Molecular Genetics of Mycobacteria

2nd Edition
Molecular Genetics of Mycobacteria

2nd Edition

EDITED BY

GRAHAM F. HATFULL
Department of Biological Sciences,
University of Pittsburgh, Pittsburgh, PA 15260

AND

WILLIAM R. JACOBS, JR.
Howard Hughes Medical Institute,
Albert Einstein College of Medicine, Bronx, NY 10461

ASM Press
Washington, DC
Contents

Contributors ix
Preface xvii

I. GENOMES, GENOMICS, AND GENETIC EXCHANGE

1. Gene Transfer in *Mycobacterium tuberculosis*: Shuttle Plasmids to Enlightenment 3
 William R. Jacobs, Jr.

2. Mycobacterial Pathogenomics and Evolution 27
 Daria Bottai, Timothy P. Stinear, Philip Supply, and Roland Brosch

3. BCG Vaccines 49
 Vanessa Tran, Jun Liu, and Marcel A. Behr

 Keith M. Derbyshire and Todd A. Gray

5. Molecular Genetics of Mycobacteriophages 81
 Graham F. Hatfull

6. Genetics of Phage Lysis 121
 Madalena Pimentel
II. GENE EXPRESSION AND REGULATION

7. Sigma Factors: Key Molecules in Mycobacterium tuberculosis Physiology and Virulence 137
Riccardo Manganelli

8. Transcription Factor Binding Site Mapping Using ChIP-Seq 161
Suma Jaini, Anna Lyubetskaya, Antonio Gomes, Matthew Peterson, Sang Tae Park, Sahadevan Raman, Gary Schoolnik, and James Galagan

9. Noncoding RNA in Mycobacteria 183
Kristine B. Arnvig, Teresa Cortes, and Douglas B. Young

10. Two-Component Regulatory Systems of Mycobacteria 209
Tanya Parish

11. Regulated Expression Systems for Mycobacteria and Their Applications 225
Dirk Schnappinger and Sabine Ehrt

III. THE MYCOBACTERIAL PROTEOME

12. Mycobacterium tuberculosis in the Proteomics Era 241
Martin Gengenbacher, Jeppe Mouritsen, Olga T. Schubert, Ruedi Aebersold, and Stefan H. E. Kaufmann

13. Structural Annotation of the Mycobacterium tuberculosis Proteome 261
Nagasuma Chandra, Sankaran Sandhya, and Praveen Anand

14. Cyclic AMP Signaling in Mycobacteria 281
Gwendolyn S. Knapp and Kathleen A. McDonough

IV. METABOLISM

15. The Physiology and Genetics of Oxidative Stress in Mycobacteria 299
Bridgette M. Cumming, Dirk Lamprecht, Ryan M. Wells, Vikram Saini, James H. Mazorodze, and Adrie J. C. Steyn

16. Metabolomics of Central Carbon Metabolism in Mycobacterium tuberculosis 323
Anthony D. Baughn and Kyu Y. Rhee

17. Mycobacterial Lipidomics 341
Emilie Layre, Reem Al-Mubarak, John T. Belisle, and D. Branch Moody

18. Genetics of Mycobacterial Trehalose Metabolism 361
Rainer Kalscheuer and Hendrik Koliwer-Brandl
Contents

19. Metallobiology of Tuberculosis 377
 G. MARCELA RODRIGUEZ AND OLIVIER NEYROLLES

20. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria 389
 GREGORY M. COOK, KIEL HARDS, CATHERINE VILCHÈZE,
 TRAVIS HARTMAN, AND MICHAEL BERNEY

V. GENETICS OF DRUG RESISTANCE

21. Molecular Basis of Drug Resistance in Mycobacterium tuberculosis 413
 KEIRA A. COHEN, WILLIAM R. BISHAI, AND ALEXANDER S. PYM

22. Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities 431
 CATHERINE VILCHÈZE AND WILLIAM R. JACOBS, JR.

