numerous new molecular tools developed over the past dozen years. The field of mycobacterial genetics has thus expanded dramatically, with investigations into new areas of mycobacterial growth, replication, metabolism, physiology, drug susceptibility, and virulence.

The size and scope of *Molecular Genetics of Mycobacteria*, Second Edition, reflect this rapidly expanding field. This new edition contains double the number of chapters in the first edition and includes many topics not discussed there. The book is divided into eight main sections that focus on genomics and genetic exchange, gene expression, the proteome, metabolism, drug resistance, cell wall biosynthesis, macromolecular biosynthesis, and growth and persistence. Each contains several chapters written by leading experts in the field and includes a genetic perspective on the various topics discussed. The field is growing so rapidly that there are undoubtedly some specific topics and areas—especially those developed over the past year—that we have not been able to include and will have to await another edition.

Although *M. tuberculosis* is now fully tractable to genetic manipulation, tuberculosis the disease advances with little abatement of its impact on human health. Better clinical management across the world has led to steadying of the numbers of new cases reported each year, tuberculosis mortality, and the total number of infected people. Nonetheless, most of the problems in tuberculosis control that existed in 2000 are still with us today. The only available vaccine is BCG, with its

Preface
dubious efficacy against adult pulmonary tuberculosis; drug resistance continues to grow; antituberculosis drug regimens have barely changed; and diagnosis is either slow or costly. The good news is that the advances in mycobacterial genetics are beginning to be reflected in exciting recent developments. New diagnostic approaches can determine rifampin resistance within a few hours, promising new drugs are progressing through the pipeline and into the clinic, and a range of newly developed vaccines are being evaluated. The fruits of 30 years of intensive genetic investigations are finally beginning to emerge. But there remains much to learn about the mycobacteria and their curious but deadly habits and habitats. We anticipate that molecular genetic approaches will blunt the defenses of humanity’s deadliest microbial enemies over the next dozen years. It is our hope that this book inspires both newcomers to the field and veterans in tuberculosis research alike to think about tuberculosis problems with fresh perspectives and understanding.

We would like to thank Ellie Tupper of ASM Press for her tireless efforts; Greg Payne, ASM Press, for his continual encouragement and advice; and our exceptionally gifted and dedicated authors who contributed so splendidly to this book.

