Zoonoses

Infectious Diseases Transmissible Between Animals and Humans
Zoonoses

Infectious Diseases Transmissible Between Animals and Humans

Rolf Bauerfeind
Institute for Hygiene and Infectious Diseases of Animals
Justus Liebig University Giessen
Giessen, Germany

Alexander von Graevenitz
Department of Medical Microbiology
University of Zurich
Zurich, Switzerland

Peter Kimmig
Department of Parasitology
University of Hohenheim
Stuttgart, Germany

Hans Gerd Schiefer
Medical Microbiology
Justus Liebig University Giessen
Giessen, Germany

Tino Schwarz
Central Laboratory and Vaccination Center
Stiftung Juliusspital, University of Wuerzburg, Wuerzburg, Germany

Werner Slenczka
Institute for Virology
University Hospital of Marburg and Giessen
Marburg/Lahn, Germany

Horst Zahner
Institute for Parasitology
Justus Liebig University Giessen
Giessen, Germany
Contents

Preface xiii
Introduction xv
Abbreviations xvii

1 Viral Zoonoses 1

1.1 Introduction 1
1.1.1 Classification Principles 1
1.1.2 Zoonotic viruses 1
 1.1.2.1 Bat-borne viruses 3
 1.1.2.2 Zoonotic viruses as B-weapons 4
 1.1.2.3 Global distribution of zoonotic agents 4
1.1.3 Cycles of Arbovirus Infections 5

1.2 Zoonoses Caused by Alphaviruses 8
1.2.1 Agents 8
1.2.2 Alphaviral Zoonoses 8
1.2.3 Eastern Equine Encephalitis 10
1.2.4 Western Equine Encephalitis 12
1.2.5 Venezuelan Equine Encephalitis 14
1.2.6 Semliki Forest Fever 16
1.2.7 Sindbis Fever 17
1.2.8 Epidemic Polyarthritis (Ross River Fever) and Barmah Forest Fever 18
1.2.9 Chikungunya Fever 21
1.2.10 O’Nyong-Nyong Fever 24
1.2.11 Mayaro Fever 25

1.3 Zoonoses Caused by Flaviviruses 26
1.3.1 Agents 26
1.3.2 Complexes of the Flaviviridae with Clinical Importance 27
 1.3.2.1 Virus Complex Transmitted by Ticks 27
1.3.2.2 Virus Complex Transmitted by Mosquitoes: Japanese Encephalitis Virus and Related Encephalitis Viruses 27

1.3.2.3 Agents Causing Yellow Fever and Dengue, Forming Two Closely Related Virus Complexes 27

1.3.3 Zoonoses Caused by Tick-Borne Flaviviruses 32

1.3.3.1 Tick-Borne Encephalitis (TBE) European Subtype (Central European Encephalitis) and TBE Eastern Subtype (Russian Spring-Summer Meningoencephalitis) 32

1.3.3.2 Louping Ill 37

1.3.3.3 Powassan Virus Encephalitis 38

1.3.3.4 Kyasanur Forest Disease and Alkhurma Virus Hemorrhagic Fever 39

1.3.3.5 Omsk Hemorrhagic Fever 40

1.3.4 Zoonoses Caused by Mosquito-Borne Flaviviruses 41

1.3.4.1 Japanese Encephalitis 41

1.3.4.2 Murray Valley Encephalitis and Kunjin Virus Disease 44

1.3.4.3 St. Louis Encephalitis 46

1.3.4.4 Rocio Encephalitis 48

1.3.4.5 West Nile Fever 49

1.3.4.6 Usutu Virus 52

1.3.4.7 Wesselsbron Fever 52

1.3.4.8 Yellow Fever 53

1.3.4.9 Dengue Fever (Dengue Hemorrhagic Fever and Dengue Shock Syndrome) 58

1.4 Zoonoses Caused by Bunyaviruses 65

1.4.1 La Crosse (California Encephalitis) Virus, Snowshoe Hare Virus, and Tahyna Virus 68

1.4.2 Oropouche Fever 70

1.4.3 Crimean-Congo Hemorrhagic Fever 71

1.4.4 Rift Valley Fever 73

1.4.5 Sandfly Fever 76

1.4.6 Zoonoses Caused by Hantaviruses 78

1.4.6.1 Hemorrhagic Fever with Renal Syndrome (Old World Hantaviruses) and Hantavirus Pulmonary Syndrome (New World Hantaviruses) 78