23. The Molecular Genetics of Fluoroquinolone Resistance in Mycobacterium tuberculosis 455
 CLAUDINE MAYER AND HOWARD TAKIFF

24. Mechanisms of Pyrazinamide Action and Resistance 479
 YING ZHANG, WANLIANG SHI, WENHONG ZHANG,
 AND DENIS MITCHISON

25. Genetic Strategies for Identifying New Drug Targets 493
 ANDREJ TRAUNER, CHRISTOPHER M. SASSETTI, AND ERIC J. RUBIN

VI. GENETICS OF MEMBRANE AND CELL WALL BIOSYNTHESIS

26. Genetics of Peptidoglycan Biosynthesis 513
 MARTIN S. PAVELKA, JR., SEBABRATA MAHAPATRA,
 AND DEAN C. CRICK

27. Genetics of Mycobacterial Arabinogalactan and Lipoarabinomannan Assembly 535
 MONIKA JANKUTE, SHIPRA GROVER, HELEN L. BIRCH,
 AND GURDYAL S. BESRA

28. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids 559
 MAMADOU DAFFÉ, DEAN C. CRICK, AND MARY JACKSON

29. The Molecular Genetics of Mycolic Acid Biosynthesis 611
 JAKUB PÆWECZYK AND LAURENT KREMER
VII. GENETICS OF MACROMOLECULAR BIOSYNTHESIS

30. Nucleotide Metabolism and DNA Replication 635
 Digby F. Warner, Joanna C. Evans, and Valerie Mizrahi

31. Double-Strand DNA Break Repair in Mycobacteria 657
 Michael S. Glickman

32. The Pup-Proteasome System of Mycobacteria 667
 Nadine J. Bode and K. Heran Darwin

33. Mycobacterium tuberculosis Serine/Threonine
 Protein Kinases 681
 Sladjana Prisic and Robert N. Husson

VIII. THE MYCOBACTERIAL LIFESTYLE, PERSISTENCE,
 AND MACROPHAGE SURVIVAL

34. The Spectrum of Drug Susceptibility in Mycobacteria 711
 Bree B. Aldridge, Iris Keren, and Sarah M. Fortune

35. The Sculpting of the Mycobacterium tuberculosis Genome by Host
 Cell–Derived Pressures 727
 David G. Russell, Wonsik Lee, Shumin Tan, Neelima Sukumar,
 Maria Podinovskaia, Ruth J. Fahey, and Brian C. VanderVen

36. Evasion of Innate and Adaptive Immunity by
 Mycobacterium tuberculosis 747
 Michael F. Goldberg, Neeraj K. Saini, and Steven A. Porcelli

37. Mycobacterial Biofilms 773
 Jacobs P. Richards and Anil K. Ojha

Index 785
Contributors

Ruedi Aebersold
Department of Biology, Institute of Molecular Systems Biology, ETH Zurich,
Wolfgang-Pauli Strasse 16, 8093 Zurich, and Faculty of Science, University of
Zurich, 8057 Zurich, Switzerland

Bree B. Aldridge
Department of Molecular Biology & Microbiology and Department of Biomedical
Engineering, Tufts University, Boston, MA 02111, and Medford, MA 02155

Reem Al-Mubarak
Department of Microbiology, Immunology, and Pathology, Colorado State
University, Fort Collins, CO 80523

Praveen Anand
Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka
560012, India

Kristine B. Arnvig
Mycobacterial Research Division, National Institute for Medical Research,
London NW7 1AA, United Kingdom

Anthony D. Baughn
Department of Microbiology, University of Minnesota, 420 Delaware St. SE,
MMC196, Mayo Building Room 1020, Minneapolis, MN 55455

Marcel A. Behr
McGill International TB Centre, Montreal, Quebec, Canada, H3G 1A4
JOHN T. BELISLE
Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523

MICHAEL BERNEY
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

GURDYAL S. BESRA
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

HELEN L. BIRCH
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

WILLIAM R. BISHAI
Johns Hopkins School of Medicine, The Center for TB Research, 1550 Orleans St., CRBII, Room 103, Baltimore, MD 21287

NADINE J. BODE
Department of Microbiology, New York University School of Medicine, 550 First Avenue, MSB 236, New York, NY 10016

DARIA BOTTAI
Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia Università di Pisa, Pisa, Italy

ROLAND BROSCH
Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France

NAGASUMA CHANDRA
Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India

KEIRA A. COHEN
KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, 719 Umbilo Road, Durban, South Africa, and Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115

GREGORY M. COOK
University of Otago, Department of Microbiology and Immunology, Dunedin, New Zealand

TERESA CORTES
Mycobacterial Research Division, National Institute for Medical Research, London NW7 1AA, United Kingdom

DEAN C. CRICK
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682

BRIDGETTE M. CUMMING
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa
Contributors

Mamadou Daffé
CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, and the Université de Toulouse Paul Sabatier, F-31077 Toulouse, France

