Biological Safety

PRINCIPLES AND PRACTICES

EDITED BY

DAWN P. WOOLEY
Wright State University, Dayton, Ohio

KAREN B. BYERS
Dana Farber Cancer Institute, Boston, Massachusetts

ASM PRESS
Washington, DC
Contents

INTRODUCTION

Contributors ix
Foreword—Caryl P. Griffin and James Welch xiii
Preface xv

SECTION I. HAZARD IDENTIFICATION

1. The Microbiota of Humans and Microbial Virulence Factors 3
 Paul A. Granato

2. Indigenous Zoonotic Agents of Research Animals 19
 Lon V. Kendall

3. Biological Safety Considerations for Plant Pathogens and
 Plant-Associated Microorganisms of Significance to Human Health 39
 Anne K. Vidaver, Sue A. Tolin, and Patricia Lambrecht

4. Laboratory-Associated Infections 59
 Karen Brandt Byers and A. Lynn Harding

SECTION II. HAZARD ASSESSMENT

5. Risk Assessment of Biological Hazards 95
 Dawn P. Wooley and Diane O. Fleming

6. Protozoa and Helminths 105
 Barbara L. Herwaldt
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Mycotic Agents</td>
<td>Wiley A. Schell</td>
<td>147</td>
</tr>
<tr>
<td>8.</td>
<td>Bacterial Pathogens</td>
<td>Travis R. McCarthy, Ami A. Patel, Paul E. Anderson, and Deborah M. Anderson</td>
<td>163</td>
</tr>
<tr>
<td>9.</td>
<td>Viral Agents of Human Disease: Biosafety Concerns</td>
<td>Michelle Rozo, James Lawler, and Jason Paragas</td>
<td>187</td>
</tr>
<tr>
<td>12.</td>
<td>Molecular Agents</td>
<td>Dawn P. Wooley</td>
<td>269</td>
</tr>
<tr>
<td>13.</td>
<td>Biosafety for Microorganisms Transmitted by the Airborne Route</td>
<td>Michael A. Pentella</td>
<td>285</td>
</tr>
<tr>
<td>15.</td>
<td>Allergens of Animal and Biological Systems</td>
<td>Wanda Phipatanakul and Robert A. Wood</td>
<td>327</td>
</tr>
<tr>
<td></td>
<td>SECTION III. HAZARD CONTROL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Design of Biomedical Laboratory and Specialized Biocontainment Facilities</td>
<td>Jonathan T. Crane and Jonathan Y. Richmond</td>
<td>343</td>
</tr>
<tr>
<td>17.</td>
<td>Primary Barriers and Equipment-Associated Hazards</td>
<td>Elizabeth Gilman Duane and Richard C. Fink</td>
<td>367</td>
</tr>
<tr>
<td>19.</td>
<td>Arthropod Vector Biocontainment</td>
<td>Dana L. Vanlandingham, Stephen Higgs, and Yan-Jang S. Huang</td>
<td>399</td>
</tr>
<tr>
<td>20.</td>
<td>Aerosols in the Microbiology Laboratory</td>
<td>Clare Shieber, Simon Parks, and Allan Bennett</td>
<td>411</td>
</tr>
<tr>
<td>21.</td>
<td>Personal Respiratory Protection</td>
<td>Nicole Vars McCullough</td>
<td>425</td>
</tr>
<tr>
<td>22.</td>
<td>Standard Precautions for Handling Human Fluids, Tissues, and Cells</td>
<td>Debra L. Hunt</td>
<td>443</td>
</tr>
<tr>
<td>23.</td>
<td>Decontamination in the Microbiology Laboratory</td>
<td>Matthew J. Arduino</td>
<td>463</td>
</tr>
<tr>
<td>24.</td>
<td>Packing and Shipping Biological Materials</td>
<td>Ryan F. Relich and James W. Snyder</td>
<td>475</td>
</tr>
</tbody>
</table>
SECTION IV. ADMINISTRATIVE CONTROL