1.5 Zoonoses Caused by Reoviruses (Coltiviridae and Orbiviridae) 83

1.5.1 Genus Coltivirus 83

1.5.1.1 Colorado Tick Fever 83

1.5.2 Genus Orbivirus (Kemerovo Complex) 85

1.5.3 Genus Rotavirus 85

1.6 Zoonoses Caused by Arenaviruses 88

1.6.1 Lymphocytic Choriomeningitis 89

1.6.2 Lassa Fever 92

1.6.3 Zoonoses Caused by New World Arenaviruses (Agents of Hemorrhagic Fever) 95

1.7 Zoonoses Caused by Filoviruses 97

1.7.1 Marburg Virus Hemorrhagic Fever 99

1.7.2 Ebola Virus Hemorrhagic Fever 104
1.8 Zoonoses Caused by Rhabdoviruses 109
 1.8.1 Rabies 110
 1.8.2 Vesicular Stomatitis 117

1.9 Zoonoses Caused by Paramyxoviruses 119
 1.9.1 Newcastle Disease 120
 1.9.2 Zoonoses Caused by Hendra Virus 122
 1.9.3 Nipah Virus Encephalitis 124

1.10 Zoonoses Caused by Orthomyxoviruses 127
 1.10.1 Influenza-Viruses 127
 1.10.1.1 Swine Influenza Virus H1N1 129
 1.10.1.2 Avian Influenza Viruses H5N1, H7N7, H7N9, and H9N2 131
 1.10.2 Thogotoviruses 133

1.11 Zoonoses Caused by Picornaviruses 134
 1.11.1 Swine Vesicular Disease 134
 1.11.2 Foot-and-Mouth Disease 135
 1.11.3 Encephalomyocarditis 138

1.12 Hepatitis E 139

1.13 Coronaviruses 140
 1.13.1 SARS: Severe Acute Respiratory Syndrome 141
 1.13.2 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) 144

1.14 Retroviruses 147
 1.14.1 Primate T-cell-Lymphotropic Viruses: PTLV 1 and PTLV 2 (HTLV 1 and 2) 147
 1.14.2 Lentiviruses: HIV 1 and HIV 2 149
 1.14.3 Endogenous Retroviruses 152

1.15 Zoonoses Caused by Herpesviruses 153
 1.15.1 Herpes B Virus: Simian Herpes Infection 153

1.16 Zoonoses Caused by Poxviruses 156
 1.16.1 Zoonoses Caused by Orthopoxviruses 158
 1.16.2 Individual Orthopoxvirus Infections 159
 1.16.2.1 Monkeypox 159
 1.16.2.2 Vaccinia Virus 160
 1.16.2.3 Buffalopox 163
 1.16.2.4 Camelpox 163
 1.16.2.5 Cowpox 164
 1.16.2.6 Elephantpox 164
 1.16.3 Parapoxvirus Infections 165
 1.16.3.1 Contagious Ecthyma of Sheep (Orf) 165
 1.16.3.2 Milker’s Nodules (Pseudocowpox) 166
 1.16.3.3 Papular Stomatitis 166
 1.16.4 Zoonoses Caused by Yabapoxviruses 167
 1.16.4.1 Tanapox Virus 167
 1.16.4.2 Yaba Monkey Tumor Virus 167
1.17 Zoonoses Associated with Prions 167
 1.17.1 Bovine Spongiform Encephalopathy and the New Variant of Creutzfeldt - Jakob disease 169

