ANTISEPSIS, DISINFECTION, AND STERILIZATION
ANTISEPSIS, DISINFECTION, AND STERILIZATION
TYPES, ACTION, AND RESISTANCE

GERALD E. McDONNELL

Washington, DC
ACKNOWLEDGMENTS

I greatly appreciate the many colleagues and friends who reviewed selected chapters of this book, as well as my wife, Lesley, for her encouragement.

GERALD E. MCDONNELL

Basking Ridge, New Jersey
USA
CONTENTS

Preface xix
About the Author xxii

Chapter 1 Introduction

1.1 General introduction 1
1.2 Definitions 2
1.3 General microbiology 6
 1.3.1 Introduction 6
 1.3.2 Eukaryotes & prokaryotes 6
 1.3.3 Eukaryotes 6
 1.3.3.1 Multicellular eukaryotes 6
 1.3.3.2 Fungi 8
 1.3.3.3 Algae 13
 1.3.3.4 Protozoa 13
 1.3.4 Prokaryotes 14
 1.3.4.1 Eubacteria 14
 1.3.4.2 Archaea 26
 1.3.5 Viruses 28
 1.3.6 Prions 33
 1.3.7 Toxins 34

1.4 General considerations 36
 1.4.1 Microbial resistance 36
 1.4.2 Evaluation of efficacy 38
 1.4.2.1 Suspension testing 38
 1.4.2.2 Surface testing 43
 1.4.2.3 In-use testing 45
Chapter 2 Physical Disinfection

2.1 Introduction 61
2.2 Heat 61
 2.2.1 Types 61
 2.2.2 Applications 63
 2.2.3 Spectrum of activity 66
 2.2.4 Advantages 67
 2.2.5 Disadvantages 67
 2.2.6 Mode of action 68

2.3 Cold temperatures 68
2.4 Radiation 68
 2.4.1 Isotopes 68
 2.4.2 Electromagnetic radiation 69
 2.4.3 Types 71
 2.4.3.1 Ultraviolet 71
 2.4.3.2 Infrared 72
 2.4.3.3 Microwaves 72
 2.4.4 Applications 73
 2.4.4.1 UV 73
 2.4.4.2 Infrared 74
 2.4.4.3 Microwaves 74
 2.4.5 Spectrum of activity 74
 2.4.5.1 UV 74
 2.4.5.2 Infrared 75
3.4 Aldehydes 91
 3.4.1 Types 91
 3.4.2 Applications 91
 3.4.2.1 Glutaraldehyde and OPA 91
 3.4.2.2 Formaldehyde 92
 3.4.3 Spectrum of activity 93
 3.4.3.1 Glutaraldehyde and OPA 93
 3.4.3.2 Formaldehyde 94
 3.4.4 Advantages 94
 3.4.4.1 Glutaraldehyde and OPA 94
 3.4.4.2 Formaldehyde 94
 3.4.5 Disadvantages 95
 3.4.5.1 Glutaraldehyde and OPA 95
 3.4.5.2 Formaldehyde 95
 3.4.6 Mode of action 95
 3.4.6.1 Glutaraldehyde and OPA 95
 3.4.6.2 Formaldehyde 97
3.5 Alcohols 97
 3.5.1 Types 97
 3.5.2 Applications 97
 3.5.3 Spectrum of activity 98
 3.5.4 Advantages 98
 3.5.5 Disadvantages 99
 3.5.6 Mode of action 99
3.6 Anilides 99
 3.6.1 Types 99
 3.6.2 Applications 100
 3.6.3 Spectrum of activity 100
 3.6.4 Advantages 100
 3.6.5 Disadvantages 100
 3.6.6 Mode of action 100
3.7 Antimicrobial dyes 101
 3.7.1 Types 101
 3.7.2 Applications 101
 3.7.3 Spectrum of activity 102
 3.7.4 Advantages 103
 3.7.5 Disadvantages 103
 3.7.6 Mode of action 103

3.8 Biguanides 104
 3.8.1 Types 104
 3.8.2 Applications 104
 3.8.3 Spectrum of activity 105
 3.8.4 Advantages 106
 3.8.5 Disadvantages 106
 3.8.6 Mode of action 106

3.9 Diamidines 107
 3.9.1 Types 107
 3.9.2 Applications 107
 3.9.3 Spectrum of activity 107
 3.9.4 Advantages 108
 3.9.5 Disadvantages 108
 3.9.6 Mode of action 108

3.10 Essential oils and plant extracts 108
 3.10.1 Types 108
 3.10.2 Applications 109
 3.10.3 Spectrum of activity 109
 3.10.4 Advantages 110
 3.10.5 Disadvantages 110
 3.10.6 Mode of action 110

3.11 Halogens and halogen-releasing agents 111
 3.11.1 Types 111
 3.11.2 Applications 115
 3.11.2.1 Iodine 115
 3.11.2.2 Chlorine 116
 3.11.2.3 Bromine 117
 3.11.3 Spectrum of activity 117
 3.11.3.1 Iodine 117
 3.11.3.2 Chlorine 117
3.11.3.3 Bromine 118
3.11.4 Advantages 118
 3.11.4.1 Iodine 118
 3.11.4.2 Chlorine 118
 3.11.4.3 Bromine 118
3.11.5 Disadvantages 119
 3.11.5.1 Iodine 119
 3.11.5.2 Chlorine 119
 3.11.5.3 Bromine 119
3.11.6 Mode of action 120
 3.11.6.1 Iodine 120
 3.11.6.2 Chlorine 120
 3.11.6.3 Bromine 121

3.12 Metals 121
3.12.1 Types 121
3.12.2 Applications 122
 3.12.2.1 Copper 122
 3.12.2.2 Silver 123
3.12.3 Spectrum of activity 123
 3.12.3.1 Copper 123
 3.12.3.2 Silver 124
3.12.4 Advantages 124
 3.12.4.1 Copper 124
 3.12.4.2 Silver 124
3.12.5 Disadvantages 124
 3.12.5.1 Copper 124
 3.12.5.2 Silver 124
3.12.6 Mode of action 125
 3.12.6.1 Copper 125
 3.12.6.2 Silver 125

3.13 Peroxygens and other forms of oxygen 126
3.13.1 Types 126
3.13.2 Applications 129
 3.13.2.1 Ozone 129
3.13.2.2 Hydrogen peroxide 130
3.13.2.3 PAA 134
3.13.2.4 Chlorine dioxide 135

3.13.3 Spectrum of activity 136
3.13.3.1 Ozone 136
3.13.3.2 Hydrogen peroxide 137
3.13.3.3 PAA 138
3.13.3.4 Chlorine dioxide 139

3.13.4 Advantages 139
3.13.4.1 Ozone 139
3.13.4.2 Hydrogen peroxide 139
3.13.4.3 PAA 140
3.13.4.4 Chlorine dioxide 140

3.13.5 Disadvantages 140
3.13.5.1 Ozone 140
3.13.5.2 Hydrogen peroxide 140
3.13.5.3 PAA 141
3.13.5.4 Chlorine dioxide 141