25. Developing a Biorisk Management Program To Support Biorisk Management Culture
 LouAnn C. Burnett

26. Occupational Medicine in a Biomedical Research Setting
 James M. Schmitt

27. Measuring Biosafety Program Effectiveness
 Janet S. Peterson and Melissa A. Morland

28. A “One-Safe” Approach: Continuous Safety Training Initiatives
 Sean G. Kaufman

29. Biosafety and Biosecurity: Regulatory Impact
 Robert J. Hawley and Theresa D. Bell Toms

SECTION V. SPECIAL ENVIRONMENTS

30. Biological Safety and Security in Teaching Laboratories
 Christopher J. Woolverton and Abbey K. Woolverton

31. Biosafety in the Pharmaceutical Industry
 Brian R. Petuch

32. Biosafety Considerations for Large-Scale Processes
 Mary L. Cipriano, Marian Downing, and Brian R. Petuch

33. Veterinary Diagnostic Laboratories and Necropsy
 Timothy Baszler and Tanya Graham

34. Special Considerations for Animal Agriculture Pathogen Biosafety
 Robert A. Heckert, Joseph P. Kozlovac, and John T. Balog

35. Biosafety of Plant Research in Greenhouses and Other Specialized Containment Facilities
 Dann Adair, Sue Tolin, Anne K. Vidaver, and Ruth Irwin

36. Biosafety Guidelines for Working with Small Mammals in a Field Environment
 Darin S. Carroll, Danielle Tack, and Charles H. Calisher

37. Components of a Biosafety Program for a Clinical Laboratory
 Michael A. Pentella

38. Safety Considerations in the Biosafety Level 4 Maximum-Containment Laboratory
 David S. Bressler and Robert J. Hawley

Index
Contributors

Dann Adair
Conviron, Pembina, North Dakota

Deborah M. Anderson
Laboratory for Infectious Disease Research and Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri

Paul E. Anderson
Laboratory for Infectious Disease Research and Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri

Matthew J. Arduino
Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia

John T. Balog
U.S. Food and Drug Administration, Office of Operations, Employee Safety and Environmental Management, Silver Spring, Maryland

Timothy Baszler

Allan Bennett
Public Health England, Biosafety, Porton, Salisbury, Wiltshire, United Kingdom

David S. Bressler
Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia

LouAnn C. Burnett
International Biological and Chemical Threat Reduction, Sandia National Laboratories, Albuquerque, New Mexico

Karen Brandt Byers
Dana Farber Cancer Institute, Boston, Massachusetts

Charles H. Calisher
Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado

Darin S. Carroll
Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia

Mary L. Cipriano
Abbott Laboratories, North Chicago, Illinois (retired)

J. Patrick Condreay
pc Biosafety Consulting Services, LLC, Carrboro, North Carolina
CONTRIBUTORS

Jonathan T. Crane
HDR, Inc., Atlanta, Georgia

Marian Downing
Abbott Laboratories, North Chicago, Illinois (retired)

Elizabeth Gilman Duane
Environmental Health and Engineering Inc., Needham, Massachusetts

David C. Eagleson
The Baker Company, Inc., Sanford, Maine

Richard C. Fink
Environmental Health and Engineering Inc., Needham, Massachusetts, and Pfizer (retired)

Diane O. Fleming
Biological Safety Professional (retired), Mitchellville, Maryland

Lance Gaudette
The Baker Company, Inc., Sanford, Maine

Tanya Graham
Biosafety Consulting for Veterinary Medicine, LLC, Esteline, South Dakota

Paul A. Granato
Department of Pathology, SUNY Upstate Medical University, Syracuse, New York, and Laboratory Alliance of Central New York, LLC, Liverpool, New York

A. Lynn Harding
Biosafety Consultant, Chattanooga, Tennessee

J. Ross Hawkins
Division of Advanced Therapies, National Institute for Biological Standards and Control a centre of the Medicines and Healthcare Regulatory Agency, South Mimms, Herts, United Kingdom

Robert J. Hawley
Consultant, Biological Safety and Security, Frederick, Maryland

Robert A. Heckert
Robert Heckert Consulting, Palm Desert, California

Kara F. Held
The Baker Company, Inc., Sanford, Maine

Barbara L. Herwaldt
Centers for Disease Control and Prevention, Parasitic Diseases Branch, Atlanta, Georgia