2 Bacterial Zoonoses 175

2.1 Introduction 175
2.2 Anthrax 175
2.3 Bartonelloses 179
 2.3.1 Cat Scratch Disease 180
 2.3.2 Endocarditis due to Bartonella Species 182
 2.3.3 Bartonella Infections in Immunocompromised Patients 182
2.4 Borrelioses 183
 2.4.1 Lyme Borreliosis 183
 2.4.2 Relapsing Fever 189
2.5 Brucelloses 191
2.6 Campylobacterioses 195
2.7 Chlamydioses 198
 2.7.1 Psittacosis/Ornithosis 199
 2.7.2 Chlamydioses Transmitted from Mammals 201
2.8 Ehrlichioses/Anaplasmosis 202
2.9 Enterohemorrhagic Escherichia coli (EHEC) Infections 206
2.10 Erysipeloid 211
2.11 Glanders 214
2.12 Leptospiroses 216
2.13 Listeriosis 219
2.14 Mycobacterioses 223
 2.14.1 Infections with the Mycobacterium tuberculosis Complex 223
 2.14.2 Infections with Mycobacterium marinum 228
 2.14.3 Possible Zoonotic Mycobacterioses 229
 2.14.3.1 Infections with M. avium subsp. avium 230
 2.14.3.2 Infections with M. avium subsp. hominisuis 230
 2.14.3.3 Infections with M. avium subsp. paratuberculosis 231
 2.14.3.4 Infections with M. genavense 232
2.15 Pasteurelloses 232
2.16 Plague 234
2.17 Q Fever 238
2.18 Rat Bite Fever 242
2.19 Rickettsioses 244
 2.19.1 General Features 244
 2.19.2 Rocky Mountain Spotted Fever 248
 2.19.3 Mediterranean Spotted Fever 249
 2.19.4 African Tick Bite Fever and Other Spotted Fever Diseases 251
 2.19.5 Rickettsioses in Central Europe 252
 2.19.6 Rickettsialpox 252
 2.19.7 Epidemic Typhus 253
 2.19.8 Murine Typhus 254
 2.19.9 Tsutsugamushi Fever (Scrub Typhus) 256

2.20 Salmonelloses 257

2.21 Staphylococcal Infections 262

2.22 Streptococcal Infections 264
 2.22.1 General Features 264
 2.22.2 *Streptococcus equi* infections (Group C) 264
 2.22.3 *Streptococcus suis* Infections (groups R, S, and T) 266
 2.22.4 *Streptococcus pyogenes* (serogroup A) Infections 267
 2.22.5 *Streptococcus agalactiae* (serogroup B) Infections 267
 2.22.6 Infections with other *Streptococcus* spp 267

2.23 Tularemia 269

2.24 Vibrioses 272
 2.24.1 Cholera 273
 2.24.2 Disease due to other *Vibrio* spp. and closely related species 275

2.25 Yersinioses (Enteric Infections due to *Yersinia enterocolitica* and *Y. pseudotuberculosis*) 276

2.26 Rare and Potential Agents of Bacterial Zoonoses 280
 2.26.1 *Actinobacillus* Infections 280
 2.26.2 *Aeromonas* Infections 280
 2.26.3 *Arcobacter* Infections 281
 2.26.4 *Bordetella* Infections 282
 2.26.5 *Capnocytophaga* Infections 283
 2.26.6 *Corynebacterium pseudotuberculosis* Infections 284
 2.26.7 *Corynebacterium ulcerans* Infections 285
 2.26.8 *Dermatophilus congolensis* Infections 286
 2.26.9 *Helicobacter* Infections 287
 2.26.10 Melioidosis (*Burkholderia pseudomallei* Infections) 288
 2.26.11 *Rhodococcus equi* Infections 290
 2.26.12 *Trueperella pyogenes* Infections 291

