TUBERCULOSIS
AND THE
TUBERCLE BACILLUS
2ND EDITION
TUBERCULOSIS
AND THE
TUBERCLE BACILLUS
2ND EDITION

EDITED BY

William R. Jacobs, Jr.
Department of Immunology and Microbiology, Albert Einstein School of Medicine, Bronx, New York

Helen McShane
Cellular Immunology and Vaccine Development Group, Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom

Valerie Mizrahi
Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Rondebosch, South Africa

Ian M. Orme
Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado

AMERICAN SOCIETY FOR MICROBIOLOGY
WASHINGTON, DC
Contents

Contributors ix
Preface xiii

SECTION I
TOWARDS EDWARD JENNER’S REVENGE: DEVELOPING AN EFFECTIVE TUBERCULOSIS VACCINE / 1

A. BASIC IMMUNOLOGY

1 Innate Immune Responses to Tuberculosis / 3
Jeffrey S. Schorey and Larry S. Schlesinger

2 Cytokines and Chemokines in Mycobacterium tuberculosis Infection / 33
Racquel Domingo-Gonzalez, Oliver Prince, Andrea Cooper, and Shabaana Khader

3 Regulation of Immunity to Tuberculosis / 73
Susanna Brighenti and Diane J. Ordway

4 The Memory Immune Response to Tuberculosis / 95
Joanna R. Kirman, Marcela I. Henao-Tamayo, and Else Marie Agger

5 Pathology of Tuberculosis: How the Pathology of Human Tuberculosis Informs and Directs Animal Models / 117
Randall J. Basaraba and Robert L. Hunter

B. ANIMAL MODELS

6 Animal Models of Tuberculosis: An Overview / 131
Ann Williams and Ian M. Orme

7 Mouse and Guinea Pig Models of Tuberculosis / 143
Ian M. Orme and Diane J. Ordway

8 Non-Human Primate Models of Tuberculosis / 163
Juliet C. Peña and Wen-Zhe Ho

9 Experimental Infection Models of Tuberculosis in Domestic Livestock / 177
Bryce M. Buddle, H. Martin Vordermeier, and R. Glynn Hewinson

C. VACCINES

10 Clinical Testing of Tuberculosis Vaccine Candidates / 193
Mark Hatherill, Dereck Tait, and Helen McShane

D. HUMAN IMMUNOLOGY

11 Human Immunology of Tuberculosis / 213
Thomas J. Scriba, Anna K. Coussens, and Helen A. Fletcher
30 The Minimal Unit of Infection: *Mycobacterium tuberculosis* in the Macrophage / 635
Brian C. VanderVen, Lu Huang, Kyle H. Rohde, and David G. Russell

31 Metabolic Perspectives on Persistence / 653
Travis E. Hartman, Zhe Wang, Robert S. Jansen, Susana Gardete, and Kyu Y. Rhee

32 Phenotypic Heterogeneity in *Mycobacterium tuberculosis* / 671
Neeraj Dhar, John McKinney, and Giulia Manina

33 *Mycobacterium tuberculosis* in the Face of Host-Imposed Nutrient Limitation / 699
Michael Berney and Linda Berney-Meyer

Index / 717
Contributors

Else Marie Agger
Department of Infectious Disease Immunology, Statens Serum Institut, Artilørvej 5, Copenhagen, Denmark

Yossef Av-Gay
Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, Canada

Maxime Barbier
Laboratoire Biologie Intégrative des Populations, Evolution Moléculaire; Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d’Histoire Naturelle, Univ. Pierre et Marie Curie, EPHE, Sorbonne Universités, Paris, France

Randall J. Basaraba
Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado

Marcel Behr
McGill International TB Centre & Department of Epidemiology & Biostatistics, McGill University, Montreal, Canada

Michael Berney
Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, New York

Linda Berney-Meyer
Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, New York

Catharina C. Boehme
FIND, Geneva, Switzerland

Eva C. Boritsch
Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France

Miriam Braunstein
Department of Microbiology and Immunology, University of North Carolina – Chapel Hill, Chapel Hill, North Carolina

Susanna Brighenti
Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden

Roland Brosch
Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France

Bryce M. Buddle
AgResearch, Hopkirk Research Institute, Palmerston North, New Zealand

Gregory M. Cook
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand, and Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand

Andrea Cooper
University of Leicester, Infection Immunity and Inflammation, Leicester, Leicestershire, United Kingdom

Anna K. Coussens
Clinical Infectious Diseases Research Initiative, Division of Medical Microbiology, Department of Pathology, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa

Dean C. Crick
Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, Colorado

Neeraj Dhar
Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Keertan Dheda
Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
Contributors

Zanele Ditse
MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

Racquel Domingo-Gonzalez
Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri

Elsa du Bruyn
Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Republic of South Africa

Elyse Dunn
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand

Helen A. Fletcher
Immunology and Infection Department, London School of Hygiene & Tropical Medicine, London, United Kingdom

Fabio L. Fontes
Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, Colorado

Susana Gardete
Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Ben Gold
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York

Natasha Gous
Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service and National Priority Program of the National Health Laboratory Service, Johannesburg, South Africa

Chris Greening
The Commonwealth Scientific and Industrial Research Organization, Land and Water Flagship, Acton, Australia, and Monash University, School of Biological Sciences, Clayton, Victoria, Australia

Kiel Hards
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand

Travis E. Hartman
Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Erik Hasenoehrle
Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, New York

Mark Hatherill
South African Tuberculosis Vaccine Initiative (SATVI) and Institute of Infectious Disease & Molecular Medicine (IDM), University of Cape Town, Wernher & Beit South Building, Anzio Road, Observatory, Cape Town, South Africa

Adam Heikal
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand, and Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand

Marcela I. Henao-Tamayo
Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratory, Colorado State University, Fort Collins, Colorado

R. Glyn Hewinson
Animal and Plant Health Agency – Weybridge, Addlestone, Surrey, United Kingdom

Wen-Zhe Ho
Animal Biosafety Level III Laboratory, Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan, China; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania

Lu Huang
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York

Robert L. Hunter
Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas

Robert S. Jansen
Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Tracy L. Keiser
Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York

Shabaana Khader
Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri

Joanna R. Kirman
Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand

Thomas Kohl
Molecular Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany

Laurent Kremer
IRIM (ex-CPBS) UMR 9004, Infectious Disease Research Institute of Montpellier (IDRIM), Université de Montpellier, CNRS, Montpellier, France

Giulia Manina
Microbial Individuality and Infection Group, Institut Pasteur, 25 rue du Docteur Roux, Paris, France
John McKinney
Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Helen McShane
The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, United Kingdom

Matthias Merker
Molecular Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany

Brittany K. Miller
Department of Microbiology and Immunology, University of North Carolina – Chapel Hill, Chapel Hill, North Carolina

Yoshio Nakatani
University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand, and Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand

Vivek Naranbhai
Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, and Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa

Carl Nathan
Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York

Mark P. Nicol
University of Cape Town, Cape Town, South Africa

Stefan Niemann
Molecular Mycobacteriology, Forschungszentrum Borstel, Leibniz-Zentrum für Medizin und Biowissenschaften, and German Center for Infection Research (DZIF), partner site Borstel, Borstel, Germany

Lara Noble
Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa

Eric L. Nuermberger
Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, and Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Anil K. Ojha
Wadsworth Center, NY State Department of Health and University at Albany, Albany, New York