3.13.6 Mode of action 142
3.13.6.1 Ozone 142
3.13.6.2 Hydrogen peroxide 142
3.13.6.3 PAA 143
3.13.6.4 Chlorine dioxide 143

3.14 Phenolics 143
3.14.1 Types 144
3.14.2 Applications 144
3.14.3 Spectrum of activity 145
3.14.4 Advantages 145
3.14.5 Disadvantages 146
3.14.6 Mode of action 146

3.15 Antiseptic phenolics 147
3.15.1 Types 147
3.15.2 Applications 148
3.15.3 Antimicrobial activity 149
3.15.4 Advantages 150
3.15.5 Disadvantages 151
3.15.6 Mode of action 152
3.15.6.1 Triclosan 152
3.15.6.2 Chloroxylenol 154
3.15.6.3 Salicylic acid 154

3.16 Quaternary ammonium compounds and surfactants 155
3.16.1 Types 155
3.16.2 Applications 156
3.16.3 Antimicrobial efficacy 157
3.16.4 Advantages 158
3.16.5 Disadvantages 158
3.16.6 Mode of action 158

3.17 Other miscellaneous biocides or applications 159
3.17.1 Pyrithiones 159
3.17.2 Isothiazolones derivatives 159
3.17.3 Biocides integrated into surfaces 160
3.17.4 Micro- or nano-particles 162
3.17.5 Antimicrobial enzymes, proteins, or peptides 163
3.17.7 Bacteriophages 165

Chapter 4 Antiseptics and Antisepsis
4.1 Introduction 167
4.2 Some definitions specific to antisepsis 167
4.3 Structure of skin 168
4.4 Skin microbiology 169
4.5 Antiseptic applications 169
4.5.1 Routine skin washing/antisepsis 170
4.5.2 Pretreatment of skin prior to surgical intervention 173
4.5.3 Treatment of skin or wound infections 174
4.5.4 Treatment of oral and other mucous membranes 177
4.5.5 Material-integrated applications 177

4.6 Biocides used as antiseptics 177
4.6.1 General considerations 177
4.6.2 Major types of biocides in antiseptics 180
4.6.3 Other antiseptic biocides 183

Chapter 5 Physical Sterilization
5.1 Introduction 185
5.2 Moist heat sterilization 185
5.2.1 Types 187
5.2.2 Applications 192
5.2.3 Spectrum of activity 193
5.2.4 Advantages 196
5.2.5 Disadvantages 196
5.2.6 Mode of action 197
5.3 Dry heat sterilization 197
5.3.1 Types 197
5.3.2 Applications 198
5.3.3 Spectrum of activity 199
5.3.4 Advantages 199
5.3.5 Disadvantages 199
5.3.6 Mode of action 200
5.4 Radiation sterilization 200
5.4.1 Types 200
5.4.2 Applications 203
5.4.3 Spectrum of activity 206
5.4.4 Advantages 208
5.4.5 Disadvantages 208
5.4.6 Mode of action 209
5.5 Filtration 209
5.6 Other physical sterilization methods 209
5.6.1 Plasma 209
5.6.2 Pulsed light 211
5.6.3 Supercritical fluids 213
5.6.4 Pulsed electric fields 214
Chapter 6 Chemical Sterilization

6.1 Introduction 215
6.2 Epoxides 215
 6.2.1 Types 216
 6.2.2 Applications 216
 6.2.3 Spectrum of activity 219
 6.2.4 Advantages 221
 6.2.5 Disadvantages 221
 6.2.6 Mode of action 222
6.3 Low temperature steam-formaldehyde 222
 6.3.1 Types and applications 222
 6.3.2 Spectrum of activity 225
 6.3.3 Advantages 225
 6.3.4 Disadvantages 225
 6.3.5 Mode of action 225
6.4 High temperature formaldehyde-alcohol
 6.4.1 Types and applications 225
 6.4.2 Spectrum of activity 226
 6.4.3 Advantages 226
 6.4.4 Disadvantages 226
 6.4.5 Mode of action 226
6.5 Hydrogen peroxide 226
 6.5.1 Types 226
 6.5.2 Applications 228
 6.5.3 Spectrum of activity 232
 6.5.4 Advantages 233
 6.5.5 Disadvantages 233
 6.5.6 Mode of action 233
6.6 Other oxidizing agent-based processes 233
 6.6.1 Liquid peracetic acid 234
 6.6.2 Electrolyzed water 234
 6.6.2.1 Types 234
 6.6.2.2 Applications 236
 6.6.2.3 Spectrum of activity 237
 6.6.2.4 Advantages 237
 6.6.2.5 Disadvantages 238
 6.6.2.6 Mode of action 238
6.6.3 Gaseous peracetic acid 239
6.6.4 Ozone 240
6.6.5 Chlorine dioxide 242
6.6.6 Nitrogen dioxide 242

Chapter 7 Mechanisms of Action

7.1 Introduction 247
7.2 Anti-infectives 248
 7.2.1 Antibacterials (antibiotics) 248
 7.2.2 Antifungals 251
 7.2.3 Antivirals 251
 7.2.4 Antiparasitic drugs 251
7.3 Macromolecular structure 251
7.4 General mechanisms of action 255
 7.4.1 Introduction 255
 7.4.2 Oxidizing agents 257
 7.4.3 Cross-linking or coagulating agents 263
 7.4.4 Transfer of energy 270
 7.4.5 Other structure-disrupting agents 276

Chapter 8 Mechanisms of Microbial Resistance

8.1 Introduction 285
8.2 Biocide/microorganism interaction 285
8.3 Intrinsic bacterial resistance mechanisms 287
 8.3.1 General stationary phase phenomenon 288
 8.3.2 Motility and chemotaxis 289
 8.3.3 Stress responses 289
 8.3.4 Efflux mechanisms 295
 8.3.5 Enzymatic and chemical protection 299
 8.3.6 Intrinsic mechanisms to heavy metals 300
 8.3.7 Capsules, slime formation, and S-layers 302
 8.3.8 Biofilm development 304
 8.3.9 Bacteria with extreme intrinsic resistance 310
 8.3.10 Extremophiles 312
 8.3.11 Dormancy 316
8.3.12 Revival mechanisms 327
8.4 Intrinsic resistance of mycobacteria 329
8.5 Intrinsic resistance of other Gram-positive bacteria 333
8.6 Intrinsic resistance of Gram-negative bacteria 337
8.7 Acquired bacterial resistance mechanisms 341
 8.7.1 Introduction 341
 8.7.2 Mutational resistance 344
 8.7.3 Plasmids and transmissible elements 355
8.8 Mechanisms of viral resistance 366
8.9 Mechanisms of prion resistance 372
8.10 Mechanisms of fungal resistance 376
8.11 Mechanisms of resistance in other eukaryotic microorganisms 386