3 Fungal Zoonoses 293

3.1 Introduction 293

3.2 Dermatophytoses Caused by *Microsporum* spp 293
3.3 Dermatophytoses Caused by *Trichophyton* spp 296
3.4 Sporotrichosis 298
3.5 Pneumocystosis (*Pneumocystis Pneumonia*) as a Potential Zoonotic Mycosis 300

4 Parasitic Zoonoses 303
4.1 Introduction 303
4.2 Zoonoses Caused by Protozoa 306
 4.2.1 Amebiasis 307
 4.2.2 Babesiosis 312
 4.2.3 Balantidiasis 315
 4.2.4 Chagas’ Disease (American Trypanosomiasis) 317
 4.2.5 Cryptosporidiosis 324
 4.2.6 Giardiasis (Lambliasis) 328
 4.2.7 Leishmaniasis 330
 4.2.7.1 Visceral Leishmaniasis (Kala-Azar) 332
 4.2.7.2 Old World Cutaneous Leishmaniasis 337
 4.2.7.3 American Cutaneous and Mucocutaneous Leishmaniases (Espundia and Related Forms) 339
 4.2.8 Microsporoses 341
 4.2.9 Monkey Malaria (Simian Malaria) 345
 4.2.10 Sarcosporidiosis 348
 4.2.11 Sleeping Sickness (African Trypanosomiasis) 351
 4.2.12 Toxoplasmosis 355
 4.2.13 Other Zoonotic Protozoal Infections 362
4.3 Zoonoses Caused by Trematodes 363
 4.3.1 Cercarial Dermatitis 363
 4.3.2 Clonorchiasis 366
 4.3.3 Dicrocoeliasis (Distomatosis) 368
 4.3.4 Dwarf Fluke Infections (Intestinal Dwarf Fluke Infections) 369
 4.3.5 Fascioliasis 370
 4.3.6 Fasciolopsiasis 374
 4.3.7 Opisthorchiasis 375
 4.3.8 Paragonimiasis (Pulmonary Distomatosis) 376
 4.3.9 Schistosomiasis (Bilharziosis) 378
 4.3.10 Other Zoonotic Trematode Infections 383
4.4 Zoonoses Caused by Cestodes 384
 4.4.1 Coenurosis 385
 4.4.2 Diphyllobothriasis (Broad Tapeworm infection) 386
 4.4.3 Dipylidiosis 389
 4.4.4 Echinococcosis 390
 4.4.4.1 Alveolar echinococcosis 390
 4.4.4.2 Cystic Echinococcosis (Hydatidosis) 395
 4.4.5 Hymenolepiasis (Dwarf Tapeworm Infection) 399
 4.4.6 Sparganosis 401
4.4.7 Taeniasis saginata (including Taeniasis asiatica) 402
4.4.8 Taeniasis solium and Cysticercosis 405
4.4.9 Other Zoonotic Cestode Infections 408
 4.4.9.1 Intestinal Infestation: Etiology, Occurrence, and Transmission 408
 4.4.9.2 Extraintestinal Infestation: Infection with Taenia crassiceps 409