Diane J. Ordway
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado

Ian M. Orme
Colorado State University, Fort Collins, Colorado

Madhukar Pai
McGill International TB Centre & Department of Epidemiology & Biostatistics, McGill University, Montreal, Canada

Juliet C. Peña
Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N. Broad St., MERB 843, Philadelphia, Pennsylvania

Kevin Pethe
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

Oliver Prince
Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri

Georgiana E. Purdy
Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon

Kyu Y. Rhee
Department of Medicine and Department of Microbiology & Immunology, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Melissa Richard-Greenblatt
Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, Canada

Kyle H. Rohde
Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida

David G. Russell
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York

Larry S. Schlesinger
Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio

Jeffrey S. Schorey
Department of Biological Sciences, Eck Institute for Global Health, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana

Lesley Scott
Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
Contributors

Thomas J. Scriba
South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa

Wendy Susan Stevens
Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, and National Priority Program of the National Health Laboratory Service, Johannesburg, South Africa

Philip Supply
INSERM U1019; CNRS UMR 8204; Institut Pasteur de Lille, Center for Infection and Immunity of Lille; and Université Lille Nord de France, Lille, France

Dereck Tait
Aeras, Blackriver Park, First Floor, Observatory, Cape Town, South Africa

Brian C. VanderVen
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York

Catherine Vilchèze
Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York

H. Martin Vordermeier
Animal and Plant Health Agency – Weybridge, Addlestone, Surrey, United Kingdom

Zhe Wang
Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York

Digby F. Warner
MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, South Africa

Robert John Wilkinson
Department of Medicine, Imperial College London, and The Francis Crick Institute Mill Hill Laboratory, London, United Kingdom

Ann Williams
Health UK, Porton Down, Salisbury, United Kingdom

Thierry Wirth
Laboratoire Biologie Intégrative des Populations, Evolution Moléculaire; Institut de Systématique, Evolution, Biodiversité, UMR-CNRS 7205, Muséum National d’Histoire Naturelle, Univ. Pierre et Marie Curie, EPHE, Sorbonne Universités, Paris, France

Ka-Wing Wong
Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China

Katelyn E. Zulauf
Department of Microbiology and Immunology, University of North Carolina – Chapel Hill, Chapel Hill, North Carolina
Preface: Combating Tuberculosis: Edward Jenner’s Revenge

It is the height of irony that the man who discovered the smallpox vaccine, Edward Jenner, lost both his wife and son to tuberculosis (TB). By the time smallpox was essentially eradicated, it is estimated that over 300 million people had died from this disease over the preceding century. Its eventual prevention—by a simple vaccine—clearly illustrates the power of scientific discovery and how its application can affect human health. Hundreds of millions of people have been spared death and suffering from infectious diseases because of the development of vaccines and chemotherapeutic agents in the last 100 years. Millions of lives have been saved with the use of the TB vaccine, BCG, and the development of chemotherapeutic regimens for TB. Depressingly, despite these effective interventions, TB remains one of the most challenging problems of global health, with over 9 million new cases and 1.6 million deaths each year. This crisis has been further compounded by the emergence of the HIV epidemic, as this explosive and deadly combination has dramatically increased the global spread of TB, including increasing numbers of cases of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB.

Historically, mycobacterial disease has long been at the forefront of scientific discovery for infectious diseases. The leprosy bacillus, *Mycobacterium leprae*, the first bacterium to be associated with human disease, was initially visualized by Gerhard Armauer Hansen in 1873. Earlier, Jean Antoine Villemin was the first person to realize that lung tubercles were infectious and not cancerous. By the 1880s, Robert Koch, aware of both of these discoveries, not only observed the tubercle bacilli in tubercles, but developed a growth medium of heated serum to cultivate the tubercle bacillus outside of humans. He went on to repeat the transfer experiment of Villemin and transferred the disease of TB to numerous animal species, establishing the experimental paradigm (“the postulates”) of how to prove that an infectious agent is a cause of a disease. Koch’s findings led Albert Calmette and Camille Guérin to follow Jenner’s approach of developing an attenuated pathogen for use as a vaccine, using the bovine tubercle bacillus to develop the bacille Calmette-Guérin (BCG) vaccine that bears their names and is still used to this day.

It is noteworthy that Paul Ehrlich was sitting in the lecture hall when Robert Koch presented his work in 1882; he later went on to help Koch improve his staining techniques. By observing the selective staining of various cell types, including human cells and different bacteria, Ehrlich also developed the idea of chemotherapy—“magic bullets” that could kill microbial pathogens. He tried for years to develop a chemical that could kill the tubercle bacillus, with little success, though at the same time was far more successful in developing a treatment for syphilis. In the 1930s, his protégé Gerhard Domagk discovered the first sulfonamide to treat bacterial infections such as streptococcus, and as this fledgling field expanded, para-amino salicylic acid and isoniazid were discovered to be active against the TB bacillus. Parallel studies by Salzman Waksman and Albert Schatz in the 1950s led to the discovery of streptomycin, the first bactericidal drug for the tubercle bacilli.

Despite these many historical advances, the TB bacillus—*Mycobacterium tuberculosis*—has proven to be a formidable adversary against numerous interventions. Nevertheless, despite the arduous challenges of
working with this dangerous pathogen, the field con-
tinues to persevere, and our continued success in the
pursuit of knowledge would, we suspect, be applauded
by Koch, Ehrlich, Calmette, and many others, as we
strive to find and apply more effective cures for this
dreadful disease. In this spirit, this textbook is a collec-
tion of state-of-the-art research aimed at understanding
the TB bacillus, the way it infects its host, the mecha-
nisms by which it persists in the face of host immunity,
and current intervention and therapeutic methods. The
contributors of this book believe that such continued
and dedicated research efforts will eventually lead to
better vaccines, better chemotherapies, and ultimately
the eradication of TB—Edward Jenner’s revenge.