K. Heran Darwin
Department of Microbiology, New York University School of Medicine, 550 First Avenue, MSB 236, New York, NY 10016

Keith M. Derbyshire
Division of Genetics, Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, University at Albany, Albany, NY 12201

Sabine Ehrt
Department of Microbiology and Immunology, Weill Medical College, and Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065

Joanna C. Evans
Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, P/Bag X3, Rondebosch 7700, South Africa

Ruth J. Fahey
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Sarah M. Fortune
Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115

James Galagan
Department of Biomedical Engineering, Bioinformatics Program, and National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02215, and Broad Institute of MIT and Harvard, Cambridge, MA 02142

Martin Gengenbacher
Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, 10117 Berlin, Germany

Michael S. Glickman
Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10803

Michael F. Goldberg
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

Antonio Gomes
Bioinformatics Program, Boston University, Boston, MA 02215

Todd A. Gray
Division of Genetics, Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, University at Albany, Albany, NY 12201
SHIPRA GROVER
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

KIEL HARD
University of Otago, Department of Microbiology and Immunology, Dunedin, New Zealand

TRAVIS HARTMAN
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

GRAHAM F. HATFULL
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260

ROBERT N. HUSSon
Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115

MARY JACKSON
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682

WILLIAM R. JACkS, JR.
Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

SUMA JAINI
Department of Biomedical Engineering and National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02115

MONIKA JANKUTE
School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

RAINER KALSChEUEr
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany

STEPhAN H. E. KAUFMANN
Max Planck Institute for Infection Biology, Department of Immunology, Charitéplatz 1, 10117 Berlin, Germany

IRIS KEREn
Antimicrobial Discovery Center and Department of Biology, Northeastern University, Boston, MA 02115

GWENDOWLYN S. KNAPP
Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002

HENDRIK KOLIUWER-BRANDL
Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
Contributors

LAURENT KREMER
Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier 2 et 1, CNRS; UMR 5235, case 107; and INSERM, DIMNP, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France

DIRK LAMPRECHT
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa

EMILIE LAYRE
Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115

WONSIK LEE
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

JUN LIU
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8

ANNA LYUBETSKAYA
Bioinformatics Program, Boston University, Boston, MA 02215

SEBABRATA MAHAPATRA
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523

RICCARDO MANGANELLI
Department of Molecular Medicine, University of Padova, Italy

CLAUDINE MAYER
Unité de Microbiologie Structurale, Institut Pasteur; UMR 3528 du CNRS; and Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 75015, Paris, France

JAMES H. MAZORODZE
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa

KATHLEEN A. McDONOUGH
Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, and Department of Biomedical Sciences, University at Albany, Albany, NY 12222

DENIS MITCHISON
Centre for Infection, St. George’s, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom

VALERIE MIZRAHI
Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, P/Bag X3, Rondebosch 7700, South Africa
D. Branch Moody
Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115

Jeppe Mouritsen
Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland

Olivier Neyrolles
Centre National de la Recherche Scientifique & Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France

Anil K. Ojha
Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261

Tanya Parish
Infectious Disease Research Institute, Seattle, WA 98102, and Queen Mary University of London, London, United Kingdom

Sang Tae Park
Macrogen Clinical Laboratory, Macrogen Corp, Rockville, MD 20850

Martin S. Pavelka, Jr.
Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642

Jakub Pawełczyk
Institute for Medical Biology, Polish Academy of Sciences, Lodz, Poland

Matthew Peterson
Department of Biomedical Engineering, Boston University, Boston, MA 02215

Madalena Pimentel
Centro de Patogénesis Molecular, Unidade dos Retrovirus e Infecções Associadas, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal

Maria Podinovskaia
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Steven A. Porcelli
Department of Microbiology and Immunology and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461

Sladjana Prisic
Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115

Alexander S. Pym
KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, 719 Umbilo Road, Durban, South Africa

Sahadevan Raman
National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA 02215
Contributors

Kyu Y. Rhee
Department of Medicine, Weill Cornell Medical College, 1300 York Avenue
A-431A, New York, NY 10065

Jacob P. Richards
Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261

G. Marcela Rodriguez
Public Health Research Institute Center & Department of Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103

Eric J. Rubin
Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115

David G. Russell
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Vikram Saini
Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294

Neeraj K. Saini
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

Sankaran Sandhya
Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India

Christopher M. Sassetti
University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655