4.5 Zoonoses Caused by Nematodes 409
4.5.1 Angiostrongyliasis 410
 4.5.1.1 Cerebral Angiostrongyliasis (Eosinophilic Meningoencephalitis or Eosinophilic Meningitis) 410
 4.5.1.2 Intestinal Angiostrongyliasis 411
4.5.2 Anisakiasis (Herring Worm Disease) 412
4.5.3 Capillariases 415
 4.5.3.1 Hepatic Capillariasis 415
 4.5.3.2 Intestinal Capillariasis 416
 4.5.3.3 Pulmonary Capillariasis 417
4.5.4 Diocotophymiasis 418
4.5.5 Dracunculiasis (Guinea Worm Infection) 418
4.5.6 Eosinophilic Enteritis 420
4.5.7 Filariae 421
 4.5.7.1 Brugia Filariasis (Lymphatic Filariasis) 422
 4.5.7.2 Dirofilariasis 425
4.5.8 Gnathostomiasis 426
4.5.9 Gongylonemiasis 427
4.5.10 Hookworm Infection (Infection with Ancylostoma ceylanicum) 428
4.5.11 Lagochilascariasis 429
4.5.12 Larva Migrans Cutanea (Creeping Eruption) 430
4.5.13 Larva Migrans Visceralis 432
4.5.14 Oesophagostomiasis 434
4.5.15 Strongyloides 435
4.5.16 Syngamiasis 438
4.5.17 Thelaziiasis 439
4.5.18 Trichinellosis (Trichinosis) 440
4.5.19 Trichostrongylidiasis 445
4.5.20 Other Zoonotic Infections by Nematodes 446

4.6 Zoonoses Caused by Acanthocephala 447
4.6.1 Acanthocephalosis 447

4.7 Zoonoses Caused by Arthropods 449
4.7.1 Zoonoses Caused by Ticks 449
 4.7.1.1 Tick Bites 449
 4.7.1.2 Tick Toxicoses (Tick Paralyses) 454
4.7.2 Zoonoses Caused by Mites 455
4.7.3 Zoonoses Caused by Diptera 459
 4.7.3.1 Dipteran Bites 460
 4.7.3.2 Myiasis 464
4.7.4 Zoonoses Caused by Fleas (Siphonaptera) 467
 4.7.4.1 Flea bites 467
 4.7.4.2 Tungiasis (Chigoe Flea infestation) 469
4.7.5 Infestations by Heteroptera (Bed Bugs and Triatomine Bugs) 471
4.8 Zoonoses Caused by Pentastomids 473
 4.8.1 Pentastomidosis, Linguatulosis (Halzoun, Marrara Syndrome) 473

Appendix A 477

A.1 Animal Bite Infections 477
 A.1.1 Dog Bites and Bites by Foxes, Skunks, and Raccoons 477
 A.1.2 Cat Bites 478
 A.1.3 Simian Bites 478
 A.1.4 Alligator Bites 479
 A.1.5 Squirrel Bites 479
 A.1.6 Lizard Bites 479
 A.1.7 Fish Bites 479
 A.1.8 Bat Bites 479
 A.1.9 Shark Bites 479
 A.1.10 Hamster/Guinea Pig/Ferret Bites 479
 A.1.11 Camel Bites 479
 A.1.12 Opossum Bites 480
 A.1.13 Horse Bites 480
 A.1.14 Rat and Mouse Bites 480
 A.1.15 Sheep Bites 480
 A.1.16 Snake Bites 480
 A.1.17 Pig Bites 480
 A.1.18 Seal Bites 480
 A.1.19 Bird Bites 480
 A.1.20 Bear Bites 480

Appendix B: Infections and Intoxications Transmissible by Foodstuffs of Animal Origin 483

B.1 Viruses 483
B.2 Bacteria 484
B.3 Fungi (Mycotoxins) 486
B.4 Parasites 486
B.5 Fish Poisoning 488
B.6 Shellfish Poisoning 488
B.7 Phytotoxins Transmitted by Bats 496

Appendix C: Iatrogenic Transmission of Zoonotic Agents 499

Appendix D: Zoonotic Diseases Notifiable at the National Level 503

Index 505
Preface

Zoonoses are infectious diseases transmissible from vertebrate animals to humans and vice versa under natural conditions. They comprise a complex spectrum of diseases due to the diversity of pathogenic agents involved. They may confront veterinarians as well as general practitioners, pediatricians, infectious disease specialists, and microbiologists with special diagnostic and therapeutic problems. While we did not intend to write a handbook of zoonoses, we wanted to cover not only well-known diseases but also rare ones that may be of importance to physicians active in developing countries and to travelers going to distant or rarely visited areas.

