ENVIRONMENTAL MICROBIAL FORENSICS

Edited by

Raúl J. Cano
Department of Biology
Center for Applications in Biotechnology
California Polytechnic State University
San Luis Obispo, California

and

Gary A. Toranzos
Environmental Microbiology Laboratory
Department of Biology
University of Puerto Rico, Rio Piedras Campus
San Juan, Puerto Rico

ASM PRESS
Washington, DC
Contents

Contributors vii
Preface ix
About the Editors xi

I FUNDAMENTALS OF MICROBIAL FORENSICS 1

1 Definitions and Historical Perspectives in Environmental Forensics 3
Gary A. Toranzos and Raúl J. Cano

2 Statistical Considerations in Environmental Microbial Forensics 17
Graham McBride and Brent Gilpin

3 From Evolutionary Advantage to Disease Agents: Forensic Reevaluation of Host-Microbe Interactions and Pathogenicity 33
Jessica I. Rivera-Perez, Alfredo A. González, and Gary A. Toranzos

4 Paleomicrobiology: A Snapshot of Ancient Microbes and Approaches to Forensic Microbiology 63
Jessica I. Rivera-Perez, Tasha M. Santiago-Rodriguez, and Gary A. Toranzos
Contents

II PUBLIC HEALTH AND CRIMINAL FORENSICS 91

5 Microbial Forensics in Food Safety 93
 Marie Yeung

6 Toward Forensic Uses of Microbial Source Tracking 115
 Christopher M. Teaf, David Flores, Michele Garber, and Valerie J. Harwood

7 Soil Microbial Forensics 143
 Tasha M. Santiago-Rodriguez and Raúl J. Cano

8 Forensic Phytopathology: A Critical Review 173
 Paul Bayman and Luz M. Serrato-Díaz

9 Forensic Approaches to Detect Possible Agents of Bioterror 191
 Alfredo A. González, Jessica I. Rivera-Perez, and Gary A. Toranzos

10 Environmental Microbial Forensics and Archaeology of Past Pandemics 215
 Antonio Fornaciari

III LOOKING AHEAD 237

11 Comparative Microbial Genomics and Forensics 239
 Steven E. Massey

12 Future Technologies 277
 Raúl J. Cano and Gary A. Toranzos
Contributors

Paul Bayman
Department of Biology, University of Puerto Rico–Río Piedras
San Juan, Puerto Rico

Raúl J. Cano
Department of Biology
Center for Applications in Biotechnology
California Polytechnic State University
San Luis Obispo, California

David Flores
Center for Progressive Reform
Washington, DC

Antonio Fornaciari
Division of Paleopathology
Department of Translational Research and New Technologies in Medicine and Surgery
University of Pisa
Pisa, Italy

Michele Garber
Hazardous Substance & Waste Management Research, Inc.
Tallahassee, Florida

Brent Gilpin
Environmental Science Research (ESR)
Christchurch, New Zealand

Alfredo A. González
Environmental Microbiology Laboratory
Department of Biology
University of Puerto Rico, Río Piedras Campus
San Juan, Puerto Rico

Valerie J. Harwood
Department of Integrative Biology
University of South Florida
Tampa, Florida

Steven E. Massey
Biology Department
University of Puerto Rico-Rio Piedras
San Juan, Puerto Rico

Graham McBride
National Institute of Water &
Atmospheric Research (NIWA),
Hamilton
Hamilton, New Zealand

Jessica I. Rivera-Perez
Environmental Microbiology
Laboratory
Department of Biology
University of Puerto Rico, Rio Piedras
Campus
San Juan, Puerto Rico

Tasha M. Santiago-Rodriguez
California Polytechnic State
University
San Luis Obispo, California

Luz M. Serrato-Díaz
Department of Biology, University of
Puerto Rico–Rio Piedras
San Juan, Puerto Rico

Christopher M. Teaf
Hazardous Substance & Waste
Management Research, Inc.
Tallahassee, Florida