Dirk Schnappinger
Department of Microbiology and Immunology, Weill Medical College, and Program in Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065

Gary Schoolnik
Department of Medicine and Department of Microbiology and Immunology, Stanford Medical School, Stanford, CA 94305

Olga T. Schubert
Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland

Wanliang Shi
Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205

Adrie J. C. Steyn
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa, and Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
Contributors

TIMOTHY P. STINEAR
Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia

NEELIMA SUKUMAR
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

PHILIP SUPPLY
CNRS UMR 8204; INSERM, U1019; Center for Infection and Immunity of Lille, Institut Pasteur de Lille; and Université Lille Nord de France, Lille, France

HOWARD TAKIFF
Laboratorio de Genética Molecular, CMBC, IVIC, Caracas, Venezuela

SHUMIN TAN
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

VANESSA TRAN
Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8

ANDREJ TRAUNER
Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115

BRIAN C. VANDERVEN
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

CATHERINE VILCHÈZE
Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461

DIGBY F. WARNER
Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, P/Bag X3, Rondebosch 7700, South Africa

RYAN M. WELLS
KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Durban, South Africa, and Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294

DOUGLAS B. YOUNG
Mycobacterial Research Division, National Institute for Medical Research, London NW7 1AA, United Kingdom

YING ZHANG
Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, and Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China

WENHONG ZHANG
Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
Fourteen years have passed since the first edition of *Molecular Genetics of Mycobacteria* was published in 2000, and the mycobacterial field has exploded in the intervening time. In 2000 the *Mycobacterium tuberculosis* genome sequence had recently been reported, and there was considerable optimism for the advances in tuberculosis genetics that this would stimulate. This Second Edition of *Molecular Genetics of Mycobacteria* offers insights into how these promises have been realized, as well as the substantial impact of the numerous new molecular tools developed over the past dozen years. The field of mycobacterial genetics has thus expanded dramatically, with investigations into new areas of mycobacterial growth, replication, metabolism, physiology, drug susceptibility, and virulence.

The size and scope of *Molecular Genetics of Mycobacteria*, Second Edition, reflect this rapidly expanding field. This new edition contains double the number of chapters in the first edition and includes many topics not discussed there. The book is divided into eight main sections that focus on genomics and genetic exchange, gene expression, the proteome, metabolism, drug resistance, cell wall biosynthesis, macromolecular biosynthesis, and growth and persistence. Each contains several chapters written by leading experts in the field and includes a genetic perspective on the various topics discussed. The field is growing so rapidly that there are undoubtedly some specific topics and areas—especially those developed over the past year—that we have not been able to include and will have to await another edition.

Although *M. tuberculosis* is now fully tractable to genetic manipulation, tuberculosis the disease advances with little abatement of its impact on human health. Better clinical management across the world has led to steadying of the numbers of new cases reported each year, tuberculosis mortality, and the total number of infected people. Nonetheless, most of the problems in tuberculosis control that existed in 2000 are still with us today. The only available vaccine is BCG, with its
dubious efficacy against adult pulmonary tuberculosis; drug resistance continues
to grow; antituberculosis drug regimens have barely changed; and diagnosis is
either slow or costly. The good news is that the advances in mycobacterial genet-
ics are beginning to be reflected in exciting recent developments. New diagnostic
approaches can determine rifampin resistance within a few hours, promising new
drugs are progressing through the pipeline and into the clinic, and a range of
newly developed vaccines are being evaluated. The fruits of 30 years of intensive
genetic investigations are finally beginning to emerge. But there remains much
to learn about the mycobacteria and their curious but deadly habits and habi-
tats. We anticipate that molecular genetic approaches will blunt the defenses of
humanity’s deadliest microbial enemies over the next dozen years. It is our hope
that this book inspires both newcomers to the field and veterans in tuberculosis
research alike to think about tuberculosis problems with fresh perspectives and
understanding.

We would like to thank Ellie Tupper of ASM Press for her tireless efforts; Greg
Payne, ASM Press, for his continual encouragement and advice; and our excep-
tionally gifted and dedicated authors who contributed so splendidly to this book.