Index 393
The control of microorganisms and microbial growth is an important consideration in medical, veterinary, dental, industrial, pharmaceutical, environmental, and food processing settings. This book has been developed to provide a basic understanding of the various chemical and physical antisepsis, disinfection, and sterilization methods used for infection prevention and contamination control. Disinfection and sterilization technologies are used for the control of microorganisms on surfaces, in products, or in air, while antisepsis is particularly associated with microbial reduction on the skin or mucous membranes. Many of these applications have been used over many years and continue to play important roles in our daily lives, including the provision of safe drinking water, production and preservation of products, laboratory safety, food safety, sterilization of medical devices, and disinfection of critical surfaces. The benefits of microbial control have been appreciated since ancient times—for example, in the use of heating, salts, and metals for preservation and wound treatment—despite the absence in those times of any pure understanding of microbiology. Over the last 160 years, we have gained a greater appreciation of microorganisms and their roles in contamination and infection. In parallel, various chemical and physical antisepsis, disinfection, and sterilization methods have been developed and are widely used to render surfaces and products safe for use. Despite these advancements, microbial control issues continue to challenge us. Notable examples include controlling the risk of virus transmission in outbreaks of Zika virus, Ebola virus, and noroviruses; medical device contamination associated with health care outbreaks of infection (such as with flexible endoscopes); the emerging concerns with unique infectious agents (such as prions or other transmissible proteinaceous agents); and the continuing concern of antibiotic-resistant microorganisms in hospitals and the general community. As our knowledge increases in microbiology, so does our understanding of the novel ways that microorganisms can present with mechanisms of surviving the many broad-spectrum contamination control technology that we use, including chemical and physical disinfection and sterilization methods.

As a background to this subject, a brief introduction to microbiology is provided, to include the various types of microorganisms in their major classes. This section also provides the definitions of some key terms widely used in the area, the overall resistance profiles of microorganisms to inactivation, and the variety of methods that are used to test the effectiveness and optimize the use of antimicrobial products and processes.

Disinfection and sterilization can be generally considered as either based on chemical or physical antimicrobial technologies. Chemicals include various types of aldehydes, halogens, and oxidizing agents, while physical processes include the use of heat, filtration, and radiation. For each general group, the various types of technologies are discussed, along with their applications, spectra of
activity, advantages, and disadvantages, and a brief description of their modes of action. A wider range of methods is used for disinfection and antisepsis applications. Many of these are required to reduce the number of microorganisms, or even the number of certain types of microorganisms, to an acceptable level. In contrast, only a limited number of technologies are utilized for sterilization, which has the ultimate goal of rendering a surface, area, or substance free of all viable microbial contamination. For this reason, disinfection and sterilization methods are considered separately, with a specific chapter dedicated to the various antimicrobials used as antiseptics and in antisepsis applications.

The current understanding of the mechanisms of action on microorganisms is considered in chapter 7. It is important to note that the modes of action of these technologies are generally nonspecific and distinct from the more specific mechanisms of action described for anti-infective agents, such as antibiotics and antiviral agents. Most biocides demonstrate a wider range of antimicrobial activity, generally corresponding to nonspecific and varied modes of action. The mechanisms of action of biocides are considered in four general categories: oxidizing agents, cross-linking agents, agents that act by transfer of energy, and other structure-disrupting agents. Despite these general mechanisms, some biocides have been shown to have primary targets similar to those of certain antibiotics, and a better understanding of their mechanisms of action is of interest in the development of the next generation of anti-infectives and/or optimized antimicrobial processes.

Microorganisms demonstrate various natural (intrinsic) and acquired mechanisms to resist the antimicrobial effects of chemical and physical processes. These mechanisms are discussed in further detail in chapter 8 and are important to consider in order to ensure the safe and effective use of these technologies. This topic, and the impact of microbial resistance, has been particularly well published in the use of widely used anti-infectives (notably antibiotic-resistant bacteria like methicillin-resistant *Staphylococcus* and carbapenem-resistant *Enterobacteriaceae*), but similar and distinct mechanisms in microbial resistance to more broad-spectrum antimicrobial products and processes have been described. Biocide resistance in bacteria has been studied in greater detail since the publication of the first edition of this book, with many examples of intrinsic and acquired mechanisms of resistance. Intrinsic mechanisms include biofilm formation, development of dormant endospores, and the accumulation of resistance mechanisms in extremophiles. Acquired resistance mechanisms due to mutations and the acquisition of transposons and/or plasmids, not unlike those described for antibiotics, have also been described in more detail. Although many of these mechanisms allow for the tolerance in the presence of antimicrobial chemicals at normally inhibitory levels, other mechanisms have been shown to dramatically change the response of some microorganisms to biocides and to enable them to survive highly toxic conditions. Further advances have also been made in our understanding of specific mechanisms of resistance in other microorganisms such as viruses, prions, fungi, and protozoa.

Overall, it is intended that this book will give a basic understanding of and reference for the various types, modes of action, and mechanisms of resistance of antiseptics, disinfectants, and sterilization processes for students of microbiology, chemistry, infection prevention, contamination control, public health, and industrial applications. A greater understanding and appreciation of these technologies will continue to ensure their long-term safe and effective use in contamination and infection prevention.
ABOUT THE AUTHOR

Gerald E. McDonnell received a B.Sc. degree in medical laboratory sciences from the University of Ulster (1989) and a Ph.D. in microbial genetics at the Department of Genetics, Trinity College, University of Dublin (1992). His graduate work involved studies on the control of gene expression in *Bacillus subtilis*. He spent 3 years at the Mycobacterial Research Laboratories, Colorado State University, investigating the mechanisms of antibiotic resistance and cell wall biosynthesis in mycobacteria. In 1995 he joined the St. Louis, Mo., operations of ConvaTec, a division of Bristol-Myers Squibb, as a group leader in microbiology in the research and development of skin care, hard surface disinfection, and cleaning chemistries. He worked for STERIS Corporation for 19 years in the USA and in Europe on the development, research, and support of infection and contamination prevention products and services in health care and industrial applications, with a particular focus on cleaning, antisepsis, disinfection, and sterilization. Dr. McDonnell is currently the senior director for sterility assurance for DePuySynthes, a Johnson & Johnson company, and a member of the Johnson & Johnson Sterility Assurance leadership team. He serves as the global technical leader in the areas of microbiology and contamination control including sterilization, aseptic technique, reprocessing, microbiology, and cleanliness requirements. His basic research interests include infection prevention, decontamination microbiology, emerging pathogens, and modes of action and resistance to biocides. His work also includes the development and implementation of international and national guidance and standards in cleaning, disinfection, and sterilization. He has over 180 publications, 22 patents and is a frequent presenter on various aspects of his work internationally.
INDEX