Graham F. Hatfull
William R. Jacobs, Jr.
Index

A
ABC transporter, in trehalose transport, 365, 369
Abrahams, G. L., 503
Acadian phage, 128
acc genes, 615–616
Accelerator, in asymmetric growth, 716
Accurate-mass retention time values, 342
aceA gene, 146
Acetamidase system, switches, 225, 228
Acetylated PIMs, 545–546
Acetylation, 247, 289
Acetyl-CoA carboxylase, 615–616
N-Acetylglucosamine, in lysis, 122
N-Acetylglucosamine rhamnose linker, in peptidoglycan synthesis, 520
N-Acetylglycosylases, in lysis, 122
N-Acetylmuramidases, in lysis, 122
N-Acetyl-muramyl-l-alanine amidases, in lysis, 122, 124
Acetyltransferase, 307
Acid stress, 193
genome changes due to, 732
PZA activity and, 484
Actinobacteria, STPKs of, 682
Actinomycetales, 310
Activation loops, in STPKs, 685–687
Active site pockets, 269–270
N-Acylated glucosamine (GlcNAc), in peptidoglycan, 513, 515–517
Acyltransferases, 563, 574
Acyltrehaloses, 572–579
Adams, K. N., 715
Adaptive immunity, evasion of, 756–762
Adaptive response, in signal transduction, 681
AddAB protein, 658
Adenosine deaminase, 639
Adenosine kinase, 639–640
S-Adenosylmethionine, 311
S-Adenosylmethionine-dependent methyltransferase, 619
Adenylyl cyclases, in cyclic AMP signaling, 281, 283–285
Adenylosuccinate synthase, 637
Adephagia phage, 106
AdnAB protein, 658, 660
Ag85 antigens, 755–756
ahp genes and Ahp proteins, 151, 232, 304, 417, 436, 733
Airborne pathogens, biosafety requirements for, 4–5
Akhter, Y., 188
Alanine dehydrogenase, 245–246
Alanine ligase, 515
Alanine racemase, 232, 500, 515
l-Alanyl-l-glutamine-meso-diaminopimelyl-1,5-alanine, 513
Alber, M., 365
AlbG protein, 469
Albicidin, 469
Aldridge, B. B., 716
Alkyl hydroperoxidase, 304
Alkyl hydroperoxide reductase, 733
Allelic exchange reactions, 17–18
Aldridge, B. B., 716
Alpha/beta hydrolases, 268
Alpha-glucans, 362, 370–372
Alpha-mycolic acids, 613
analytic gene, 414
Alternative sigma factor density, 138
Alternator, in asymmetric growth, 716
Alveolar surface area, 301
Inverted repeats, 97
IRAK-1 (intracellular IL-1 receptor
associated kinase)-1, 749
IRNA, 383
Iron
biofilms and, 778
in mycobacteria, 377–381, 384, 734
PZA activity and, 484
“Iron boxes,” 380–382
IrtAB protein, 378
IS1096, 4–5, 15
I-SceI encoding plasmid, 659–661
Isocitrate dehydrogenase, 331
Isocitrate lyase, 273, 333, 494, 500,
758–759
Isolyticucine tRNA synthase, 188
Isoniazid (INH)-NAD adduct, degradation
of, 438–439
Isoprenoid, 563–572
Isoprenyl diphosphate, 563, 565–566
Isoprenyl diphosphate isomerase, 566
Isopropyl β-D-1-thiogalactopyranoside, 227
Isotuberculosinol, 571
I-Scel encoding plasmid, 659–661
IS5, 4–5, 15
IrtAB protein, 378
Knockdown libraries, 499
Knapp, G. S., 289
Knol, R., 677
Kor subunits, of ferrodoxin oxidoreductase,
536, 539
Kmr protein, 384
Knapp, G. S., 289
Knol, R., 677
Kor subunits, of ferrodoxin oxidoreductase,
331–332
Kosti endolysin, 129
Koul, A., 699
Kriakov, Jordan, 13–14
Ksr protein, 167–168, 171, 175–176
Ku protein, 660–661
Kuhn, Jonathan, 14
Ku protein, 660–661
Kumar, P., 698
Kumar, A., 503
Kush, D. M., 563, 565, 536
Kurnt, M., 144
L
L1 phage, 102, 106–107
LS genes, 95
LS phase, 99, 102
LS shuttle plasmid, 4
lac operon, 282
Lac protein, 226, 229
Lactobacillus plantarum, peptidoglycan
of, 518
lacz gene, 5, 659
Lachmich, G., 34–35, 728
Large chunk distributive conjugal
transfer, 68
Latent infections
biofilms and, 779
proteomics of, 253
Lateral gene transfer, see Horizontal gene
transfer
Laurent, J. P., 589
Ldp protein, 304
Ldr proteins, 521–522
Lead design, in drug development, 306, 275–276
Leaderless mRNAs, 102
LepB protein, 233
Leptospirillum, Pup-proteasome system
of, 668
LexD gene, 4–5
Levofloxacin, 421, 456–457, 463, 466
Lewis, K., 721
LexA protein, 149
Lfr proteins, 466, 715
Li, X. Z., 714
Libraries
amplification, 442
ChIP-Seq, 163
Mtcb proteome, 249, 251
for target identification, 499
Lig proteins, 273, 660–662
Ligiste CSC algorithm, 269–270
Line probe assay MTBDRsfs, 459, 464
Linolezid
analagous of, 493
resistance to, 422
Linkage analysis, 7
lipF gene, 212
Lipid(s), antigens of, 762
Lipid fine structure, 354
LIPID MAPS, 341, 343–344, 349, 353
Lipid metabolism, 28, 38, 737–740
Lipidation, 247
Lipidomics, 341–360
biological studies using, 354–356
comparative, 345, 347
data analysis and display in, 347–348
databases in, 347, 349
detection methods in, 342, 344, 353–354
global, 345
identification in, 347, 349
lipid subclasses in, 342–343
vs. metabolomics, 342
of plasma membrane, 349–353
quantitation in, 347
separation methods for, 345
shotgun methods for, 345
targeted, 344–345
untargeted, 345
Lipids I, II, and III, 517–520, 563
Lipoamide dehydrogenase, 733
Lipoarabinomannans, 249, 349–350, 535,
541–550, 563, 590, 749
Lipomannan, 349, 541–550, 563, 590, 749
Lipoooligosacharides, 368–369, 577–579
Lipoproteins, recognition of, 748–749
Lipoquinones, 568–570
Liquid chromatography, in lipidomics, 345,
348, 353
Liquid chromatography-tandem mass
spectrometry
for proteomics, 242–243, 246–248
for redox couples, 313
Listeria
phage interactions with, 108
phage therapy for, 108–109
L. monocytogenes
delayed immune response in, 757
metabolobiology of, 383
noncoding RNAs of, 186, 199–200
peptidoglycan of, 524
resistance in, 468
LittleE phage, 97
Livermore, D. M., 714
lipX gene, 586
Log normal distribution, in ChIP-Seq, 163
Lol proteins, 586
Lon protease, 720
Loss-of-function mutants, 500
Low-affinity binding sites, 175
Lpd protein, 329, 733
lpq gene and Lpq protein (19-kDa
lipoprotein), 748–749, 757–761
lpqS gene, 677
LprX protein, 369–370
lpr genes and Lpr proteins, 217, 563,
748–749
INDEX
793
Index