Graham F. Hatfull
William R. Jacobs, Jr.
Index

A
ABC transporter, in trehalose transport, 365, 369
Abrahams, G. L., 503
Acadian phage, 128
acc genes, 615–616
Accelerator, in asymmetric growth, 716
Accurate-mass retention time values, 342
aceA gene, 146
Acetamidase system, switches, 225, 228
Acetylated PIMs, 545–546
Acetylation, 247, 289
Acetyl-CoA carboxylase, 615–616
N-Acetylglucosamine, in lysis, 122
N-Acetylglucosamine rhamnose linker, in peptidoglycan synthesis, 520
N-Acetylglycosylases, in lysis, 122
N-Acetylmuramidases, in lysis, 122
N-Acetyl-muramyl-L-alanine amidases, in lysis, 122
N-Acetyltransferase, 307
Acid stress, 193
genome changes due to, 732
PZA activity and, 484
Acidobacteria, STPKs of, 682
Acidothermus cellulolyticus, Pup-proteasome system of, 669
Acinetobacter baumannii, drug susceptibility in, 714
Acinetoferrin, 378
Aconitase, 330–331
AcpM protein, 443
Acr2 protein, 213
Actinobacteria, 27
energetics of, 396
STPKs of, 682
stress response of, 193
Actinomycetales, 310
Activation loops, in STPKs, 685–687
Active site pockets, 269–270
N-Acylated glucosamine (GlcNAc), in peptidoglycan, 513, 515–517
Acyltransferases, 563, 574
Acyltrehaloses, 572–579
Adams, K. N., 715
Adaptive immunity, evasion of, 756–762
Adaptive response, in signal transduction, 681
AddAB protein, 658
Adenosine deaminase, 639
Adenosine kinase, 639–640
S-Adenosylmethionine, 311
S-Adenosylmethionine-dependent methyltransferase, 619
Adenylyl cyclases, in cyclic AMP signaling, 281, 283–285
Adenylosuccinate synthase, 637
Adephagia phage, 106
AdnAB protein, 658, 660
Ag85 antigens, 755–756
ahp genes and Ahp proteins, 151, 232, 304, 417, 436, 733
Airborne pathogens, biosafety requirements for, 4–5
Akhter, Y., 188
Alanine dehydrogenase, 245–246
Alanine ligase, 515
Alanine racemase, 232, 500, 515
l-Alanyl-γ-glutamine-meso-diaminopimelyl-L-alanine, 513
Alber, M., 365
AlbG protein, 469
Albicidin, 469
Alkyl hydroperoxidase, 304
Alkyl hydroperoxide reductase, 733
Allelic exchange reactions, 17–18
Alma phage, 97
Almeida, D., 418
Alonso, S., 735
Alpha/beta hydrolases, 268
Alpha-glucans, 362, 370–372
Alpha-mycolic acids, 613
alt gene, 414
Alternative sigma factor density, 138
Alternator, in asymmetric growth, 716
Alveolar surface area, 301
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycobacterium smegmatis (Continued)</td>
<td></td>
</tr>
<tr>
<td>redox reactions in, 417, 434, 437–439, 442, 444, 467, 484–485</td>
<td></td>
</tr>
<tr>
<td>shuttle plasmids of, 10–13</td>
<td></td>
</tr>
<tr>
<td>sigma factors of, 139–141, 144–145, 147, 149, 151</td>
<td></td>
</tr>
<tr>
<td>STPKs of, 683, 694, 696–699</td>
<td></td>
</tr>
<tr>
<td>trehalose in, 362–366, 369</td>
<td></td>
</tr>
<tr>
<td>two-component regulatory system of, 210, 212–216</td>
<td></td>
</tr>
</tbody>
</table>

Mycobacterium terrae/
see targets in, structure vs. function in, 265
proteomics of, 657–666
**prolonged infections with, 729–730
-inositol glycolipids of, 261–280
myo-phosphatidyl-peptidoglycan of, 513
pathogenesis of, double-strand DNA break
oxidative stress in, 303–305
nucleotide metabolism in, 636–642
nucleotide cyclases of, 281, 283–285
noncoding RNAs of, 183–200
mycobacteriophages, 14
metallobiology of, 377–387
lipidomics of, 341–360
immune system evasion by, 747–772
host cell interactions with, 727–745
horizontal gene transfer in, 61
genomics of, 18, 28–39
gene transfer in, 3–25
environmental responses of, 731–740
energetics of, 389–404
elimination of, 19–20
drug susceptibility in, 14, 711–725
drug resistance in, 417, 434, 437–439, 444
two-component regulatory system of, 210, 247
trehalose in, 362–366, 369