William R. Jacobs, Jr.
Helen McShane
Valerie Mizrahi
Ian M. Orme
Index

A
Acid-fast (AF) mycobacteria, 519, 528–529
AF-negative M. tuberculosis and cell wall alterations, 527–528
brief history of AF staining, 520–522
importance of mycolic acids, 523–524
clinical diagnosis of TB, 522–523
Koch paradox, 523
lipid accumulation, 526–527
loss of AF property, 526–527, 528
mycobacterial cell envelope, 523–526
non-mycolic acid-containing components, 524–526
process for loss of acid-fastness, 525
Acquired immunity, 35, 43
CD4 T cells in HIV-TB coinfection, 248–251
HIV-TB coinfection, 248–252
TB-immune reconstitution inflammatory syndrome (TB-IRIS), 255–256
Adjunctive therapeutic vaccination, TB disease, 196–197
Alveolar epithelial cells (AECs), 3, 4
Alveolar macrophage (AM), 3, 4–5; see also
Macrophages
M. tuberculosis infection, 215–216
Alzheimer’s disease, 630
Amikacin, drug resistance, 503, 505
Amino acids, auxotrophs, 701–706
Amyloid diseases, 630
Anhui Zhifei Longcom Biologic Pharmacy Co. Ltd., 202
Animal models, 131, 139; see also
Experimental infection models;
Guinea pigs; Mouse models
assessment of new drugs, 136–137
assessment of vaccines, 135
cattle, 134
common experimental designs, 280
efficacy testing, 277–284
ethical and husbandry issues, 138–139
guinea pigs, 132
host response and pathogenesis, 134–135
limitations of, 137–139
mechanism of protection, 136
mice, 132, 278–280
mini pigs, 134
non-human primates (NHP), 132–133
primary host response to M. tuberculosis infection, 122–123
process and capacity, 135–136
rabbits, 133
rats, 133–134
Treg cell responses in experimental, 80–87
Treg cells in guinea pig model of TB, 85–86
Treg cells in mouse models of TB, 80–85
procedure for loss of acid-fastness, 525
Antibiotics treatment, extracellular M. tuberculosis in, 535
Antibiotic tolerance, 596
Antibodies
BCG vaccination and, 220
M. tuberculosis infection, 219–220, 221
role in anti-M. tuberculosis infection, 219
M. tuberculosis, 225–226
Antigen-presenting cells (APCs)
development of memory T cells, 98
function of, 74, 75
Antiretroviral therapy (ART), 389
HIV, 239
HIV-TB coinfection, 250
HIV-TB immune constitution inflammatory syndrome (IRIS), 252–253, 255–256
influence on T cell responses in coinfection, 251
Apoptosis, 563
Archaeabacteria, 455
Archivel Farma SL, 202
Arginine auxotrophs, 702
Aristotle, 413
Asparagine auxotrophs, 702
Aspartate auxotrophs, 702
Association of Internal Medicine, 520
AstraZeneca, 282
ATP synthesis, 308–309
Auramine O, staining of M. tuberculosis, 522–523, 526–527
Austin, Robert, 597
Autophagy, 8, 10
Auxotrophies, 701; see also Nutrient use of pathogens
amino acid, 701–706
arginine, 702
asparagines, 702
aspartate, 702
biotin (vitamin B7), 707
cobalamin (vitamin B12), 707–708
cofactor, 706–708
cysteine, 702
folate (vitamin B9), 707
glutamate, 705–706
glutamine, 705
histidine, 703
isoleucine, 704
leucine, 704
lysine, 703–704
methionine, 702–703
nicotinamide, 706
pantothenate (vitamin B5), 706
proline, 703
purine, 708
pyridoxamine (vitamin B6), 706–707
threonine, 704
tryptophan, 704–705
valine, 704

B
Bacillus Calmette-Guérin (BCG), original vaccine, 95, 117
Bacillus subtilis, 582, 673
Bacterial cell biology, tuberculosis research, 185
Bacterial clearance, 16–17
Bacterial replisome, components of, 584–586
B cells
M. tuberculosis infection, 217, 219–220
tuberculosis (TB), 225–226
Bedaquiline
animal model, 278
drug candidate, 271, 273
mice, 279
proof-of-concept molecule, 333
Biofilms, see Mycobacterial biofilms
Biology
animal- and human-associated MTBC lineages, 481–482
gene diversity of TB bacilli, 477–484
M. canettii and MTBC, 482
M. tuberculosis strains, 482–484
variations from genomics, 480–481
Biomarkers
classes of TB, 371
human tuberculosis (TB), 226–227
transcriptional profiling, 226–227
treatment response, 227
Biomedical Primate Research Center (Netherlands), 165, 167
Biosynthesis, menaquinone, 302–303, 304
Biotin (vitamin B7), 707
British Medical Research Council, 654
Bronchoalveolar lavage (BAL), 215, 242

C
Callithrix jacchus (common marmoset), 172, 284
Canadian Tuberculosis Standards, 379
Candida albicans, 321
Canetti, Georges, 496
Capreomycin, drug resistance, 503, 505
Carbon starvation, screening, 341, 342
Carboxyl cyanide m-chlorophenyl hydrad
cenzy (CCCP), 298
Cattle
animal model, 134
experimental infection of, 177–178
as model of TB in humans, 178
new TB vaccines tested in, 181
potential correlates of protection, 183
Caulobacter crescentus, 594
Cavity formation, pathology of tuberculosis, 119, 120
CD4 T and T helper 1 (Th1) cells, memory immunity, 95–96, 102–104
CD4 T and T helper 17 (Th17) cells, memory immunity, 104–105
CD8 memory T cells, 105–106
Cellular immunity, 143
Centers for Disease Control and Prevention
Clinical testing, 225–226
infection, 217, 219–220
M. tuberculosis infection, 37
HIV-TB coinfection, 241
Chlamydia trachomatis, 299
Chlamydia pneumoniae, 299
Cholesterol, M. tuberculosis in macrophages, 645, 646
Ciprofloxacin, drug resistance, 505
Clinical testing, see Vaccine candidates
Clofazimine
animal models, 278–279
drug candidate, 272, 300
mice, 281
Clostridium difficile, 611
cobalamin (vitamin B12), 707–708
Cofactors, auxotrophies, 706–708
Collaborative Drug Discovery, 329
Commercial liquid culture, 364
Comparative genomic analysis, 185
Comparative transcriptome analysis, 185
Computed tomography (CT), 171
Congenic mice, 145
Consumption, 453
Cox models, cumulative risk curves, 405
Crohn's disease, 428
Cyclophosphamide, 97
n-Cycloserine, drug resistance, 505
Cynomolgus macaques
comparing TB in humans to, 164
Golden Age of research, 163, 166
Macaca fascicularis, 163, 172
TB studies, 166–167, 168
21st century TB research, 166
Cysteine auxotrophs, 702
Cytokines
enhancing HIV-1 replication, 246, 247
HIV-1 replication, 246, 247
IL-6 (interleukin-6), 40–41
IL-10, 48–49
IL-12 family, 42–45
IL-18, 42
IL-1R1/IL18R/MyD88, 41
IL-22, 46
IL-23, 44
IL-23-dependent, 45–46
IL-27, 44–45
IL-35, 45
interferons, 37–40
M. tuberculosis infection, 34–49
positive and negative roles in TB, 35
proinflammatory IL-1, 41–42
regulatory, 47–49
role in adaptive response to M. tuberculosis infection, 38
role in innate response to M. tuberculosis infection, 37
transforming growth factor β (TGFβ), 48
tumor necrosis factor alpha (TNFα), 34–37
type II interferon (IFNγ), 38–39
type I IFN, 39–40
Cytomegalovirus (CMV) infection, 249, 251, 255

D
Damage-associated molecular pattern molecules (DAMPs), 11
Dannenberg, Arthur, 680
Dartmouth University, 202
Deer, experimental infection of, 177, 179
Dehydrogenases
NADH:menaquinone oxidoreductases, 299–300
oxidative phosphorylation, 301–302
succinate:quinone oxidoreductase, 300–301
Delamanid, drug candidate, 271, 273
Dendritic cells (DCs)
development of memory T cells, 98
HIV-TB coinfection, 241, 244
lung, 5
M. tuberculosis infection, 11–12
Diabetes mellitus, 222–223, 630
Diagnosics for TB
acid-fast (AF) staining in clinical diagnosis, 522–523
classes of TB biomarkers, 371
commercial liquid culture, 364
current, for active TB, 363–366
current, for drug-resistant TB, 366–369
line probe assays for detecting resistance, 367–368
Index