Stephen Higgs
Biosecurity Research Institute, Kansas State University, Manhattan, Kansas

Yan-Jang S. Huang
Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas

Debra L. Hunt
Duke University, Durham, North Carolina

Ruth Irwin
Information Systems for Biotechnology, Virginia Polytechnic Institute & State University, Blacksburg, Virginia

Sean G. Kaufman
Behavioral-Based Improvement Solutions, Woodstock, Georgia

Lon V. Kendall
Department of Microbiology, Immunology and Pathology and Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado

Thomas A. Kost
GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina (retired)

Joseph P. Kozlovac
USDA ARS Office of National Programs, Animal Production & Protection, Beltsville, Maryland

Patricia Lambrecht
Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska

James Lawler
Navy Medical Research Center, Clinical Research, Fort Detrick, Maryland

Travis R. McCarthy
Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri

Nicole Vars McCullough
3M, Personal Safety Division, Saint Paul, Minnesota

Claudia A. Mickelson
EHS Office, Massachusetts Institute of Technology, Cambridge, Massachusetts (retired)

Melissa A. Morland
University of Maryland, Baltimore, Baltimore, Maryland

Jason Paragas
Lawrence Livermore National Laboratory, Global Security, Livermore, California

Simon Parks
Biosafety, Air and Water Microbiology Group, Public Health England, Porton Down, Wiltshire, United Kingdom
Ami A. Patel
Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri

Michael A. Pentella
Massachusetts Department of Public Health, State Public Health Laboratory, Jamaica Plain, Massachusetts

Janet S. Peterson
Biosafety Consultant, Ellicott City, Maryland

Brian R. Petuch
Global Safety & Environment, Merck, West Point, Pennsylvania

Wanda Phipatanakul
Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts

Charles W. Quint, Jr.
The Baker Company, Inc., PO Sanford, Maine

Ryan F. Relich
Division of Clinical Microbiology, Indiana University Health Pathology Laboratory, and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana

Jonathan Y. Richmond
Bsafe.us, Southport, North Carolina

Michelle Rozo
Navy Medical Research Center, Clinical Research, Fort Detrick, Maryland

Wiley A. Schell
Department of Medicine, Division of Infectious Diseases and International Health, Duke University, Durham, North Carolina

James M. Schmitt
Occupational Medical Service, National Institutes of Health, Bethesda, Maryland

Clare Shieber
Public Health England, Biosafety, Air and Water Microbiology Group, Porton, Salisbury, Wiltshire, United Kingdom

James W. Snyder
Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky

Glyn N. Stacey
Division of Advanced Therapies, National Institute for Biological Standards and Control a centre of the Medicines and Healthcare Regulatory Agency, Blanche Lane, South Mimms, Herts, United Kingdom

David G. Stuart
The John M. Eagleson, Jr. Institute, Kennebunk, Maine

Danielle Tack
Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia

Sue A. Tolin
Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute & State University, Blacksburg, Virginia

Theresa D. Bell Toms
Leidos Biomedical Research Inc., National Cancer Institute at Frederick, Frederick, Maryland

Dana L. Vanlandingham
Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas

Anne K. Vidaver
Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska

Robert A. Wood
Department of Pediatrics, Division of Allergy and Immunology, Johns Hopkins University, Baltimore, Maryland

Dawn P. Wooley
Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio

Abbey K. Woolverton
Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC

Christopher J. Woolverton
Department of Biostatistics, Environmental Health Science and Epidemiology, College of Public Health, Kent State University, Kent, Ohio
Foreword

On October 29, 1997, a non-human primate research worker was transferring macaques from a transport cage to a squeeze cage preceding a routine annual physical. One of the macaques became agitated, and as he jumped, his tail flicked material from the bottom of the cage into the face and eye of the researcher. On December 10, 1997, that vivacious and talented 22-year-old worker, Elizabeth “Beth” Griffin, died as a result of that innocuous event.