STPKs of, 683, 694, 696–699
sigma factors of, 139–141, 144–145, 147, 149, 151
shuttle plasmids of, 10–13
resistance in, 417, 434, 437–439, 444, 467, 484–485
structural annotation of proteome, 657–666
defenses against reactive species, 303–305
conjugation in, 63–64, 67, 71, 73
cell envelope of, 559–609
cAMP signaling in, 282–291
in biofilms, 19, 773–784
Beijing family, 197
arabinogalactan of, 535–541
antigens of, 10
antisigma factors, 212–216
-Mycolylmannopyranosyl 6-
Mycolyl diacyl glycerol, 778
Mycolome, 623
Mycolipenic acids, 576–577
Mycolipanolic acids, 576–577
Mycolic acid synthases, 271
Mycolactones, 592–593, 777
Mycoketides, 579–580
Mycobactin, 377–378, 734
Mycocerosic acid synthase, 582

Mycobacterium xenopi
Mycobacterium vanbaalenii
Mycobacterium vaccae, 591
Mycobacterium ulcerans
Mycobacterium tuberculosis
organisms
cAMP signaling in, 281
cell envelope composition of, 581
genomics of, 31–39
horizontal gene transfer in, 61–62
membrane synth., 51; see also specific organisms
Mycobacterium ulcerans in biofilms, 777
cell envelope composition of, 580, 581, 591
conjugation in, 64
energetics of, 396
pathogenicity of, 27
phage interactions with, 100
phages of, 131
plasmids of, 64
sigma factors of, 141, 151
transposons of, 15
Mycobacterium vaccae. 591
Mycolic acid synthases, 271

Mycobacterium avium complex
mycobacteriophages, 14
metallobiology of, 377–387
lipidomics of, 341–360
immune system evasion by, 747–772
nucleotide metabolism in, 636–642
oxidative stress in, 303–305
pathogenesis of, double-strand DNA break repair and, 657–666
peptidoglycan of, 513
phage interactions with, 81–82, 84, 99–100, 102, 105–106, 108
phage lysis and, 127, 130–131
phenotypes of, 6–7, 19
phosphatidyl--myo-inositol glycolipids of, 541–550
proteomedications in, 729–730
proteomics of, see Proteomics
Pup-proteosome system of, 667–680
redox buffers in, 305–312
redox reactions in, 299–303
redox sensors of, 302–303
serine/threonine protein kinases of, 681–698
sigma factors and, see Sigma factors
structural annotation of proteome, 657–666
structure vs. function in, 265
targets in, see Drug targets

transcription factors of, ChiP-Seq mapping of, 161–181
transcriptional profiling of, 728
transcriptome of, 728–729
transduction in, 16–17
transmission of, 5–6
transposons of, 15, 728
two-component regulatory systems of, 210–218, 247
virulence of, see Sigma factors; Virulence

Mycothiol disulfide, 309
Mycothiol disulfide reductase, 309
Mycothiol disulfide, 309