G
Gabbett, H. S., 520–521
Genetic deficiency, mycobacterial disease, 38
Genetic diversity
biological impact of, 480
intratypant, 479–480
M. tuberculosis complex (MTBC), 477–484
Genetics and genomics
advance vaccine development, 430
candidate gene studies, 417–418, 420–426
clinical translation of host genomic insights, 429–430
DNA sequence variation, 414, 418
epidemiology of TB, 429
epigentic variation, 414, 429
future prospects, 427–430
genome-wide association studies (GWAS), 418–419, 427
heritability of TB susceptibility, 413, 418–419, 427
holomorphic correlation, 427
karyogram of host-genetic correlates, 427
linkage studies, 416–417
Mendelian susceptibility to mycobacterial disease (MSMD), 413, 415, 416
M. tuberculosis infection in macrophages, 643–644
phenotype definitions, 429
population-specific associations, 428
predictive tools, 429–430
role of Mendelian randomization studies, 430
sequence-based approaches to identifying loci, 428
therapeutic tools, 430
transcriptomic assays, 430
transcriptomic studies of TB, 414, 419, 427
twin studies, 413, 415
GeneXpert MTB/RIF technology
background, 391
challenges and opportunities during national implementation, 394–396
cumulative risk curves, 405
expansion in other countries, 399
failures in, 399
financial modeling, 398
future for, 401, 405
historical context of national implementation, 391–396
impact on diagnostics, 399–401
impact on national programs, 396–398
innovations in South Africa, 397
nucleic acid amplification testing (NAAT) strategies, 390, 391, 392
procurement strategies, 398
South African national implementation of, 416–417
treatment outcomes, 401, 402–404
Xpert Omni, 392, 401, 405
Xpert ULTRA, 392, 395, 397, 401
GeneXpert Omni, 365
Genome-wide association studies (GWAS)
host-genetic evidence, 417
revisiting heritability in post-GWAS era, 416
TB susceptibility, 413, 418–419, 427
Genomics, see Genetics and genomics
Genotype, 671
GlaxoSmithKline, 199
Global TB epidemic, 389–390
Glutamate auxotroph, 705–706
Glutamine synthetase (GS), 705
Goats, experimental infection of, 177, 180
GeneXpert Omni, 392, 401, 405
geneXpert MTB/RIF technology
candidate gene studies, 417–418, 427
advance vaccine development, 430
complex (MTBC), 477–484
M. tuberculosis infection, 14–16
Granuloma
development, 680–681, 684, 687
guaiac model, 152
in vitro models, 549–550
lung of human with primary tuberculosis, 118, 120–121
marginal features of, 533
M. tuberculosis infection, 217, 636
progressive caseating, 126
restricting M. tuberculosis movement, 35–36
term, 16
Granulomatous inflammation, 123
Guinea pigs, 150–153; see also Animal models
animal model, 132
anti-TB treatment, 86
BCG vaccination, 86
devices for aerosol exposure, 147
gating host cells from lung, 153
granulomas in lungs, 118, 124, 126
human-to-guinea pig transmission, 153
immunopathology of, 152
magnetic resonance imaging of infected lungs, 155
preclinical efficacy models, 282
response to infection, 123, 124, 154
TB disease progression, 122
Treg cells in, 80, 85–86
vaccines, 153–154
H
H37Rv strain of *Mycobacterium tuberculosis*, 166, 167, 168, 170, 172, 215
Harvard School of Public Health, 467
Helicobacter pylori, 545–546
H37Rv strain of *Mycobacterium tuberculosis*, 166, 167, 168, 170, 172, 215
Harvard School of Public Health, 467
Helicobacter pylori, 467, 462, 464, 594
Heritability, see Genetics and genomics
Heterogeneity, see Phenotypic heterogeneity
Histidine auxotroph, 703
HIV-1 (human immunodeficiency virus type 1)
functional impairment of CD4 T cells, 250–251
host genetics at site of *M. tuberculosis* disease, 247
immunity to TB, 50
infected people, 239
interferons and, 39
mediating immunosuppression, 239–241
M. tuberculosis infection risk, 172, 475
replication at site of *M. tuberculosis* disease, 245–247
HIV-TB-associated immune reconstitution inflammatory syndrome (IRIS)
acquired immunity and TB-IRIS, 255–256
hypercytokinemia in TB-IRIS, 233, 251
innate immunity and TB-IRIS, 252–253
model of innate receptor signaling in TB-IRIS, 254
HIV-TB coinfection
acquired immunity, 248–252
CD4 T cells in, 248–251
cytotoxic lymphocytes in, 251–252
dendritic cells in, 244
dissemination and mycobacteremia in, 248
immune activation in, 247–248
immune reconstitution inflammatory syndrome (IRIS), 252–256
macrophages in, 241–243
natural killer (NK) cells in, 244–245
neutrophils in, 243–244
spectrum of disease in, 240
Hollow fiber systems
diagram, 276
tuberculosis (TB) model, 275–277
Homeostatic regulation, 73
Homo sapiens
M. tuberculosis, 653
tuberculosis in, 453–454, 458, 460–462, 467
Host genetic studies, tuberculosis, 429
Host-mimicking platforms, 685–686
Host-pathogen coevolution, 428
Host response, application of animal models, 134–135
Human immunology of tuberculosis acquisition of *M. tuberculosis* infection, 213, 215–216
adaptive responses and spectrum of infection, 217–220
alveolar macrophages, 215–216
antibody responses, 219–220, 221
B cells, 217, 219–220
biomarkers in human TB, 226–227
granuloma, 2178
immunity to *M. tuberculosis*, 213
innate T cells, 216–217
neutrophils, 216
progression from infection to TB disease, 222–226
spectrum of pulmonary TB lesions, 218
stages of response to infection, 214
T cells, 217–218
Human models
challenge models, 205
in vitro, 345–346
Human tuberculosis (TB)
balance of Treg activity, 77
cavity formation in lungs, 119, 120
CD3+ Treg cell subsets in, 76–77
granuloma in lung, 118, 120–121
in vitro expansion of mycobacteria-specific Treg cells, 76–77
novel TB vaccine candidate MVA85A, 77–78
post-primary lung reinfaction, 124–125
TB disease progression, 122
Treg at site of infection, 79–80
Treg cell responses in, 74–80
INDEX