Acanthamoeba, 1
diamidines, 107, 108
hydrogen peroxide, 137, 232
resistance mechanisms, 386–387
Acanthamoeba castellani
fungal resistance, 382
intrinsic resistance, 331
resistance mechanisms, 386, 388–389
Acanthamoeba polyphaga, intrinsic resistance, 331
Acetobacter, 24, 88
Acidiphilium, 302
Acidophiles, 314–316
Acids and acid derivatives
advantages, 88
applications, 87–88
chemical disinfection, 85–89
disadvantages, 88–89
dissociation of benzoic acid, 87f
modes of action, 89
spectrum of activity, 88
types, 85–87
Acinetobacter
Gram-negative bacteria, 24
intrinsic resistance to heavy metals, 302
plasmid-mediated resistance, 361–362
radiation, 207
radiation resistance, 311
silver resistance, 358
wound infection, 174
Acinetobacter baumannii
chlorhexidine, 350
copper disinfection, 123
intrinsic resistance, 341
skin infection, 170
Acquired bacterial resistance mechanisms,
341–344
antimicrobial drugs, 343
mutational resistance, 344–355
penicillin, 341, 342f
plasmids and transmissible elements, 342, 355–366
Acriflavines, mode of action, 276–277
Actinomyces, dormancy, 326
Actinomycetes, cell wall structures, 27
Active transport, 295–296
Adenoviridae, classification, 29
Aerobe, definition, 2–3
Aflatoxin, 36, 36f
Alcaligenes xylosoxidans
enzymatic and chemical protection, 299
intrinsic resistance, 340
Alcohols
advantages, 98–99
antiseptics in washes, 180–181
applications, 97–98
disadvantages, 99
modes of action, 99, 263, 270
spectrum of activity, 98
types, 97
Aldehydes
advantages, 94–95
amino acids cross-linking by, 265f
applications, 91–93
cross-linking agents, 263
disadvantages, 95
formaldehyde, 91, 92–93, 94–95, 97
glutaraldehyde, 91–92, 93–94, 95–97
mode of action, 95–97, 263
ortho-phthaldehyde (OPA), 91–92, 93–94, 95–97
spectrum of activity, 93–94
types, 91
Alexidine, 281
Algae, 13
microorganisms, 7
examples of algal toxins, 34
Alkalis (bases)
advantages, 90–91
applications, 90
chemical disinfection, 89–91
disadvantages, 91
modes of action, 91
spectrum of activity, 90
types, 89
Aminacrine, 101, 102f, 103
Amino acids
macromolecules, 252, 253f
oxidizing agents on, 260
reaction of ethylene oxide with, 264, 265f
Aminoglycosides
acquired resistance mechanisms, 343
mechanism of action, 250
target of, 249f
Amoeba, antimicrobial dyes, 103
Amycolatopsis, cell wall, 26
Anaerobe, definition, 3
Anilides
advantages, 100
applications, 100
biocide as antiseptic, 176
disadvantages, 100
mode of action, 100–101, 276
spectrum of activity, 100
types, 99
Antibacterials. See Antibiotics
Antibiotics
acquired resistance mechanisms, 343
antibacterials, 248–251
definition, 3
mechanisms of action, 250
primary bacterial targets of, 249f
widely used, 250
Antifungals, acquired resistance mechanisms, 343
Anti-infectives
antibacterials (antibiotics), 248–251
antifungals, 251
antiparasitic drugs, 251, 252
antivirals, 251, 252
biocides vs., 247–248
definition, 3, 247
Antimicrobial, definition, 3
Antimicrobial activity
process effects, 55–57
See also Efficacy evaluation
Antimicrobial drugs, acquired resistance mechanisms, 343
Antimicrobial dyes
advantages, 103
aminocaridines as antiseptics, 102f
applications, 101–102
biocide as antiseptic, 176
disadvantages, 103
mode of action, 103–104, 276–277, 277f
spectrum of activity, 102–103
types, 101
Antimicrobials
advantages and disadvantages, 2
enzymes, 163–165
formulation effects, 53–55
peptides, 163–165
processes, 1–2
proteins, 163–165
Antimicrobial soap, definition, 167
Antisepsis
definition, 3, 167
guidelines, 53, 54
importance of cleaning, 57–59
requirements, 54
standards, 53, 54
water quality, 59–60
Antiseptic hand-washes/hand-rubs
definition, 167–168
routine skin hygiene, 170–173
types of biocides in, 180–183
Antiseptic phenolics
advantages, 150–151
antimicrobial activity, 149–150
applications, 148–149
chloroxylenol, 147, 154
disadvantages, 151–152
mode of action, 152–155
salicylic acid, 147, 154–155
triclosan, 147, 152–154
types, 147–148
Antivirals, acquired resistance mechanisms, 343
Arabinogalactan, 26, 330f
Archaea, 26–28
capsules and slime layers, 303
elements of extremophile, 27
halophiles, 316
hyperthermophiles, 314
intrinsic resistance to heavy metals, 300
Arthrobacter, extremophile, 313
Ascaris, resistance mechanism, 391
Ascaris lumbricoides, disease associated with, 10
Aseptic, definition, 3
Aseptic processing, definition, 3
Aspergillus
acid disinfection, 88
antifungals, 251
fungal resistance, 382–383
isothiazolinone derivatives, 160
mycotoxins, 36
resistance to biocides, 376–378
Aspergillus fumigatus, 12
Aspergillus niger, 12
pulsed light, 212
Association of Official Analytical Chemists, 145
Autoclaves
downward-displacement, 188
pressure pulsing, 189
pressure-vacuum pulsing, 189
upward-displacement, 187–188
vacuum and pressure-pulsing, 188–189
Babesia, resistance mechanisms, 387

Bacilli, differentiation of, 17

Bacillus
- biguanides, 107
- dormancy, 317–318, 321
- extreme resistance, 310
- flagella, 289
- Gram-positive bacteria, 20, 22, 333
- heat activity, 67
- intrinsic resistance, 334, 336
- plasma, 211
- plasmids, 342
- stress response, 291

Bacillus anthracis
- acid disinfection, 85, 88
- capsules and slime layers, 303
- glycocalyx, 21
- hydrogen peroxide, 131

Bacillus atrophaeus
- dormancy, 317, 320–321, 324, 325f
- dry heat sterilization, 199
- epoxide for sterilization, 219, 220f
- glutaraldehyde treatment, 267
- hydrogen peroxide, 232, 293
- microwave radiation, 75
- stress response, 290

Bacillus cepacia
- biofilm formation, 307
- intrinsic resistance, 339

Bacillus cereus, dormancy, 321

Bacillus megaterium, 223
- hexachlorophene, 154
- intrinsic resistance, 334

Bacillus pumilus
- radiation, 207
- ultraviolet radiation, 75

Bacillus subtilis
- dormancy, 317
- dry heat sterilization, 199
- glutaraldehyde treatment, 268
- Gram-positive bacteria, 334
- intrinsic resistance, 334–336
- microwave radiation, 75
- triclosan, 152