Our book is based on the 4th German edition of *Zoonosen: Zwischen Tier und Mensch übertragbare Infektionskrankheiten* which was published in 2013 by Deutscher Ärzte-Verlag, Cologne, Germany. It has been thoroughly revised, updated, and amended.

We have tried to present the most significant aspects of the great variety of zoonotic diseases in a concise manner. However, in some cases readers may even need more detailed information.

We express our appreciation to Christine Charlip, Director, and Larry Klein, Production Manager of ASM Press for their constant encouragement, assistance and advice. We are indebted to Professor Gaby Pfyffer von Altishofen, Lucerne, for helpful suggestions and constructive criticism of the chapter on mycobacterioses, and Dr Tanja Matt, Zürich, for technical help with the figures on transmission chains. We also want to thank Prof. Peter Mayser, Giessen, for valuable advice on the chapter on fungal zoonoses and Prof. Brigitte Frank, Hohenheim, for her support in the translation. And all of us, particularly those involved in translating the German text into English, are deeply grateful to our families for their patience, tolerance, and support.

Finally it is the particular concern of the authors to commemorate our co-author Hans Gerd Schiefer who unfortunately died shortly before completion of this edition. His work and participation had been extremely important for this book.
Numerous human infectious diseases are caused by agents that are directly or indirectly transmissible from various animal species to humans. Today, more than 200 diseases occurring in humans and animals are known to be mutually transmitted. They are caused by prions, viruses, bacteria (including rickettsiae and chlamydiae), fungi, protozoa, and helminths, as well as arthropods. An Expert Committee of the World Health Organization defined zoonoses in 1958 as “diseases and infections which are naturally transmitted between vertebrates and humans.” This definition is still valid.

Originally, zoonoses were regarded as animal diseases (in Greek zoon means “animal”). In the 19th century, the meaning of the word changed. Thus, in 1855, R. Virchow included in his book, *Handbuch der Speciellen Pathologie und Therapie*, the chapter “Infectionen durch contagiose Thiergifte” (“Infections Caused by Animal Contagious Poisons”) with the subtitle “Zoonosen” (“Zoonoses”). Shortly after this, the word “zoonoses” received a double meaning for the first time. W. Probstmayer (1863) stated in the *Etymologisches Wörterbuch der Veterinärmedizin und ihrer Hilfswissenschaften* (Etymological Dictionary of Veterinary Medicine and its Auxilliary Sciences) “zoonoses are (i) animal diseases and (ii) diseases of humans transmitted from animals by means of a vector or contact.” Today, no difference is made with regard to the direction of transmission, that is, animal to human or human to animal, although attempts exist to describe precisely the direction of transmission. The term “zooanthroponoses” referred to diseases transmitted from animals to humans, and the term “anthropozoonoses” referred to diseases transmitted from humans to animals. However, the latter play only a minor role in the epidemiology of zoonoses. The term “zoonosis” still underlies conceptual changes. For instance, increasing epidemiological knowledge has put into doubt the traditional associations of some infectious diseases with zoonoses. Diseases that do not require a vertebrate reservoir because of their occurrence in water, in soil, on plants, or in food or fodder, whence they are transmitted to vertebrates (including humans), are also called sapronoses, saprozoonoses, or geonoses.

Zoonoses are a persisting threat to the human society. Classical infectious diseases, such as rabies, plague, and yellow fever, well known for centuries, are zoonoses that have not been eradicated despite major efforts. And the importance of zoonoses still increases. In recent years, new zoonotic entities, for example, Lyme borreliosis, ehrlichiosis, infections with enterohemorrhagic *Escherichia coli*, cryptosporidiosis, and hantavirus pulmonary syndrome, have been detected.