Mycosins, 35
Mycosine C, 99–100
Mycoside C, 99–100

Drug targets
Drug resistance
Sigma factors

Nitrobenzothiazinones (BTZs), 539, 550
<table>
<thead>
<tr>
<th>Term</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer membrane</td>
<td>145-146</td>
</tr>
<tr>
<td>NodZ protein</td>
<td>348-350</td>
</tr>
<tr>
<td>Nocardia farcinica</td>
<td>65-68</td>
</tr>
<tr>
<td>Nocardia, mycolic acids of</td>
<td>613</td>
</tr>
<tr>
<td>Nod2 protein</td>
<td>513</td>
</tr>
<tr>
<td>NOD-like receptors</td>
<td>747, 749-750</td>
</tr>
<tr>
<td>Noncanonical translational start codons</td>
<td>144-145</td>
</tr>
<tr>
<td>Noncoding RNAs</td>
<td>183-207</td>
</tr>
<tr>
<td>cis-acting regulatory elements of</td>
<td>185-189</td>
</tr>
<tr>
<td>cis-encoded base pairing</td>
<td>189-191</td>
</tr>
<tr>
<td>CRISPR, 33, 100, 196-197</td>
<td></td>
</tr>
<tr>
<td>definition of, 183-184</td>
<td></td>
</tr>
<tr>
<td>identification of, 197-200</td>
<td></td>
</tr>
<tr>
<td>for stress responses, 192-196</td>
<td></td>
</tr>
<tr>
<td>trans-acting, 189</td>
<td></td>
</tr>
<tr>
<td>trans-encoded base pairing, 191-192</td>
<td></td>
</tr>
<tr>
<td>types of, 184</td>
<td></td>
</tr>
<tr>
<td>Nonhomologous end joining method</td>
<td>390-391</td>
</tr>
<tr>
<td>Northern blot analysis</td>
<td>198-199</td>
</tr>
<tr>
<td>Norspermidine</td>
<td>775</td>
</tr>
<tr>
<td>Noto, T. J., 696</td>
<td></td>
</tr>
<tr>
<td>Nots, T. I., 696</td>
<td></td>
</tr>
<tr>
<td>nuo gene and NudC protein</td>
<td>438-439</td>
</tr>
<tr>
<td>Nucleotide excision repair</td>
<td>663</td>
</tr>
<tr>
<td>Nucleoid-associated proteins</td>
<td>174-175</td>
</tr>
<tr>
<td>Nuclear magnetic spectroscopy</td>
<td>272</td>
</tr>
<tr>
<td>Index</td>
<td>801</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Respiration, see Energetics, of respiration and oxidative phosphorylation
Respiratory fluoroquinolones, 466
Response regulators, 209–218, 247, 681
Resuscitating-promoting factors, 188–189, 288, 523
Rex phage, 102
REFs protein, 519
Rhamnolipid, 777
Rhamnosyltransferase (WbbL), 539
Rhee, K. Y., 325, 739
Rhode, K. H., 729, 732
Rhodococcus equi, 667
Rhode, K. H., 729, 732
Rieske protein, 400
RicR protein, 384, 677
RICE (random inducible controlled expression), 499
Ribosome-phosphate isomerase, 328
Ribosomes, in drug resistance, 8–9
Riboswitches, 186–189
Ribosomes, in drug resistance of, 151–152
Ribosomal protein S1, 484
Riboflavin, 647
Ribokinases, 647
Ribonucleotide(s), double-strand DNA breaks related to, 657
Ribonucleotide reductase, 641
Ribonucleotides, deoxyribonucleotide formation from, 641–642
Ribose-5-phosphate isomerase, 328
Ribosome-phosphate pyrophosphokinase (PRPPase), 642
Ribosomal protein S1, 484
Ribosomal RNAs, see rRNAs
RipA protein, 198
RivD genes and Rib proteins, 414, 422
Ribosomes, in drug resistance of, 713
Index

Wang, X. D., 438
Ward, S. K., 382
Water channels, in biofilms, 774
Watson, James, 7
Wayne, L. G., 334, 401, 714
Wayne model, of hypoxia, 301, 648
WhbL protein, 539
Weak acids, for PZA enhancement, 483–484
Weber-Ban, E., 671–672
WeceA protein, 539
Weinzirl, J. E., 325
Wheeler, P. R., 325
WhiB phage, 102
WhiB protein family, 54, 93, 140, 153, 285, 404, 576
in drug resistance, 420
Whole-cell screen, 233, 498
Whole-genome sequencing, of transconjugants, 68
Wiggers, H. A. L., 361
Wildcat phage, 84, 99, 127
Williams, D. E., 148
Williams, E. P., 148
Winder, E. G., 433
Wollman, E. L., 62–63
Wolucka, B. A., 544
WXG100 proteins, 153
WxZ protein, 519
X
Xanthophylls, 570–571
XCMS software, for lipidomics, 347
xhl genes and Xhl proteins, 126
Xpert MTB/RIF system, 463–465
X-ray crystallography, for structural information, 261–262
Y
Yang, Y., 779–780
YdaO riboswitch, 188–189
Yersinia pestis
 cAMP signaling in, 290
 carbon metabolism in, 334
 ygbP gene, 565–566
 ykok leader switch, 188
Youmans, A. S., 325
Youmans, G. P., 325
Young, D. B., 198
Young, Richard, 10
YthAB menaquinol oxidase, 401
Yuan, Y., 614
Z
ZAS (zinc-associated anti-sigma factors), 303
Zhang, Y., 417, 439
Zheng, J., 374
Zhou, B., 700
Zinc
 metallobiology of, 381–384
 in mycobacteria, 381–384, 734–735
 transcriptional regulation of, 676–677
Zinc-associated anti-sigma factors, 303
Zinder, Norton, 7
Znt proteins, 734–735
Zobell, C., 774
Z-ring proteins, 498
zur gene, 383
Zur proteins, 676–677
zwf genes, 328