Treg cells and anti-TB treatment, 78–79
Treg cells and clinical M. tuberculosis strains, 78
Treg-mediated manipulation of immune cell activation, 75–79
Treg responses in cell and fluid samples, 79–80
Treg responses in tissue, 79
Husbandry issues, animal models, 138–139
Hypercytokinemia, TB-immune reconstitution inflammatory syndrome (TB-IRIS), 235, 236
Interleukin-14 cytokine family, 41–42
Imidazopyridine amide, TB drug, 300, 305
Immunotherapies, vaccine development, 197
Immunosuppression, HIV-1 mediating, see also HIV infection and TB
Innate immunity, 16–17, 35, 106–107
Inflammation, TB progression, 224–225
Infectious Diseases Research Institute, 199
Interferons (IFN-γ), 39–40
Interferon gamma (IFN-γ), 38–39
Innate immunity, roles in TB, 35
Kaplan-Meier analysis, vaccine, 138
In vitro models, 239–241
Immunity, see also Regulation of TB immunity
cytokines and chemokines in, 33–34
HIV infection and TB, 30
interleukin-6 (IL-6), 40–41
working model of, 42, 45
Immune cell responses, 102–104
Immunopathology, guinea pig model, 152
Immunosuppression, HIV-1 mediating, 239–241
Immunotherapy, vaccine development, 197
Inactivated whole-cell and fragmented TB vaccines, 202
Infectious Diseases Research Institute, 199
Inflammation, TB progression, 224–225
Infliximab, 36
Innate immunity, 16–17, 35, 106–107
HIV-TB coinfection, 239, 379, 385–386
Isoniazid preventive therapy (IPT), HIV, 239
J
Jeffreys, Sir Alec, 455
Johannsen, Wilhelm, 671
K
Kanamycin, drug resistance, 503, 505
Kaplan-Beier analysis, vaccine, 138
Kinyoun, J., 521–522
Koch, Robert, 224, 390, 520
Koch paradox, 519, 523
Koch phenomena, 126
L
Latournel, Rene, 121
Lamers, Meindert H., 581–599
Lansoprazole, TB drug, 300, 305
Latency, definition, 654
Latent TB infection (LTBI), 217, 226, 227, 239, 379, 385–386
human model, 593–594
IGRAs, 381–385
immunological principles underlying IGRA, 382
modeling chemotherapy of, 284–286
mouse model and clinical guidelines, 285
new skin tests, 385
purified protein derivative (PPD)-based TST, 381
testing methods for, 380
Legionella pneumophila, 699, 709
Leishman, 146
Lentivirus, 146
M
Macaca fascicularis (cynomolgus macaque), 163, 172
Macaca mulatta (rhesus macaque), 163, 173
Macaque models
Golden Age of TB research, 163, 165
historical use of, 163–165
M. tuberculosis/simian immunodeficiency virus coinfection, 171–172
TB drug evaluation, 170–171
TB pathogenesis study, 171
TB vaccine evaluation, 167, 170
Treg cells in macaques, 86–87
validation of, 163
Macrophages, see also Mycobacterium tuberculosis/macrophage biology
basic principles of macrophage biology, 546–548
cell death, 11
exosome release from, 10–11
HIV-TB coinfection, 241–243
human in vitro models, 545–546
lung, 4–5
mouse in vitro models, 542–544
M. tuberculosis and, 541–542
M. tuberculosis growth in, 700–701
Line probe assays (LPAs)
detecting resistance to anti-TB drugs, 367–368
detecting resistance to second-line anti-TB drugs, 368–369
Linezolid, drug candidate, 272
mice, 279
non-human primates, 283
Lipidomics, 683–684
Lipid synthesis, 332–334
Lipid utilization, 332–334
Lipoarabinomannan (LAM), 102, 203, 609, 611, 699, 709
Little, Clarence, 143
Loop-mediated amplification test, 365–366
Low oxygen recovery assay (LORA), 323
Lung, 3–6
cellular components, 4–5
M. tuberculosis interaction with, 6–16
mucus and surfactant, 5
pathology of C3HeB/Fc mice, 281
post-primary reinfection, 124–125
post-primary TB in human, 125–127
schematic of, 4
soluble components in surfactant
hypothesis, 5–6
spectrum of human pulmonary TB lesions, 218
Lung macrophages, 4–5
cell death, 11
release of exosomes, 10–11
Lymphotactin (XCL1), 144
Lysine auxotroph, 703–704
Macrophages (Continued)

mycobacterial growth and HIV-1 viral replication, 243
non-human primate in vitro models, 544–545
Magnetic resonance imaging (MRI), infected guinea pig lungs, 155
Major histocompatibility complex (MHC), 38, 39, 49, 74, 97
Malnutrition, 223–224
Marmosets (Callithrix jacchus), 172, 284
McMaster (Ad5Ag85A), 201
Memory immune response against tuberculosis (TB), 96–97
alternative mediators of memory immunity, 105–107
CD4T and Th17 cells, 104–105
CD4T and T helper (Th) 1 cells, 95–96, 102–104
CDB T cells, 105–106
development after TB infection or vaccination, 98
γδ T cells, 106
generation of memory T cells, 97–99
innate memory, 106–107
memory T cell heterogeneity, 99–102
models of T cell fate, 98–99
natural killer (NK) cell memory, 104
novel TB vaccines, 107–108
resident memory T cells, 101–102
stem cell-like memory T cells, 102
T cell memory and TB vaccination, 107–108

T cell memory phenotypes, 100
trained immunity in monocytes, 107

Memory T cells, 95
CDB, 105–106
development after infection or vaccination, 98
enzyme-linked immunospot (ELISPOT) method, 182
generation of, 97–99
innate memory, 99–102
models of fate, 98–99
phenotypes, 100
proposed models of differentiation, 99
resident, 101–102
stem cell-like, 102
TB vaccination and, 107–108
vaccine efficacy, 182
Methionine auxotrophs, 702–703
Metabolomics, 683–684, 700–701
Merck Research Laboratories, 596
Metronidazole, 278
hypoxia and activity of, 318
mice, 279, 286
non-human primates, 283
proof-of-concept molecule, 333
rabbits, 283
Microbiology, explorative tools and methodologies, 682–686
Micrococcus luteus, 611
Microfluidics, 684–685
MicroRNAs (miRNAs), 10
Microscopy, time-lapse, 684–685
Millennium Development Goals, 389
Minimal unit of infection, 635, 648
Mini pigs, animal model, 134
Modified Henderson apparatus, 167, 173
Monocytes
trained immunity in, 107
tuberculosis, 224–225
Moorrella, 458
Morbidity, impact of GeneXpert MTB/ RIF, 400
Mortality, impact of GeneXpert MTB/RIF, 400–401
Mouse models, 143–150, 278–280; see also Animal models
animal model, 132, 137
anti-TB treatment, 85
C3HeB/FeJ mice, 280–281
clinical M. tuberculosis strains, 83
common experimental designs, 280
Cornell model, 284–286
devices for aerosol exposure, 147
experimental infection of mice, 279–280
gene-disrupted mice, 144–145
genetic studies in mice, 145–146
immunodeficient, transgenic and congenic mice, 145
innate immunity, 145
in vitro, 542–544
latent TB infection (LTBI), 285
low-dose aerosol exposure to M. tuberculosis, 148
lung inflammatory response, 149
mouse response to infection, 146–150
obstructive alveolar pneumonia, 126
persistence in M. tuberculosis infection, 654–655, 657–659
preclinical efficacy models, 278–281
proposed regulation T cell suppression, 84
TB disease progression, 122
Treg cells and TB vaccination, 83–84
Treg cells in, 80–85
Treg cells in chronic TB infection, 82–83
Treg cells in early TB infection, 81–82
Moxifloxacin
animal model, 279
drug candidate, 272, 331
drug resistance, 305
guinea pigs, 282
proof-of-concept molecule, 333
Mucosal associated invariant T (MAIT) cells, 5
M. tuberculosis infection, 216–217, 549
Multidrug-resistant (MDR) strains, 533
Mutagenesis, M. tuberculosis, 595
MVA85A (modified vaccinia Ankara virus expressing antigen 85A)
testing protocols, 136
trial in South Africa, 137–138, 153–154
Mycobacteria
C-family DNA polymerases, 586, 588–591
DNA synthesis, 334–335, 336
evaluating bactericidal action against nonreplicating, 329
fluoroquinolones, 339
folate synthesis, 338
high-throughput screens targeting phenotypically tolerant, 322–323, 325
4-hydroxyquinolines, 338, 339
8-hydroxyquinolines, 338, 339
lipid synthesis, 332–334, 336
membrane depolymerizers, 343–346
metabolism and respiration, 309–310
oxidative phosphorylation, 295
peptidoglycan synthesis, 335, 337, 338
persistence and resistance, 597–599
population heterogeneity as function of applied stress, 598
protein synthesis, 335, 337
proteolysis/proteostasis pathway, 339–341
quinolines, 338–339
replication machinery, 383, 586
respiration, 309–310
RNA synthesis, 335, 336
screening, 341–343
strategies for evaluating nonreplicating, 323
targeting oxygen reduction in, 303, 305–308
Mycobacterial biofilms, 533, 535, 536
extracellular M. tuberculosis in necrotizing lesions, 535–536
formation, 535, 536, 537
Mycobacterial replisome, working model of, 582
Mycoplasma oryxis, 460
Mycobacteria other than tuberculosis (MOTT), 495
Mycobacteriology, 460, 467
Mycobacterium africanum, 453, 455–460, 477
Mycobacterium avium, 13, 52, 679
Mycobacterium bovis, 476, 477
bovine tuberculosis (TB), 177
Ravenel strain, 133
Mycobacterium bovis bacille Calmette-Guérin (BCG), 6, 12, 13, 15, 703
BCG vaccine-induced protection, 43, 46
C3HeB/FeJ mice, 281