The steadily increasing threat that zoonoses pose to humans have many causes that differ from country to country. Overpopulation, wars,
INTRODUCTION

and progressive deterioration of living conditions may cause migration of countless people into slums of large cities, with a subsequent breakdown of hygiene and public health care. The proximity of their dwellings to huge garbage dumping grounds and their dependence on water contaminated with sewage facilitate contact with rodents, stray animals, and their parasites.

Scarcity of food forces millions of humans to clear woodlands for cultivation and to produce new settlements in areas where animal populations and their pathogenic agents were formerly separated from humans. Humans may participate unwittingly in unknown parasite-host cycles and become a new link in an infectious chain. In many of these cases, humans, as accidental hosts, are in no way adapted to the new pathogenic species, which may result in high mortality.

Artificial irrigation changes the ecology of whole countries. Artificial lakes and ponds attract animals and their parasites over vast distances and provide optimal breeding grounds, especially for mosquitoes. Increasingly warm and moist winters in the Northern Hemisphere favor the propagation of parasites, especially ticks. Stray animals, usually infected with various pathogens, are reservoirs for infectious agents, not only in developing countries, but also in developed countries.

Worldwide tourism, especially trekking tours to remote areas and so-called adventure challenges (e.g., “survival training” with camping in open areas and consumption of raw or insufficiently cooked food) has encouraged contact of humans from industrialized countries who grew up under nearly aseptic conditions and agents and vectors that they have never encountered before.

Zoonotic agents of low virulence may cause fatal infections in immunosuppressed humans (e.g., patients infected with HIV).

A further potential source of infection is transport of breeding and slaughter animals over vast distances and across borders, often with insufficient inspection for disease control. New disease agents may be introduced to a country by legal, or, even worse, illegal importation of exotic animals for zoos, research purposes, or private homes. Isolated animal organs (xenotransplants) and cultures of animal cells may contain dangerous zoonotic agents. Furthermore, several zoonotic pathogens, for example, Francisella tularensis, Yersinia pestis, Brucella spp., Bacillus anthracis, Coxiella burnetii, and hemorrhagic fever viruses, are considered possible bioterrorism weapons.

The problem of diseases transmitted between animals and humans has many aspects, especially as it is not uncommon for animals serving as reservoir or intermediate hosts to be clinically inapparent carriers and/or excreters of an agent. Undoubtedly, currently unknown zoonoses will emerge in future. New methods for direct or indirect detection of microorganisms contribute to the detection of new zoonoses. When human invasion of hitherto uninhabited areas results in voluntary or involuntary environmental changes, new and potentially dangerous zoonoses may become evident. Severe acute respiratory syndrome, caused by a newly emerged coronavirus, is one of the latest examples of the threat of dangerous infections, although its possible zoonotic background has not yet been clarified.

In the study of zoonoses, medical experts and veterinarians should cooperate closely to study the etiology, epidemiology, and frequently complex developmental cycles and modes of transmission of pathogens and their vectors, as well as the clinical presentation, diagnosis, differential diagnosis, therapy, and prophylaxis of the attendant diseases. Our book is based on such cooperation, which since recently, is also postulated under the concept “One World – One Health.”