Bacillus subtilis subsp. niger, epoxide for sterilization, 219

Bacteria
- basic structure of cell, 18f
- cell wall structures, 19f
- differentiation of, 17
- efflux systems, 298
- endospore structure, 320f
- extreme intrinsic resistance, 310–312
- growth curve, 288f
- intrinsic resistance to heavy metals, 300
- microorganisms, 7
- protective cell surface structures, 302

Bacterial endotoxins, examples, 34

Bacterial exotoxins, examples, 34

Bacterial toxins, 35

Bacteriophages, 32, 165

Bacteroides, Gram-negative bacteria, 25

Balantidium coli, classification of, 15

Barophiles, 27

Bases. See Alkalis (bases)

Benzoyl peroxide, 126f
- biocide as antiseptic, 176

Biguanides
- advantages, 106
- applications, 104–105
- chlorhexidine, 104
- chlorhexidine-based antiseptics/disinfectants, 105f
- disadvantages, 106
- modes of action, 106–107, 280
- polyhexamethylbiguanides (PHMBs), 104–106
- spectrum of action, 105
- types, 104

Bioburden, definition, 3

Biocide-microorganism interaction, 285–287

Biocides
- acquired resistance mechanisms, 288
- anti-infectives vs., 247–248
- antimicrobial activity of, 38
- antimicrobial efficacy, 178
- antimicrobial surfaces, 161
- as antiseptics, 177–183
- biocidal processes, 1–2
- choosing process or product, 52–53
- definition, 3, 247
- determination of D value, 40f
- effects on cytoplasmic membranes, 279f
- formulation of, 53–55
- fungal resistance mechanisms, 376–386
- guidelines, 53
- integration into surfaces, 160–162
- intrinsic resistance mechanisms, 288
- known extreme resistance to, 310
- loss of resistance to, 323f
- material-integrated applications, 177
- mechanisms of resistance against prions, 374f
- microbial resistance, 36, 37, 286f
- multidrug resistance determinant, 364
- mutations causing sensitivity to, 352
- oxidizing agent-based mode of action, 258
- plasmid-encoded resistance to, 356
- plasmids and transmissible elements, 355–366
- process effects, 55–57
- qualitative and semi-quantitative population determination, 41f
- standards, 53, 54
- treatment of oral and mucous membranes, 177

Bacterial endotoxins, examples, 34

Bacterial exotoxins, examples, 34

Bacterial toxins, 35

Bacteriophages, 32, 165

Bacteroides, Gram-negative bacteria, 25

Balantidium coli, classification of, 15

Barophiles, 27

Bases. See Alkalis (bases)

Benzoyl peroxide, 126f
- biocide as antiseptic, 176

Biguanides
- advantages, 106
- applications, 104–105
- chlorhexidine, 104
- chlorhexidine-based antiseptics/disinfectants, 105f
- disadvantages, 106
- modes of action, 106–107, 280
- polyhexamethylbiguanides (PHMBs), 104–106
- spectrum of action, 105
- types, 104

Bioburden, definition, 3

Biocide-microorganism interaction, 285–287

Biocides
- acquired resistance mechanisms, 288
- anti-infectives vs., 247–248
- antimicrobial activity of, 38
- antimicrobial efficacy, 178
- antimicrobial surfaces, 161
- as antiseptics, 177–183
- biocidal processes, 1–2
- choosing process or product, 52–53
- definition, 3, 247
- determination of D value, 40f
- effects on cytoplasmic membranes, 279f
- formulation of, 53–55
- fungal resistance mechanisms, 376–386
- guidelines, 53
- integration into surfaces, 160–162
- intrinsic resistance mechanisms, 288
- known extreme resistance to, 310
- loss of resistance to, 323f
- material-integrated applications, 177
- mechanisms of resistance against prions, 374f
- microbial resistance, 36, 37, 286f
- multidrug resistance determinant, 364
- mutations causing sensitivity to, 352
- oxidizing agent-based mode of action, 258
- plasmid-encoded resistance to, 356
- plasmids and transmissible elements, 355–366
- process effects, 55–57
- qualitative and semi-quantitative population determination, 41f
- standards, 53, 54
- treatment of oral and mucous membranes, 177
Biocides (continued)
types in antiseptic skin washes/rinses, 180–183
typical survivor curves, 41f
viral resistance, 366–372
Biocompatibility, definition, 3
Biofilm
bacteria and fungi associated with, 304
conditioning, 305
definition, 3
development, 304–309
schematic of development, 305f
viruses in, 367
Biological indicators
definition, 3
efficacy testing, 45–47
Bland soap, definition, 168
Bordetella, Gram-negative bacteria, 24
Borrelia, Gram-negative bacteria, 24
Borrelia mylophora, bacteria, 16
Bowie-Dick test, 190, 191f
Boyle’s law, 185
Bromine, 111
advantages, 118–119
agents releasing, 115f
applications, 117
characteristics, 114
disadvantages, 119–120
mode of action, 121
spectrum of activity, 118
See also Halogens and halogen-releasing agents
Brucella, bacteria, 16
Burkholderia
enzymatic and chemical protection, 299
Gram-negative bacteria, 24
intrinsic resistance, 337
plasmid-mediated resistance, 362
Byssoschlamys, 384
Caenorhabditis, hydrogen peroxide, 138, 232
Campylobacter, Gram-negative bacteria, 24
Candida
acid disinfection, 88
antifungals, 251
biofilm formation, 308
capsules and slime layers, 302
chlorhexidine, 181
chloroxylenol, 150
copper disinfection, 124
essential oils, 110
fungal resistance, 379–380
skin floras, 169
Candida albicans, 12
antiseptic effect, 178
biofilm formation, 304
copper disinfection, 123
fungal resistance, 379
heavy metal resistance, 385
skin floras, 169
skin infection, 170
wound infection, 174
Carrier tests
standardized, 44
surface testing, 43–44
Cell culture, efficacy, 50
Cestodes, disease associated with, 10
Chaetomium
fungal resistance, 382
mycotoxins, 36
Charles’ law, 185–186
Chemical disinfection
acids and acid derivatives, 85–89
alcohols, 97–99
aldehydes, 91–97
alkalis (bases), 89–91
anilides, 99–101
antimicrobial dyes, 101–104
antimicrobial enzymes, proteins, and peptides, 163–165
antiseptic phenolics, 147–155
bacteriophages, 165
biguanides, 104–107
biocides integrated into surfaces, 160–162
diamidines, 107–108
essential oils and plant extracts, 108–111
guidelines and standards on use and application of, 86
halogens and halogen-releasing agents, 111–121
isothiazolinone derivatives, 159–160
metals, 121–126
micro- and nanoparticles, 162–163
peroxygens and other oxygen forms, 126–143
phenolics, 143–147
pyrithiones, 159
QACs and other surfactants, 155–159
See also Peroxygens and other forms of oxygen
Chemical indicators
definition, 4
efficacy testing, 47–48
examples of standards, 49
Chemical sterilization
Chlorine dioxide, 242
electrolyzed water, 234–239
epoxides, 215–222
gaseous peracetic acid (PAA) sterilization, 239–240
high-temperature formaldehyde-alcohol, 225–226
liquid PAA, 234
low-temperature steam-formaldehyde (LTSF), 222–225