cattle model, 134
expansions of Treg cells, 76
responses of innate immune cells to, 12
vaccine, 95, 117, 179–180, 627
drug resistance, 502
lessons to learn from, 496–498
Mycobacterium caprae, 460, 461, 476, 477, 479, 496
Mycobacterium flavescens, 382
Mycobacterium haemophilum, 495
Mycobacterium kansasi, 382, 495
Mycobacterium leprae, 382, 495
Mycobacterium lepromatosis, 495
Mycobacterium marinum, 14, 382, 495, 679
mycolic acids, 523
virulence, 610
zebrafish model, 36, 133, 699
Mycobacterium mungi, 461, 496
Mycobacterium pinnipedii, 460, 461, 476, 535, 536, 609, 673, 675, 679, 703
Mycobacterium prototuberculosis, 458
Mycobacterium smegmatis, 10, 308–309, 382–386, 587
Mycobacterium suricattae, 496
Mycobacterium szulgai, 382
Mycobacterium tuberculosis, 3; see also HIV-TB coinfection
ATP synthesis by F1F0 ATP synthase, 71
biological differences between animal and biological differences among vaccination, 95–96
targeting proton motive force (PMF) in, 12
respiration overview in, 295
protein phosphorylation in, 557, 559–560
Mycobacterium tuberculosis complex (MTBC), see also Evolution of MTBC
biological differences among M. tuberculosis strains, 482–484
biological differences between animal and human MTBC lineages, 481–482
biological differences between M. canettii and, 482
biological impact of genetic diversity, 480
evidence for potential of biological variation, 480–481
global phylogenetic structure of MTBC strains, 476
M. tuberculosis infection, see also Protein phosphorylation apoptosis, 563
cell wall remodeling, 569–570
defense against host-generated reactive oxygen and nitrogen species, 563–564
growth arrest, 567–569
arrest, 569–570
NADH:menaquinone oxidoreductases, 308–309
chemokines and cytokines in adaptive response to, 38
chemokines and cytokines in innate response to, 37
chemokines in, infection, 49–53
cytokines in, infection, 34–49
Emerging strains inducing regulatory T cells in lungs, 130
Erdman strain, 166, 167, 168, 170, 171–172
fate upon macrophage infection, 9
H37Rv strain, 166, 167, 168, 170, 172
HIV-1 heterogeneity at site of disease, 247
HIV-1 replication at site of disease, 245–247
hypothesized states of response to infection, 214
immune system, 95
interactions with macrophages, 6–8, 10–11
interaction with granulocytes, 14–16
interaction with lung, 6–16
latent TB infection (LTBI), 217, 226, 227
macrophage receptors, 7
macrophages in, infection, 34–49
mutagenesis in, 595
mouse response to infection, 146–150
mutagenesis in, 595
oxidative phosphorylation in, 295
pathology of, 117–121, 125–127, 672
physiology for nonreplicating persistence, 567–571
prevention of infection, 193–195
primary host response to infection, 122–123
protein phosphorylation in, 557, 559–560
pulmonary innate immune cells during infection, 4
replisome components, 296
respiration overview in, 295
responses of innate immune cells to, 12
schematic of electron transfer components, 296
spectrum of infection, 379–380
targeting primary dehydrogenases in, 299–302
targeting proton motive force (PMF) in, 293–299
vaccination, 95–96
Mycobacterium tuberculosis complex (MTBC), see also Evolution of MTBC
biological differences among M. tuberculosis strains, 482–484
Non-human primate models (Continued)
preclinical efficacy models, 283–284
rhesus macaques, 165, 166, 168
Treg cells in, 80, 86–87
validation of macaques in TB
research, 163
Nonreplicating (NR) models, selecting and
designing, 323, 324
Nonreplicating persistence (NRP)
M. tuberculosis physiology for, 567–571
sensing when to exit NRP, 571–572
Nonreplication, diversity in, 319–321
Nontuberculous mycobacteria (NTM), 495
Nucleic acid amplification testing (NAAT),
390, 391, 392; see also GeneXpert
MTB/RIF technology
Nutrient use of pathogens, see also
Auxotrophies
amino acid auxotrophies, 701–706
cofactor auxotrophs, 706–708
future perspectives, 708–710
lessons from auxotrophic strains, 701–708
lessons from metabolomics, 700–701
M. tuberculosis in host tissue, 701
M. tuberculosis in macrophages, 700–701
O
Ofloxacin, drug resistance, 505
Oxford University, 200
Oxidative phosphorylation
growth reactivation, 301–302
M. tuberculosis, 295