REFERENCES

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACA</td>
<td>Acrodermatitis chronica atrophicans</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>ARDS</td>
<td>Acute respiratory distress syndrome</td>
</tr>
<tr>
<td>a.s.l.</td>
<td>Above sea level</td>
</tr>
<tr>
<td>AV</td>
<td>Atrioventricular</td>
</tr>
<tr>
<td>BSL</td>
<td>Biosafety level</td>
</tr>
<tr>
<td>CD4</td>
<td>Cluster of differentiation 4 (glycoprotein on the surface of several immune cells)</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CF test</td>
<td>Complement fixation test</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>CIN</td>
<td>Agar cefsulodin-irgasan-novobiocin agar</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalovirus</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CPK</td>
<td>Creatine phosphokinase</td>
</tr>
<tr>
<td>CSD</td>
<td>Cat scratch disease</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetate/etylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EHEC</td>
<td>Enterohemorrhagic Escherichia coli</td>
</tr>
<tr>
<td>EIA</td>
<td>Enzyme immunoassay</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>EPEC</td>
<td>Enteropathogenic Escherichia coli</td>
</tr>
<tr>
<td>ETB</td>
<td>Ethambutol</td>
</tr>
<tr>
<td>FDA</td>
<td>US Food and Drug Administration</td>
</tr>
<tr>
<td>HAART</td>
<td>Highly active antiretroviral therapy</td>
</tr>
<tr>
<td>HACCP</td>
<td>Hazard analysis critical control point</td>
</tr>
<tr>
<td>HAT</td>
<td>Human African trypanosomiasis</td>
</tr>
<tr>
<td>HE</td>
<td>Hektoen enteric (agar)</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

HGA Human granulocytic anaplasmosis
HGE Human granulocytic ehrlichiosis
HIV Human immunodeficiency virus
HLA Human leukocyte antigen
HME Human monocytic ehrlichiosis
HUS Hemolytic-uremic syndrome
IARC International Agency for Research on Cancer (WHO)
ICU Intensive care unit
IF(A) Immunofluorescence (assay)
Ig(A,G,M) Immunoglobulin(A,G,M)
IGR Insect growth regulator
IHA Indirect hemagglutination assay
IIFT Indirect immunofluorescence test
IL Interleukin
i.m. Intramuscular
INH Isonicotinic acid hydrazide/isoniazide
i.p. Intraperitoneal
i.v. Intravenous
kbp Kilobase pairs
kDa Kilodalton
LAMP Loop-mediated isothermal amplification
LEE Locus of enterocyte effacement
LPS Lipopolysaccharide
MAA Mycobacterium avium subsp. avium
MAH Mycobacterium avium subsp. hominissuis
MAI Mycobacterium avium-intracellulare
MALDI-TOF Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry
MAP Mycobacterium avium subsp. paratuberculosis
MAT Microagglutination test
mb Megabases
MHC Major histocompatibility complex
MID Minimum infective dose
mio Million
MPS Mononuclear phagocytic system
MRI Magnetic resonance imaging
mRNA Messenger RNA
MMT Mendel-Mantoux test
MOMP Mitochondrial outer membrane protein
MRSA Methicillin-resistant Staphylococcus aureus
NSF National Science Foundation
NNN Novy-McNeal-Nicolle medium
NTM Non-tuberculous mycobacterium
PAHO Pan American Health Organization
PCR Polymerase chain reaction
PFGE Pulse field gel electrophoresis
PFU Plaque forming unit
p.i. Post infection
PI-IBS Post infectious irritable bowel syndrome
p.o. Peroral
p.p. Post partum
RES Reticuloendothelial system
RFLP Restriction fragment length polymorphism
RMP Rifampicin
RMSF Rocky Mountain spotted fever
RNA Ribonucleic acid
rRNA Ribosomal RNA
RT-PCR Reverse transcription PCR
SAF Sodium acetic acid formaldehyde
s.c. Subcutaneous
SCV Small cell variant
SIRS Systemic inflammatory response syndrome
s.l. Sensu lato
SMAC Sorbitol-MacConkey agar
spf Specific pathogen free
SS Salmonella-Shigella (agar)
s.s. Sensu stricto
SSG Sodium stibogluconate
STEC Shiga toxin producing *Escherichia coli*
STx Shiga toxin
Th (1,2) T helper cell (1,2)
Tir Translocated intimin receptor
TNF Tumor necrosis factor
Tris Tris(hydroxymethyl)aminomethane
TTP Thrombotic thrombocytopenic purpura
USDA United States Department of Agriculture
UV Ultraviolet
VSG Variant surface glycoprotein(s) of African trypanosomes
WHO World Health Organization
XLD Xylose-lysine-deoxycholate (agar)