Beth’s death was initiated by an ocular exposure to the Herpes simian B virus (Macacine herpesvirus 1). Her case was the first known exposure to be the result of something other than a bite or a scratch. An Agnes Scott College graduate, Beth—a dancer—died from an encephalitic disease that first paralyzed her from the neck down before finally causing her death.

Beth’s death gained national attention in the U.S. media. It was a featured story on a network newsmagazine. The incident gained international attention in the world of research. The world—especially the research world—wanted to know how such a thing could ever happen and what could be done to ensure it never happened again.

A number of things could have been done that would have meant this story would never be read. There were systematic failures in the occupational health response to her exposure. There were failures in the health care system. There were things Beth could have done, such as wear goggles while handling the monkeys or use the nearby eyewash stations within 5 minutes of her exposure. An emergency response measure could have provided a simple postexposure prophylactic prescription taken shortly after her incident. These actions and others as elements of an institutional culture of safety—Prevention, Detection, and Response—could have changed everything.

Two years after her death, Beth’s family established a nonprofit foundation to increase safety and occupational health awareness for people who worked with non-human primates. With the collaborative assistance of organizations such as the Association of Primate Veterinarians (APV), the American Association for Laboratory Animal Science (AALAS), and the American College of Laboratory Animal Medicine (ACLAM), many changes were made in processes and responses to exposures. Many people working in non-human primate research environments began carrying cards, quickly tagged as “Beth Cards,” that informed medical personnel to take specific measures to rule out B virus exposure first—not last—if the person was exhibiting certain viral symptoms.

In 2003, the world became gripped in an outbreak of a disease called SARS (severe acute respiratory syndrome). The outbreak began in China, but because of mobility the disease soon began popping up elsewhere. As Beth’s death had been a tipping point for safety awareness in working with non-human primates, the SARS outbreak and the global response of expanding laboratory capacity...
to detect and identify emerging infectious diseases became a massive springboard for biosafety.

The “Amerithrax” incident of 2001 had already sparked international attention to practices used in working with certain biological agents. The concepts of biosafety and biosecurity preceded all of these incidents by decades, but never had there been such total community attention to the potential risks of biological exposures.

At the encouragement of those groups with whom we had already collaborated, the Elizabeth Griffin Research Foundation reached out with our “no more Beth Griffin tragedies” message to the American Biological Safety Association to assist in highlighting awareness of and response to the exposure risks that those who work with biological agents face on a rather routine basis. With their assistance—and that of a growing number of similar professional organizations around the world—biosafety is a front-burner issue in conducting safe and responsible science. Much has been done to increase the awareness, research, and application of sound protocols that both reduce the risk of exposure and improve the quality of response to an exposure should one occur. The very truth that you are reading this book on biosafety and biosecurity is proof enough of how far this has come.

Good science is safe science. If the science isn’t safe, it isn’t good. Nothing can be more damaging to the reputation of a research institution or to the public view of the value of science than a bungled exposure issue or the appearance of cutting corners on safety in order to accomplish something. Biological risks are very different from many others in that they are most often not immediately evident, due to incubation periods. There are no immediate detection capabilities as with chemical or radiation risks, since biological manifestation may easily be delayed and often misdiagnosed. Compound those issues with the fact that many biological agents have highly contagious, often lethal capabilities, and we quickly see it’s not just the laboratory worker at risk.

Watchfulness, attention, caution, and prudence are all required whenever someone does anything that places individuals beyond themselves at risk. To engage in biological research requires that you exercise caution and follow protocols, not only for your safety but also for the safety of the community and world that surrounds you. It is not an option or a luxury. It is a necessity. Every risk, no matter how small it may seem, must be considered, assessed, and properly mitigated. The techniques of safety and security are every bit as important as the techniques used in your research.

Before getting into the technical nuts and bolts of biosafety and biosecurity, please keep these basics in mind.

1. Everyone who works with biological agents in any capacity should discuss their work with their personal physician. You are quite possibly the zebra among a stable of horses.

2. Remember that most people drown in shallow water. While much attention is required to higher-risk agents, most laboratory-acquired infections (LAIs) occur when working with what are thought to be lower-risk agents. Most LAI deaths are attributed to Level 2 agents, not Level 3 or 4.