P
Païbo, Svante, 467
Paleomicrobiology, 467
PAMP (pathogen-associated molecular
pattern), M. tuberculosis-derived, 246
Pantothenate (vitamin B5), 706
Paradigm, 121
Parkinson diseases, 630
Pathogenesis
application of animal models, 134–135
macaque models for studying TB, 171
persisting, 667
Pathogens, see Nutrient use of pathogens
Pathology of tuberculosis, 117–121,
125–127
alveolar pneumonia, 126
cavity formation, 119, 120
disease progression in animal models, 122
granuloma within the lung, 118
hypersensitivity of pathogenesis of post-
primary TB, 123–125
intrapulmonary spread of mixed
inflammatory cells, 121
lipid pneumonia, 121, 125
obstructive lobular pneumonia, 121, 123
post-primary lung reinfestation, 124–125
primary host response to M. tuberculosis
infection, 122–123
Pattern recognition, 145
Penicillin, 317–318
Peripheral blood mononuclear cells
(PBMCs), 4
Peroxisome proliferator-associated receptor
gamma (PPARγ), 4, 10
Persistence
definition, 654
drug-induced, 662
gene deletion studies, 659–661
host-induced, 657–662
measurements, 656–662
messages, 662–663
methods, 656
models, 654–656
pathogenicity of M. tuberculosis, 653, 672
physiology of M. tuberculosis, 653
predicted genes for in vivo survival of
M. tuberculosis, 661
terms, 653–654
Persisters, 317
class I, 321–322
class II, 322–325, 329–346
diversity in nonreplicating cells, 319–321
killing class II persisters, 329, 331–341
Phagocytosis, 636
Phagosome maturation, 8, 9
Phenotype, 671
Phenotype definitions, 429
Phenotypically tolerant M. tuberculosis,
317–319
class I persisters, 321–322
class II persisters, 322–325, 329–346
compound transformation during
screening and secondary assays,
325, 329
conditions for replication rates of, 326
designing high-throughput screens to
target, 322–325
diversity in nonreplication, 319–321
evaluating bac tidal action against
nonreplicating mycobacteria, 329
fluoroquinolones, 339
future studies, 347–348
high-throughput screening (HTS),
341–343
key observations, 319
key recommendations, 348
killing class II persisters, 329, 331–341
membrane depolarizers, 343–346
modelling hypoxia and metronidazole
activity relationship, 318
molecules persisting nonreplicating
mycobacteria, 346, 347
nitro-containing compounds, 343
postscreening assays, 327, 328
proof-of-concept molecules, 331–332
proteolysis/proeostasis pathway, 339–341
quinolones and derivatives, 338–339
screening assays, 325, 329, 330
selecting and designing nonreplicating
models, 324
strategies for evaluating viability of
nonreplicating, 323
Phenotypic drug resistance, 317
Phenotypic heterogeneity, 671–672
asymmetric cell division and cell aging,
676–679
causes and consequences of, 673
flow cytometry and omics, 682–684
fluorescence recovery after photobleaching
(FRAP), 678, 684
growth phase, 674–675
growth rate, 675–676
host microenvironment, 679–682
host-mimicking platforms, 683–686
in vivo investigation, 685–686
stochastic processes, 672–674
stress conditions enhancing, 677
time-lapse microscopy and microfluidics,
684–685
tools and methodology, 682–686
Phenotypic tolerance, 317
Phosphorylation, see Protein
phosphorylation
Pneumonia, tuberculosis as obstructive
lobular, 121, 123
Positron emission tomography/computed
tomography (PET/CT), 171, 213,
283, 680–681, 686
Post-primary tuberculosis, 124–125
Preclinical efficacy testing, 271, 274
animal infection models of active TB,
277–284
drug candidates, 272–273
dynamic drug concentration models,
275–277
goals of, 274–275
guinea pigs, 282
hollow fiber system model of TB, 275–277
in vitro models, 275–277
mice, 278–281
modeling chemotherapy of latent TB
infection (LTBI), 284–286
non-human primates, 283–284
rabbits, 283
rats, 281–282
static drug concentration models, 275
Preclinical studies, role in experimental
medicine studies, 205–206
Pretomanid
drug candidate, 273
guinea pigs, 282
mice, 279
Prime, vaccine development, 197
Prime-boost, vaccine development, 197
Programmed cell death protein-1 (PD-1),
101–102
Proline auxotroph, 703
Proof-of-concept molecules
dual actives with in vivo efficacy, 331–332
nonreplicating actives with in vivo
efficacy, 332
nonreplicating activity, 333
selective nonreplicating activity, 331
Protein-adjuvant TB vaccines, 198–200
Protein kinase activity, 557
Protein phosphorylation, see also
Mycobacterium tuberculosis infection
apoptosis, 563
biochemically verified substrates of
M. tuberculosis serine/threonine
protein kinases (STPKs), 538–539
effect on M. tuberculosis STPKs, 566
growth and persistence phenotypes of
M. tuberculosis STPKs, 562
hierarchy of M. tuberculosis STPK
activation, 561
inhibition of phagosome-lysosome fusion,
561, 563
M. tuberculosis, 557, 559–560
STPKs coordinating M. tuberculosis
physiology, 567–571
STPKs regulating M. tuberculosis
morphology, 564–565, 567
Proteomics, 679, 683–684
Proton motive force (PMF), 297
mechanisms, 297
targeting, in M. tuberculosis, 295–299
traditional inhibitors of PMF
generation, 298
Pseudomonas, 673
Pseudomonas aeruginosa, 93, 13, 321, 467, 536, 591, 594
Pseudomonas putida, 591
Pseudomocardia dioxinivorans, 498
PubChem, 329, 498, 591
Pseudomonas aeruginosa
Pseudomonas, 673
Pyridoxamine (vitamin B6), 706–707
Pyrazinamide, 528, 547, 681
Purine auxotroph, 708
Purine auxotrophic
PubChem, 329
Purine pyrimidines (QPs), TB drug
PubChem, 329
Rabbits
Rapid speciation strip tests, 364
Rat
Rapid speciation strip tests, 364
Rats
Recombinant mycobacterial vaccines, 202–203
Regulation of TB immunity, see also Animal models; Human tuberculosis (TB) antigen-presenting cells (APCs), 74, 75
human regulatory T (Treg) cells and anti-TB treatment, 78–79
human Treg cells and clinical M. tuberculosis strains, 78
in vitro expansion of mycobacteria-specific Treg cells, 76–77
mechanisms of Treg suppression, 74
naturally occurring and induced Treg cells, 73–74
Treg activity balance, 77
Treg cell, 73–74
Treg cell responses in experimental animal models of TB, 80–87
Treg cell responses in human TB, 74–80
Treg-mediated manipulation of immune cell activation, 75–79
Treg responses at M. tuberculosis infection site, 79–80
Treg suppression of APCs, 75
Regulatory cytokines
IL-4, IL-5, and IL-13, 47–48
interleukin IL-10, 48–49
transforming growth factor β (TGFβ), 48
Replication rate, 592; see also DNA replication
mycobacterial, 592–594
Research Institute of Influenza (St. Petersburg, Russia), 202
Respiration, M. tuberculosis, 295
Restriction fragment length polymorphism (RFLP) method, 454–455, 583
Retrouviald, 239
Rhesus macaques, 163; see also Macaque models
comparing TB in humans to, 164
“Golden Age” of TB research using, 165, 166
Macaca mulatta, 163, 173
TB studies, 166, 167, 168
21st century TB research, 166
Rhzobiun leguminosarum, 613
Rifampin, 86, 527–528
animal models, 279–280