Gary A. Toranzos
Environmental Microbiology Laboratory
Department of Biology
University of Puerto Rico, Rio Piedras
Campus
San Juan, Puerto Rico

Marie Yeung
Biological Sciences Department
California Polytechnic State University
San Luis Obispo, California
Preface

The title of this book, *Environmental Microbial Forensics*, is quite a mouthful, so right off the bat one may wonder what this book covers. Most lay people will think of cadavers and crime scene investigations when they see the term *forensics*, but the term covers a lot of ground, including possible environmental crimes, which can be solved using microbial forensics and microbial source tracking (MST) approaches. This is now possible because of the molecular methods recently applied to microbiology, environmental sciences, and yes, forensics. As an example, a forensics approach can be used to study how microorganisms possibly evolved from free-living saprophytes into pathogens.

All data obtained by molecular approaches must be analyzed in a systematic manner. DNA sequences are just that, sequences, and even if we can attach some of these sequences to phyla, or even genera, we need to make biological sense from the information in the sequences. Current algorithms allow us to draw incredible conclusions from the data analyses, and statistical analyses are key to unraveling the clues the data offer. We were very fortunate to include a chapter on statistical analyses (Chapter 2) and to also have authors who have shared their expertise on MST (Chapter 6), host-microbe interactions (Chapter 3), food microbiology (Chapter 5), soil contamination (Chapter 7), and more, in a book that is no doubt incomplete, because there is so much more to cover in terms of microbial environmental forensics.

Antibiotic resistance in bacteria has been called *the next tsunami*—and with good reason, as it is rapidly and inexorably gaining more importance in terms of public health. Horizontal gene transfer has been shown to be one of the culprits in the tremendous prevalence of antibiotic resistance, of course pushed by the use and abuse of antibiotics and, possibly, all antimicrobials. The forensic approach may be one way to better understand what is going on in many of these important studies.
Those who have published a book understand, better than anybody, the joy of seeing the final product. Those same people will repeatedly ask themselves why they started the project in the first place. This book has been in the making for several years, starting out full of energy, losing some of it, and then regaining it again. So much more information could have been included, as every time one reads a new publication or report, more ideas come to mind. However, there has to be a limit, and deadlines must be met.

We have thoroughly enjoyed this endeavor, and we thank each and every one of the authors for their commitment and for sharing their expertise. We certainly hope that the reader will find this book useful in many different areas of microbiology and will perhaps also suggest new areas of research for the current and next generations of microbiologists.

Gary A. Toranzos, San Juan, Puerto Rico
Raúl J. Cano, San Luis Obispo, California
Raúl J. Cano is the Chief Scientific Officer at The BioCollective and previously served as Executive Director of Research at the ATCC Center for Translational Microbiology at ILSE. He is also Professor Emeritus at the Biological Sciences Department, California Polytechnic State University, San Luis Obispo. He is founder and former Director of the Environmental Biotechnology Institute (EBI) and Managing Partner of the Environmental Diagnostic Consultants as well as founding Scientist and Vice President of Ambergene Corporation. Dr. Cano is best known for his groundbreaking work in paleomicrobiology. An elected Fellow of the American Academy of Microbiology, Dr. Cano has been involved in different committees of the American Society for Microbiology over the years. His current research interests focus on the microbiome and resistome of ancient human populations, including pre-Colombian cultures and ancient European and African cultures.

Gary A. Toranzos has been involved in environmental microbiology research for several decades. Focusing his efforts on the ecology of water saprophytes and waterborne pathogens, he has published extensively in this area, but in the last few years has dedicated some of his research time to studying paleomicrobiology and conducting ancient microbial DNA studies. Dr. Toranzos is an elected Fellow of the American Association for the Advancement of Science and the American Academy of Microbiology. He has also served on numerous committees of the American Society for Microbiology and is currently Professor of Microbiology at the University of Puerto Rico, where he has been teaching for the last three decades. Although born in Bolivia, he has lived on three continents and has made Puerto Rico his home for the last 32 years.