3. Learn from near-misses. Encourage nonpunitive conversations about things that “almost happened.” The “almost happened” events are likely to recur, so learn from them.

4. Compliance is a by-product of safe research. It is not the purpose of safe research.

5. Be a role model of biosafety and biosecurity. Create atmospheres where being safe appears the most natural thing to do.

6. Link up with the biosafety personnel at your institution. Learn from them.

7. If you think there’s a safer way, don’t just think it. Prove it by research, demonstrate it, and share what you learned with the biosafety community.

8. Commit to never letting a Beth Griffin tragedy happen wherever you may be.

We adhere to the words spoken by Thomas Huxley at the opening of The Johns Hopkins University in Baltimore, Maryland. In his remarks, Huxley noted that “the end of life is not knowledge, but action.” On behalf of the Elizabeth R. Griffin Research Foundation and our collaborative partners worldwide, we encourage that you not just learn the material in this book but act upon, promote, and add to this body of knowledge throughout your scientific career.

Caryl P. Griffin, MDiv, President and Founder
James Welch, Executive Director
Elizabeth R. Griffin Foundation
www.ergriffinresearch.org
Preface

It is with a great sense of honor and reverence that we take over the reins of editing this book from our esteemed colleagues, Diane O. Fleming and Debra L. Hunt. It is our hope that this 5th edition of Biological Safety: Principles and Practices remains the main text in the field of biosafety. We are indebted to the many authors who have contributed to this edition. This book serves as a valuable resource not only for biosafety professionals, but also for students, staff, faculty, and clinicians who are working with or around potentially biohazardous materials in research laboratories, medical settings, and industrial environments. Those who supervise biosafety or laboratory staff members will also benefit from this book.

We decided to keep the overall structure similar to the previous edition, with five major sections. Eight new chapters were added on the following topics: molecular agents, arthropod vector biocontainment, aerobiology, training programs, veterinary and greenhouse biosafety, field studies, and clinical laboratories. Biosafety Practices is not a separate chapter in this edition; the concepts have been incorporated into relevant chapters. Similarly, the information on prions was incorporated into the new chapter on molecular agents. The title of the last section was changed from “Special Considerations” to “Special Environments” and some chapters were moved out of this section to keep the focus on unique settings encountered in biosafety practice. Since regulatory guidelines are always changing, we have directed our readers to online sources for the most up-to-date information. Chapters have been made to be more fluid and stand-alone by minimizing references to other chapters. We are fortunate to have color in this new edition.

Both of this edition’s editors are Certified Biosafety Professionals, but we came to the field of biosafety through different avenues, giving us complementary perspectives on the topic. Dawn Wooley became intensely interested in biosafety during her graduate days at Harvard while researching the newly discovered AIDS viruses. These were the days before there were important administrative controls such as the Bloodborne Pathogen Standard. In trying to protect herself and others around her from these newly emerging pathogens, Dawn developed a love for the field of biosafety that has persisted until today. Karen Byers developed a keen interest in biosafety while working with measles in Harvard research laboratories. An appointment to the Institutional Biosafety Committee inspired her to become a biosafety professional. She is very grateful for Lynn Harding’s mentorship and the opportunities for professional development and leadership provided by colleagues in the American Biological Safety International (ABSA).

Professional organizations such as ABSA, the American Society of Microbiology (ASM), the American Public Health Association (APHL), the Clinical and Laboratory
Standards Institute (CLSI), and the American Association for Laboratory Animal Science (AALAS) have played a key role in fostering the development and implementation of evidence-based biosafety practice. The Foreword to this edition reminds us of the importance of this endeavor.

Gregory W. Payne, Senior Editor, ASM Press, was instrumental in pushing for the update of this book, and he provided much-needed guidance and inspiration. We thank Ellie Tupper and Lauren Luethy for their expert assistance with the production of this book.

We hope that our readers enjoy the book as much as we have appreciated the opportunity to work on it for you and the rest of the biosafety community. Be safe!

Dawn P. Wooley
Karen B. Byers