Nitrogen compounds, see Reactive nitrogen species
NusA transcription factor, 186
Nocardia farcinica, resistance in, 468
Nocardia, mycolic acids of, 613
Nod2 protein, 513
NOD-like receptors, 747, 749–750
Noncanonical translational start codons, 144–145
Noncoding RNAs, 183–207
cis-acting regulatory elements of, 185–189
cis-encoded base pairing, 189–191
CRISPR, 33, 100, 196–197
definition of, 183–184
identification of, 197–200
for stress responses, 192–196
trans-acting, 189
trans-encoded base pairing, 191–192
types of, 184
Nonhomologous end joining method, for double-strand DNA break repair,
660–662
Nonpromoter binding, in ChIP-Seq,
65, 645
O
Obligate aerobe, Mycobacterium tuberculosis as, 302
OFF switches, 186, 189
Ofloxacin, 456–457, 462–463, 466, 467
O’Hare, H. M., 696
Okazaki fragments, 642, 644, 646
Omega phase, 97–99, 104–106, 128
OmpR family, 211, 213, 215–216
ON switches, 186
One-component signaling systems, 681
Ontology, gene, 263–265
Open reading frames, in Mycobacterium tuberculosis, 184
Optimus phage, 99
Organic cation transporter, 312
ori (origin of replication site) genes, 62–63, 65, 645
Orme, I. M., 779
Orotate phosphoribosyltransferase, 638
OtsA-OtsB pathway, 362–365
Outer membrane
chemicals translocated to, 563
in lysis, 122, 126, 130
mycolate, 344, 349–353
Output signals, in ChIP-Seq, 165
Overexpression libraries, 499
Oxaloacetate, 333
Oxazolidinones, resistance to, 422
Oxidation, definition of, 299
Oxidative phosphorylation, energetics of, see Energetics, of respiration and oxidative phosphorylation
Oxidative stress, 192–193, 299–322
buffers for, 305–312
defense strategies for, 303–305
definition of, 300
detoxification for, 303–312
double-strand DNA breaks in, 657
in lung, 301–302
PZA activity and, 484, 485
response to, 140–141, 144, 147, 149, 151–152
sensors for, 302–303
sources of, 300–301
Oxy proteins, 198
Oxygen deficiency, see Hypoxia
oxyR gene, 443
oxyR-ahpC region, 436
P
P2 protein, 144
P3 protein, 144
P73 derivatives, 64–65
PA-824, 300, 487, 501
PacI restriction enzyme, 14
Pcf protein, 144
Pefs phage, 130
Peptidoglycan-cleaving endolysin, 100
Peptidoglycan, 513–533
assembly of, 520–522
cell division and, 524–525
cell wall metabolism and, 525–527
composition of, 513–514
cytosolic intermediates of, 515–520
drug resistance and, 525–527
phage interaction with, 121–122
precursors of, 514–515
synthesis of, 689
turnover of, 522–524
Peptidoglycan-lysing, 494
PeptideAtlas database, 249
Peptidoglycan, 513–533
arabinogalactan attached to, 535–536
assembly of, 520–522
cell division and, 524–525
cell wall metabolism and, 525–527
composition of, 513–514
cytosolic intermediates of, 515–520
drug resistance and, 525–527
phage interaction with, 121–122
precursors of, 514–515
synthesis of, 689
turnover of, 522–524
Peptidoglycan-lysing, 494
PeptideAtlas database, 249
Periplasm, 350
Peroxidase/peroxynitrite reductase, 733
Peroxidases, 304
Peroxiredoxin, 304
Peroxoxime-proliferator activated receptor (PPAR), 418
Peroxynitrite reductase/peroxidase complex, 329
Persistence and persisters, 482
consistent and persistent, 779
in biofilms, 775–776, 779
definition of, 712
drug tolerance and, 714–720
drug resistance, 482, 487
redox potential and, 300
Pf database, 265
pfk genes, 326
PgpA protein, 545, 562
pH
genome changes due to, 732
for growth, 390–391
PZA activity and, 483–484
response to, 212
PhH11 mutant, 5, 14, 15
phaE1 plasmid, 4
phaE1 plasmid, 15
phaE159 plasmid, 15, 18
Phaeodex phage, 83
Phage(s), 11, 15–17, see also Mycobacteriophage(s)
in gene transfer, 33
PSI-BLAST, 262
pSMa2 phage, 106
pVR genes, 689
Pst proteins, 214, 699–700
Ptp proteins, 248, 699–701
P-type ATPase family, 381–383
Pukovnik phage, 95
pup gene and Pup protein, 668–677
Pup-proteasome system, 667–680
Pupylation, 247, 249, 669–671
Purine nucleoside phosphorylase, 639
Pyrimidine ribonucleotides, 636–638
Pyrimidines, 261–263
Q
Qcr proteins, 400
qcrCAB gene, 400
QepA protein, 469
Qcr proteins, 400
QRDR (quinolone-resistance-determining region), 459–465
Qrr proteins, 192
Quantitation, in lipidomics, 347
Quorum sensing, 192, 774
R
R (rough, avirulent) strain, *Streptococcus pneumoniae*, 7
R4 phage, 103
Rad proteins, 660, 662
Ramaseswamy, S. V., 443
Random inducible controlled expression (RIC), 499
Rao, S. P., 391
RhpA protein, 139–140
RctB protein, 648–649
RD1 deletion, 16
Reactivation, of infections, redox potential and, 300
Reactive nitrogen species, 301
Reactive oxygen species, 300–301
defenses against, 303–305
macrophage interactions with, 727, 729, 733–734
PZA activity and, 484
resistance to, 667, 674
Receptor-interacting kinase-1, 749
Reddy, R., 587, 777
Recombination, 17, 32, 68–69, 104–105, 107–108
Recombinational directionality factor, 101
Redox potential, alteration of, 435, 437
Redox reactions and redox state essential nature of, 299
homeostasis and, 299–302
in lung, 301–302
measurement of, 312–313
Redrock phage, 95
Reduction, definition of, 299
Reductive stress, 300
Redox potential, alteration of, 435, 437
Redox reactions and redox state of, 299
homeostasis and, 299–302
in lung, 301–302
measurement of, 312–313
Relaxase, 62, 64
Repair
in conjugation, 66
double-strand DNA breaks, 657–666
mismatch, 69, 647–648
Replication, 642–649
Replication, DNA, 642–649
Replication, mycobacterial, 642–645
Reporter genes, 106, 230–231
Reporter mycobacteriophages, 14, 108
Replicons, 107–108
Replicase promoter, 230–231
Replicon, 107–108
Replicons, 107–108
Regulatory RNAs, 671–674
Streptococcus pneumoniae
- Drug susceptibility in, 714
- Gene transfer in, 7
- Metabolism in, 53
- Resistance in, 459, 466