drug candidate, 272, 274, 278, 331
drug resistance, 503, 504, 674
guinea pigs, 282
latent TB infection, 285–286
line probe assays for detecting resistance, 367–368
non-human primates, 283
proof-of-concept molecule, 333
tolerance of infected cells, 639–641
Xpert MTB/RIF for resistance to, 368
Rifapentine
drug candidate, 272
guinea pigs, 282
latent TB infection (LTBI), 285–286
S
Salmonella, 146, 321, 674, 676
Salmonella enterica serovar Typhi, 462
Salmonella typhimurium, 537
Sanofi Pasteur, 199
Scavenger receptors (SRs), 8
SciFinder, 329
Screening
acidic pH, 341, 342
biofilms, 341, 343
hypoxia, 341, 342
multiple physiological stressors, 341, 342
Screening assays
compound transformation during, 330
designing high-throughput screens for phenotypically tolerant mycobacteria, 322–323, 325
post-, 327, 328
potential compound transformation during, 325, 329
Secretion (SecA1) pathway
cell wall synthesis and remodeling factors, 609
conserved, 607–608
conserved SecA1 exportome, 608–611
entering dormancy, 610
exported virulence factors, 610
lipoproteins, 609–610
models of SecA1 export, 608
reactivation/resuscitation from dormancy, 611
Secretion (SecA2) pathway
dormancy, 619
features of SecA2-dependent substrates, 613
identification, 611–612
immunomodulation and, 618–619
inhibition of apoptosis, 618
KatB (catalase-peroxidase), 616
Mce transporters, 614–615
mechanism, 612–613
models of SecA2 export, 608
multiple components of Mce transporters, 615
phagosome maturation arrest, 617
PknG (eukaryotic-like serine-threonine kinase), 616
protein export pathway, 611–613
reactive radicals and, 619
SBPs (solute binding proteins), 613–614
secA2 mutant as vaccine candidate, 619–620
SecA2 and DosR regulon, 616–617
SecA2 exportome, 613–616
SodA (Fe-superoxide dismutase), 615–616
virulence and, 617–619
Secretion system, see also ESX-1 (ESAT-6 secretion system-1)
ESAT-6 (ESX-1), 627, 631–632
Shuman, Stewart, 591
Simian immunodeficiency virus (SIV), M. tuberculosis and, coinfection maque models, 171–172
Smear microscopy, diagnostics for active TB, 363–364
Solute carrier, 146
South Africa
challenges and opportunities of implementation, 394, 396
GeneXpert implementation, 397
GeneXpert placement, 394
national implementation of Xpert NTB/RIF assay, 393–394
tuberculosis in, 391, 393
South African Tuberculosis Vaccine Initiative (SATVI), 104, 105
Spectroscopy, 683–684, 701
Spoligotyping, 455, 457, 461
Staphylococcus aureus, 609, 611
Streptomyces coelicolor, 591
Streptomyces parasanguinis, 611
Streptomyces pneumoniae, 197, 536
Streptomycin, drug resistance, 502, 503
Sucinate:quinone oxidoreductase, 300–301
Swedish Institute of Infectious Disease Control, 167
Systems biology, tuberculosis, 429
T
TB-associated immune reconstitution inflammatory syndrome (TB-IRIS), 76
T cells, see also Memory T cells cytotoxic, in TB-immune reconstitution inflammatory syndrome (TB-IRIS), 255–256
M. tuberculosis infection, 217–219, 548–549
responses to tuberculosis (TB), 225
Technical Expert Group, 365
Thioalkalivibrio, 458
Thiohalobovibrio, 458
Thiiodiazine, 297, 299
Threonine auxotroph, 704
Time-lapse microscopy, 684–685
Tissue remodeling, tuberculosis (TB), 225
Toll-like receptor 9 (TLR9), 4
Toll-like receptors (TLRs), 7–8, 39, 145
Trained immunity, 13, 17, 107
Transcriptional profiling, *M. tuberculosis* in macrophages, 636–638
Transcriptome studies, 674, 683–684
Transcriptomic profiling, biomarkers, 226–227
Transforming growth factor β (TGFβ), 48
Transgenic mice, 145
TrA SH screening method, 704
Treatment outcomes, impact of GeneXpert
MTB/RIF, 401, 402–404
Trifluoperazine, 299, 300
Trudeau, E. L., 131
Trifluoperazine, 299, 300
Tryptophan auxotroph, 704–705
Tuberculosis (TB), 225
Tuberculosis (TB) vaccination
Animal models; see also Vaccines, tuberculosis
Biomarkers predicting efficacy, 182
Biomarkers correlating disease severity, 184
Biomarkers predicting efficacy, 182
Vaccines, see also Vaccine candidates
BCG and disease protection, 194
clinical trials of TB candidates, 197–203
M. tuberculosis, 95–96
prevention of *M. tuberculosis* infection, 193–195
prevention of recurrent TB disease, 196–197
prevention of TB disease, 195–196
Vaccine candidates, 198
Ad5Ag85A, 201
Crucell Ad35, 201
DAR-901, 202
development strategies, 197–198
evolutionary medicine role in development, 203–206
global clinical pipeline of, 198
H1:IC31 and H1:CAF01, 198
H4:IC31, 199
H56:IC31, 198–199
ID93+GLA-SE, 199
H56:IC31, 198–199
Id93+Gla-se, 199
inactivated whole-cell and fragmented TB vaccines, 202
M72/AS01E, 199–200
MTBVAC, 202–203
MVA85A, 200–201
Protein-adjvant TB vaccines, 198–200
recombinant mycobacterial vaccines, 202–203
RUTI, 202
secA2 mutant as, 619–620
TB/Flu-04L, 202
Vaccines, see also Vaccine candidates
Ad85A (human adenovirus 5 expressing Ag85A), 181–182
animal models and testing protocols, 136, 137
animal models for assessment of, 135
antibody-inducing, 220
BCG protection, 40, 43, 45, 46, 49, 220
BCG vaccination in animals, 100
BCG vaccination in guinea pigs, 86
BCG vaccination in humans, 76, 100
BCG vaccination in mice, 83–84
biomarkers correlating disease severity, 184
biomarkers predicting efficacy, 182
guinea pig model, 153–154
macaque models of evaluating TB vaccine, 167, 170
mechanism of protection, 136
memory immunity by novel TB, 107–108
Mycobacterium bovis bacillus Calmette-Guérin (BCG), 95, 117, 179–180
new-generation TB, 180–182
predictivity of animal models, 137–138
proof of concept for, 194, 196, 203–206
role of experimental medicine in vaccine development, 203–206
schedules of BCG and virally vectored, 183–184
types of new, tested in cattle, 181
Vakzine Projekt Management GmbH, 203
Valine auxotroph, 704
Valinomycin, 297, 298
Vertex Pharmaceuticals, 643
Vibrio cholerae, 465
Viral-vectored vaccines, 200–202
Vitamin B12 (cobalamin), 707–708
Vitamin D deficiency, 223
Wayne model, hypoxia, 318, 323, 325
Whole-genome sequencing (WGS) emergence of, 495
M. tuberculosis L2 Beijing sublineage, 500
résistant strains, 502, 506–507
World Health Organization (WHO), 193, 226, 239
global TB epidemic, 389–390
line probe assay recommendations, 368–369
TB disease control, 379, 533
TB screening, 363, 364
XLAAD (X-linked autoimmune allergic dysregulation syndrome), 73
Xpert MTB/RIF, see also GeneXpert
MTB/RIF technology background of, 391
diagnostics for TB, 365, 368
maximizing impact of new diagnostics, 371, 373–374
timeline of availability, 374
Yersinia pseudotuberculosis, 674
Zebrafish animal models, 133, 685, 686
granuloma formation, 135
in vitro model, 530
M. marinum, 36, 133, 699
Ziehl, F., 520
ZN (Zielh-Neelsen) stain, 519; see also AF (acid-fast) mycobacteria
clinical diagnosis of TB, 522–523
history of acid-fast (AF) staining, 520–522
M. tuberculosis, 521, 528