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Thu, 08 Aug 2019 03:17:02
nitrogen dioxide, 242–245
ozone, 240–242
Chitin, 12, 13, 165
Chlamydia
Gram-negative bacteria, 25
intrinsic resistance, 340
microorganisms, 7
Chlamydia trachomatis, 21
Chlamydomonas, 13, 390
Chlamydomonas reinhardtii, 390
Chlamydophila, 25
Chlamydophila pneumoniae, 21
Chlamydophila psittaci, 21
Chloramphenicol, spectrum of activity and mode of action, 250
Chlorhexidine
Gram-positive bacteria, 366
penetration into skin epidermis, 180f
resistance to, 350–352
Saccharomyces cerevisiae response, 378
therapeutic antiseptic, 181
Chlorine, 111
advantages, 118
applications, 116–117
characteristics, 111–114
chemistry in water, 113f
disadvantages, 119
mode of action, 120–121
organic chloramines, 113f
peptide bond breakage, 261
sodium hypochlorite-based disinfectants, 116f
spectrum of activity, 117–118
See also Halogens and halogen-releasing agents
Chlorine dioxide, 126, 372
advantages, 140
applications, 135–136
biocide as antiseptic, 176
characteristics, 127–129
chemical sterilization, 242
disadvantages, 141–142
fumigation cycle, 137f
generator systems, 135f
liquid formulations for medical device disinfection, 136f
mode of action, 143
production of, 128f
spectrum of activity, 139
See also Peroxygens and other forms of oxygen
Chloroxylenol
advantages, 151
antimicrobial activity, 150
antiseptic in wash, 182
disadvantages, 152
mode of action, 154
structure, 147
–Cidal, definition, 3–4
Ciprofloxacin, spectrum of activity and mode of action, 250
Citrobacter, 358
Cladosporium, 382
Cladosporium herbarum, 111
Cleaning
chemical methods, 57–59
components of formulations, 58
definition, 4
importance of, 57–59
physical methods, 57, 59
Clostridium
dormancy, 317–318, 321
extreme resistance, 310
Gram-positive bacteria, 23
heat activity, 67
intrinsic resistance, 335
oxygen requirements, 316
skin infection, 170
Clostridium botulinum
antimicrobial peptides, 165
recovery, 329
Clostridium difficile, 1, 131
Coagulating agents, mode of action, 263–270
Cocci, differentiation of, 17
Cold temperatures, biocidal effects, 68
Comoviridae, 32
Contamination, importance of cleaning, 57–59
Copper, 121
advantages, 124
antimicrobial surfaces, 161
applications, 122–123
characteristics, 121
disadvantages, 124
mode of action, 125, 276, 278
spectrum of activity, 123–124
Coronaviridae, viral diseases, 31
Corynebacteria, 150
Corynebacterium, 8, 27
cell wall, 26
dormancy, 326
Gram-positive bacteria, 23
skin floras, 169
Corynebacterium jeikeium, 366
Coxiella, 66
Coxiella burnetii
heat sensitivity, 62
Q-fever, 21
Creutzfeld-Jakob disease (CJD), 33–34, 94
Cross-linking agents, mode of action, 263–270
Cryptococcus, 13
antifungals, 251
capsules and slime layers, 302
fungal resistance, 380
Cryptococcus neoformans, 12
fungal resistance, 379–380
silver disinfection, 125
Cryptosporidium
chlorine dioxide, 139
chlorine disinfection, 118
hydrogen peroxide, 137
hydrogen peroxide sterilization, 232
iodine disinfection, 117
liquid peracetic acid (PAA) sterilization, 234
ozone, 137
PAA, 139
resistance mechanisms, 386
ultraviolet radiation, 75
Cryptosporidium parvum
classification of, 15
resistance mechanisms, 387–388
Cyanobacteria, Gram-negative bacteria, 25

D$_{10}$ value/D value
definition, 4
estimation, 42f
time-kill determinations, 39–42
Decontamination, definition, 4
Definitions, 2–6
Deinfestation, definition, 4
Deinococcus, extreme resistance, 310–312
Deinococcus geothermalis, 304
Deinococcus radiodurans
extreme resistance, 310, 312
intrinsic resistance, 340
radiation, 207
survival of radiation, 311f
ultraviolet radiation, 75
Deoxyribonucleic acid (DNA)
heat denaturation of, 271–272, 272f
polynucleotides, 255, 257f
radiation, 274–275
viruses, 369–372
Depyrogenation, definition, 4
Dermatophytes, skin infection, 170
Dermis, skin structure, 168f
Detergent, definition, 4
Diamidines
advantages, 108
applications, 107
disadvantages, 108
mode of action, 108, 276
spectrum of activity, 107–108
types, 107
Dimorphic fungi, 12
Disinfector, definition, 4
Disinfection
definition, 4
importance of cleaning, 57–59
microorganisms, 50–52
prions, 373
standards and guidelines, 54
water quality, 59–60
See also Chemical disinfection; Physical disinfection
Dormancy
endospores, 317–325
exospires, 325–327
microbial resistance, 316–327
Dry heat sterilization
advantages, 199
applications, 198–199
disadvantages, 199–200
mode of action, 200
series of industrial sterilizers, 198f
spectrum of activity, 199
types, 197–198
Dyes. See Antimicrobial dyes

Efficacy evaluation, 38–50
biological indicators, 46–47
chemical indicators, 47–48, 49
in-use testing, 45–46
microscopy, 49–50
miscellaneous indicators, 48–49
parametric control, 49
simulated testing, 45
standardized carrier tests, 44
standardized suspension tests, 43
surface testing, 43–44
suspension testing, 38–43
time-kill (D-value), 39–42
Electric fields, pulsed, 214
Electrolyzed water
advantages, 237–238
applications, 236–237
chemical sterilization, 234–239
disadvantages, 238
generators, 237f
mode of action, 238–239
spectrum of activity, 237
system, 235f
types, 234–236
Electromagnetic radiation, 69–70
atomic structure, 69f
electromagnetic spectrum, 70f
wavelengths and energies, 70
Endospores, dormancy, 317–325
Endotoxins, 4–5, 34, 35–36
Entamoeba histolytica, classification of, 15
Enterobacteriaceae, resistance mechanisms, 387
silver resistance, 358
skin, 169
Enterobacter aerogenes, 364
Enterobacter cloacae, diamides, 108
Enterobacteriaceae, 1
Gram-negative bacteria, 25
plasmid-mediated resistance, 361