Streptococcus pyogenes
- Noncoding RNAs of, 199
- Nucleotide metabolism in, 638

Streptomyces
- Alternative sigma factor density of, 138
- Antibiotic regulatory proteins of, 53
- Buffers of, 305
- Cell envelope composition of, 562, 566
- Conjugation in, 71
- Enzymes of, 399–400
- Peptidoglycan of, 325
- Phage interactions with, 81, 103
- Redox sensors in, 302
- Resistance in, 465
- Sigma factors of, 139
- Substrate analogues, for drug target
- Subsaturation mutagenesis approach, 728

Structural bioinformatics
- Structural genes of phages, 93–95
- Structural Classification of Proteins (SCOP), 263, 268
- Structural annotation pipeline, 268–271
- Structural annotation of Mycobacterium tuberculosis, 261–280
- Structural annotation, of *Mycobacterium tuberculosis*, 261–280
- Current available coverage for, 265–269
- Details of, 270
- For drug discovery and development, 273–276
- Insights from, 263–265
- Levels of, 268–271
- Methods for obtaining, 262–263
- For pathogenetic information, 268–271
- Two-component system and, 273
- For virulence information, 271–272
- Structural annotation pipeline, 268–271
- Structural bioinformatics, 263
- Structural classification of Proteins (SCOP), 263, 268
- Structural genes, of phages, 93–95
- Structure-activity relationships, 493
- Subsaturation mutagenesis approach, 728
- Substrate analogues, for drug target identification, 499
- SucB protein, 304
- Sulfate dehydrogenases, 332, 396–398
- Sulfonatomenaquinone oxidoreductase, 332–333
- Succinic semialdehyde, 331
- Succinyl-CoA synthase, 332
- Succinyl-CoA transferase ketoglutarate decarboxylase, 331
- Sug proteins, 369–370

“Sugar scaffold,” trehalose as, 362, 365
- Sulfated menaquinone, 569–570
- Sulfitides (sulfolipids), 352–353, 366–368, 574–576
- Sulfoglucolipids (sulfolipids), 352–353, 366–368, 574–576
- Sulfolipid-1 addressing protein, 574
- Sulfolipids, 352–353, 366–368, 574–576
- *Sulfolobus acidocaldarius*, trehalose synthesis in, 362
- SUMO (small ubiquitin-related modifier), 673–674
- Superoxide dismutases (SODs), 301, 304, 381, 383, 733
- Susceptibility testing, reporter mycobacteriophages for, 14
- SWATH-MS assays, 249
- SwissProt database, 265

Pathology
- Switches, 225–229
- T26, 273–276
- T21, 229–230
- PppON and Tet/PipOFF, 226, 229–231
- Riboswitches, 186–189
- Strategies of, 230–233
- TetOn and TetOFF, 223–226, 228, 230–232
- Synergy, in drug development, 494, 497–498
- Synthetic lethality, 497–498

T
- T cells, helper, *Mycobacterium tuberculosis* effects on, 753–755
- Tails, of mycobacteriophages, 82–83
- Takiff, H., 466
- Tan, S., 732
- Telenti, A., 549
- TetOn and TetOFF, 225–226, 228, 230–232
- Thio-disulfide exchange reactions, 304
- Thomsonioctinotamide, 433
- Thiols, as redox buffers, 305–312
- Thioredoxins, 304–305
- Thioredoxin-related oxidoreductase, 733
- Thioredoxins, 304–305
- Threading approach, to structural analysis, 262
- “3–3” linkages, in peptides, 514, 522
- Three-dimensional structures, for proteins, 261–263
- Threonine kinases, *see Serine/threonine protein kinases*
- ThymiDrate synthase, 9, 641
- Tian, J., 331
- Tig, 245
- Tiling arrays, 199
- TIM beta/alpha barrel folds, 268
- Tiwari, A., 145
- TM4 phage, 4, 11–15
- TmpB, 250–254
- Tn5367 transposon, 15
- Toll-like receptors, 747–749
- Top proteins, 647
- Tooosimerases, 421
- in DNA replication, 646–647
- Fluoromonomes targeting, 457–459
- Toprim domain, 458
- Totally drug-resistant tuberculosis definition of, 413, 432
- Drugs for, 253
- Spread of, 432
- Toxin-antitoxin genes, 231–232
Trehalose monomycocatate, 350, 541, 572, 623
Trehalose synthase, 591
Treponema pallidum, 457
Tricylglycerols, 302, 561–562
Tracyltrehaloses, 576–577
Tricarboxylic acid cycle, 330–334, 396
Triglycerides, 561–563
Trigo, G., 127
Triose phosphate isomerase, 327
Trivedi, O. A., 581
Trixie phage, 95
tRNAs
definition of, 184
function of, 185
of phages, 95, 97
Troll4 phage, 128
Tuberculosis deleted region (TbD1), 31, 33
Tuberulosyldiphosphate, 571
Tuberculosis Animal Research and Gene Evaluation Taskforce (TARGET), 482–483
Tuberculosis deleted region (ThD1), 31, 33
Tuberculosis drugs, see Antimycobacterial agents; Drug(s)
Tuberculosis Structural Genomics Consortium, 262
TuberculosisDatabase, 176–177
Tuberculosis gene, 419, 539
TuberculosisViolet, 698
U
Umb2 peptide, 735
ubiA gene, 419, 539
Ubiquonones, 568–570
Ubiquitin
antimicrobial peptides derived from, 735
for protein degradation, 669–673
UDP-N-acetylmycolamyl-t-alanyl-n-glutamy1
meso-diaminopimelyl-t-alanyl-o-alanine (Park’s nucleotide), 515, 517
UDP-GlcNAc, 536
Ulitzer, Simon, 14
Ullman, A., 8
Ultraviolet light, PZA activity and, 484
Universal core intracellular translocase, 734
Untranslated regions, see UTRs
Upp protein, 641
Uridine monophosphate, 638–641
Uridyl kinase, 638
utf genes and Usp proteins, 148
UTRs
definition of, 184
function of, 185–186
Uvr proteins, 662–663
V
Vaccines, 19–20
antigens for, 735–736
BCG, 49–51, 56
new candidates for, 19–20, 487
proteomics for, 245, 252–253
strategies for, 252–253
Vander Beken, S., 614
Vandal, O. H., 497, 732
Vander Beken, S., 614
Venkitasubramaniam, T. A., 327
Ventilation perfusion ratio, 302
Verapamil, 423
Verification, of proteomic data, 262
Vibrio cholerae
DNA replication in, 648
noncoding RNAs of, 192
Vilchez, Catherine, 6, 195
Villemin, Jean Antoine, 5–6
Viomycin, 414, 420–421
VirS protein, 698
Virulence
biofilms and, 777
ESAT-6 family in, 29, 33–39
gene clusters in, 35
mechanisms of, 38
mycolactones in, 592–593
phenolic glycolipids and, 586–587
sigma factors as, see Sigma factors structural proteomic information for,
271–272
sulfonilides in, 366
Virulence factors
lipid, 53
secretion of, 248
Viruses, mycobacteriophages as, 81–82
Vitamin B12, riboswitch, 187
Vitamin D, in
Vlamakis, H., 775
VLPB protein, 216
Volcano spots, in lipidomics, 347
Vulnerability, of drug targets, 300
W
Wag31 protein, 525, 689, 691, 694
Wagner, D., 734
Wakamato, Y., 716
Waksman, Simon, 8, 431
Wang, J., 65
Wag31 protein, 525, 689, 691, 694
Wagner, D., 734
Wakamato, Y., 716
Waksman, Simon, 8, 431
Wang, J., 65
INDEX