Enterobius
- hydrogen peroxide, 138
- hydrogen peroxide sterilization, 232

Enterobius vermicularis
- disease associated with, 10
- life cycle, 11f

Enterococcus
- biguanides, 106
- heat activity, 66
- heat sensitivity, 62
- intrinsic resistance, 334–336
- multidrug resistance plasmids, 364
- skin floras, 169
- skin infection, 170
- wound infection, 174

Enterococcus faecalis
- efflux systems, 298
- Gram-positive bacteria, 22

Enterococcus faecium
- antibiotic resistance, 366
- Gram-positive bacteria, 22

Envinia, 25

Environmental Protection Agency (EPA), 50

Epidermophyton, anilide disinfection, 100

Episomes, 342

Epoxides
- advantages, 221
- applications, 216–219
- chemical sterilization, 215–222
- disadvantages, 221–222
- modes of action, 222
- spectrum of activity, 219–221
- structures, 215
- types, 216

Ergosterol, 247, 256f

Erythromycin, spectrum of activity and mode of action, 250

Escherichia
- aldehyde disinfection, 94
- flagella, 289
- Gram-negative bacteria, 25
- mutation resistance, 345
- skin floras, 169

Escherichia coli
- alcohol disinfection, 99
- anilide disinfection, 101
- bactericidal activity of glutaraldehyde, 267
- bacteriophages, 32f
- chlorine disinfection, 120
- copper disinfection, 124
- efflux, 296, 298
- endotoxins, 35

Essential oils and plant extracts
- advantages, 110
- applications, 109
- biocide as antiseptic, 176
- disadvantages, 110
- modes of action, 110–111
- products containing, 110f
- spectrum of activity, 109–110
- types, 108–109
- types and sources, 109

Ethanol, 97. *See also* Alcohols

Ethylene oxide (EO), 215, 216
- advantages, 221
- disadvantages, 221–222
- mode of action, 222
- reaction with amino acid side chains, 264, 265f
- reaction with guanine, 263–264, 264f
- spectrum of activity, 219–221
- sporidal *Bacillus atrophaeus* effect of, 220f
- sterilizers, 216f, 217f
- typical sterilization processes, 218f

See also Epoxides

Eubacteria, 14, 16–18, 20–21, 26

Euflavine, 102f

Euglena, resistance mechanism, 389, 390

Eukaryotes, 6
- general structure, 9
- multicellular, 6, 8
- resistance mechanisms, 386–392

Eurotrium, 384

Exospores, dormancy, 325–327

Exotoxins, 5, 34, 35

Extreme intrinsic resistance, bacteria with, 310–312

Extremophiles, 312–316

Facilitated diffusion, 295

Fasciola hepatica, disease associated with, 10

Fatty acids, biosynthesis of, 282–283

Filamentous fungi, 12

Environmental stress, 294

enzymatic and chemical protection, 299–300

generation time, 289

heat shock response, 294

intrinsic resistance, 337–338, 340

mercury resistance, 356

mutation resistance, 351–353

oxidizing agents on, 260, 262

phenolics, 146

plasmid-mediated resistance, 360

radiation, 206, 208

silver disinfection, 124

skin infection, 170

stress response, 290, 292

triclosan, 152, 154, 345, 348–350

ultraviolet radiation, 75
Filtration
advantages, 84
biological safety classes, 81f
disadvantages, 84
high-efficiency particulate air (HEPA) filters, 79f, 80, 81f
liquid and gas applications, 78
mode of action, 84
size exclusion capabilities, 83f
spectrum of activity, 82–83
standards and guidelines for disinfection and sterilization, 82
types and applications, 77–82
Flaviviridae, classification, 29
Flavobacterium, isothiazolinone derivatives, 160
Flukes, disease associated with, 10
Fluorine
characteristics of, 115
See also Halogen and halogen-releasing agents
Food and Drug Administration (FDA), 50, 54, 66, 81, 86, 172, 218
Forced displacement, steam, 189, 190f
Formaldehyde
advantages, 94–95
agents releasing, 93f
application, 92–93
disadvantages, 95
high-temperature formaldehyde-alcohol, 225–226
mode of action, 97
reactions with proteins, 266f, 266–267
spectrum of activity, 94
sterilization with low-temperature steam-formaldehyde (LTSF), 222–225
structure, 91, 222
See also Aldehydes
Formulations
biocides, 53–55
definition, 5
components of cleaning, 58
Fumigation, definition, 5
Fungal cell envelope, 13f
Fungi, 8, 11–13
examples of common, 12
examples of fungal toxins, 34
life cycle, 382f
microorganisms, 7
resistance mechanisms, 376–386
spore-bearing structures, 384f
spores, 383, 384f
structures, 11f
Fusarium, mycotoxins, 36
Geminiviridae, plant viruses, 32
Geobacillus
dormancy, 317, 318, 321
extreme resistance, 310
Gram-positive bacteria, 22
heat activity, 67
plasma, 211
Geobacillus stearothermophilus
dormancy, 324
heat sensitivity, 62
hydrogen peroxide sterilization, 227f, 232
microwave radiation, 75
recovery, 329
steam sterilization, 193–194, 195f
Geobacter, intrinsic resistance to heavy metals, 300, 301
Geodermatophilus
radiation, 207
radiation resistance, 311
Germ, definition, 5
Germicidal, definition, 5
Germicide, definition, 5
Germination, definition, 5
Gerstmann-Sträussler-Scheinker syndrome, 33–34
Giardia
chlorine dioxide, 139
hydrogen peroxide, 137
hydrogen peroxide sterilization, 232
iodine disinfection, 117
liquid peracetic acid (PAA) sterilization, 234
N-halamines, 162
peracetic acid (PAA), 139
ultraviolet radiation, 75
Giardia lamblia, classification of, 15
Glutaraldehyde
advantages, 94
applications, 91–92
cross-linking reaction by, 266–268, 267f
disadvantages, 95
mode of action, 95–97
mutations and resistance, 353–355
spectrum of activity, 93–94
structure, 91
See also Aldehydes
Glycocalyx, 21
Glycopeptides
mechanism of action, 250
target of, 249f
Gonyaulax, 13, 34, 389
Gram-negative bacteria
bacterium cell wall, 19f, 20–21, 338f
examples of bacteria, 24–25
intrinsic resistance, 337–341
Gram-positive bacteria
bacterium cell wall, 18, 19f, 20, 334f
chlorhexidine tolerance, 366
examples of bacteria, 22–23
intrinsic resistance, 333–337
multidrug resistance, 364–366
Gram-positive endospore-forming rods, life cycle of, 318f
Gram staining, 17