Wang, X. D., 438
Ward, S. K., 382
Water channels, in biofilms, 774
Watson, James, 7
Wayne, L. G., 334, 401, 714
Wayne model, of hypoxia, 301, 648
WhiB protein, 539
Weak acids, for PZA enhancement, 483–484
Weber-Ban, E., 671–672
WecA protein, 539
Weinstein, E. A., 391
Weinzirl, J. E., 325
Wheeler, P. R., 325
WhiB phage, 102
WhiB protein family, 54, 93, 140, 153, 285, 404, 576
in drug resistance, 420
Whole-cell screen, 233, 498
Whole-genome sequencing, of transconjugants, 68
Wiggers, H. A. L., 361
Wildcat phage, 84, 99, 127
Williams, D. E., 148
Williams, E. P., 148
Winder, F. G., 433
Wollman, E. I., 62–63
Wolucka, B. A., 544
WXG100 proteins, 153
WxzE protein, 519
X
Xanthophylls, 570–571
XCMS software, for lipidomics, 347
xhl genes and Xhl proteins, 126
Xpert MTC/RIF system, 463–465
X-ray crystallography, for structural information, 261–262
Y
Yang, Y., 779–780
YdaO riboswitch, 188–189
Yersinia pestis
cAMP signaling in, 290
carbon metabolism in, 334
ygP gene, 565–566
ykok leader switch, 188
Youmans, A. S., 325
Youmans, G. P., 325
Young, D. B., 198
Young, Richard, 10
YthAB menaquinol oxidase, 401
Yuan, Y., 614
Z
ZAS (zinc-associated anti-sigma factors), 303
Zhang, Y., 417, 439
Zheng, J., 374
Zhou, B., 700
Zinc
metallobiology of, 381–384
in mycobacteria, 381–384, 734–735
transcriptional regulation of, 676–677
Zinc-associated anti-sigma factors, 303
Zinder, Norton, 7
Znt proteins, 734–735
Zobell, C., 774
Z-ring proteins, 498
zur gene, 383
Zur proteins, 676–677
zuf genes, 328