Haemophilus influenzae, 25
 mutation resistance, 347
triclosan, 154
Hair follicle, skin structure, 168f
Halforson-Ziegler equation, 42
Halobacterium, 27, 28, 316
Halogen and halogen-releasing agents
 advantages, 118–119
 applications, 115–117
 bromine, 111, 117, 118–120, 121
 chemical disinfection, 111–121
 chemistry of chlorine in water, 113f
 chemistry of iodine in water, 112f
 chlorine, 111, 116–118, 119, 120–121
 disadvantages, 119–120
 iodine, 111, 115–116, 117, 118, 119, 120
 mode of action, 120–121
 organic chloramines, 113f
 poly(N-vinyl-2-pyrrolidone) (PVPI), 111, 112f
 spectrum of activity, 117–118
types, 111–115
Halomonas, extremophile, 313
Halophiles, 27, 315–316
Heat
 transfer of energy, 270–273
See also Dry heat sterilization
Heat disinfection, 61–68
 advantages, 67
 applications, 63–65
 disadvantages, 67–68
 microbial lethality, 64f
 microbial sensitivity, 63f
 mode of action, 68
 moist heat resistance of microorganisms, 66f
 spectrum of activity, 66–67
 standards and guidelines on disinfection, 66
types of, 61–62
Helicobacter, 16, 24
Helicobacter pylori, pH conditions, 315
Helminths
 associated with disease, 10
 life cycle, 11, 11f
 microorganisms, 7
 structure of, 391f
Hemagglutinins, 29
Hepadnaviridae, viral diseases, 31
Herpes simplex virus, skin infection, 170
Herpesviridae
 classification, 29
 viral diseases, 31
Hexachlorophene
 antimicrobial activity, 149
 applications, 148
disadvantages, 151
 mode of action, 153f, 154
 structure, 147f
Hexamine, aldehyde release, 93f
High-temperature formaldehyde-alcohol
 advantages, 226
 application, 225–226
 disadvantages, 226
 mode of action, 226
 spectrum of activity, 226
 sterilization, 225–226
type, 225–226
Histoplasma capsulatum, 12, 382
Hydrogen peroxide, peptide bond breakage, 261
Hydrogen peroxide for disinfection, 126, 371
 advantages, 139–140
 applications, 130–134
 biocide as antiseptic, 176
 characteristics, 126
 compounds releasing, 127
 disadvantages, 140–141
 gas generators, 132f, 133f
 mode of action, 142–143
 spectrum of activity, 137–138
 synergistic formulations and processes, 134
See also Peroxygens and other forms of oxygen
Hydrogen peroxide for sterilization
 advantages, 233
 applications, 228–232
 disadvantages, 233
 gas sterilization processes, 230f
 gas sterilizer, 228, 229f
 mode of action, 233
 spectrum of activity, 232–233
 STERRAD sterilizers, 229–232
types, 226–228
Hydrophilic, definition, 5
Hydrophobic, definition, 5
Hymenobacter, radiation, 207
Hyperthermophiles, 312–316
Inactivation, definition, 5
Infrared radiation, 72
 advantages, 75
 applications, 74
 disadvantages, 76
 mode of action, 77
 spectrum of activity, 75
Intrinsic bacterial resistance mechanisms, 287–329
 bacterial growth curve, 288f
 bacteria with extreme, 310–312
 biofilm development, 304–309, 305f
 capsule and slime layer formation and S-layers, 302–303
 chemotaxis, 289
Intrinsic bacterial resistance mechanisms
(continued)
dormancy, 316–327
efflux mechanisms, 295–299
enzymatic and chemical protection, 299–300
extremophiles, 312–316
general stationary-phase phenomena, 288–289
Gram-negative bacteria, 337–341
Gram-positive bacteria, 333–337
to heavy metals, 300–302
motility, 289
mycobacteria, 329–333
revival mechanisms, 327–329
stress responses, 289–295
In-use testing, efficacy, 45–46
Iodine, 111
advantages, 118
antisepsics in washes, 181–182
applications, 115–116
characteristics, 111
chemistry in water, 112f
disadvantages, 119
mode of action, 120
spectrum of activity, 117
See also Halogens and halogen-releasing agents
Isoniazid
spectrum of activity and mode of action, 250
target of, 249f
Isopropanol, 97. See also Alcohols
Isothiazolinone derivatives, 159–160
Klebsiella
capsules and slime layers, 303
plasmid-mediated resistance, 362
silver resistance, 358
skin floras, 169
Klebsiella pneumoniae, 1, 350
Kocuria, radiation, 207, 311
Lactobacillus, 20, 23
Lactococcus, 22
Lactococcus lactis, 365
Legionella
biofilm formation, 304
chlorine disinfection, 117
copper disinfection, 124
electrolyzed water sterilization, 236
Gram-negative bacteria, 24
heat activity, 66
heat sensitivity, 62
peracetic acid (PAA), 135
resistance mechanisms, 387
silver disinfection, 123
ultraviolet radiation, 75
Legionella pneumophila
biofilm formation, 307
intrinsinc resistance, 337
Leishmania
antimicrobial dyes, 103
diamides, 108
diamidines, 107
resistance mechanisms, 386
skin infection, 170
Leishmania donovani, 15
Leptothrix, Gram-negative bacteria, 25
Lipids
macromolecules, 253, 256f
temperature extremes, 273
Lipopolysaccharides (LPSs), 20–21, 26, 36f
Listeria
chlorine disinfection, 116
essential oils, 109
Gram-positive bacteria, 23
plasmid-mediated efflux pumps, 365
Listeria monocytogenes
intrinsic resistance, 335–336
plasmid-mediated resistance, 360
Low-temperature steam-formaldehyde (LTSF)
advantages, 225
applications, 222–224
disadvantages, 225
mode of action, 225
spectrum of activity, 225
standards and guidelines for sterilization, 224
sterilization cycle, 223f
sterilization system, 223f
sterilizer, 224f
types, 222–224
Macrolides
mechanism of action, 250
target of, 249f
Macromolecules
amino acids, 252, 255f
cross-linking or coagulating agents, 263–270
fatty acids, 254–255, 255f
lipids, 253, 256f
nucleic acids, 255, 257f
nucleotides, 255, 257f
oxidizing agents, 257–263
polynucleotides, 255, 258f
polysaccharides, 253, 254f
proteins, 252, 253f
structure-disrupting agents, 276–283
structures of, 251–255
transfer of energy, 270–276
Material safety data sheet (MSDS), definition, 5
Mechanisms. See Acquired bacterial resistance mechanisms; Intrinsic bacterial resistance mechanisms
Mechanisms of action
antifungal drugs, 251
antiparasitic drugs, 251, 252
INDEX

antivirals, 251, 252
cross-linking or coagulating agents, 263–270
general, 255–256
oxidizing agents, 257–263
structure-disrupting agents, 276–283
transfer of energy, 270–276
See also Mode of action
Mercury resistance, bacteria, 355–358
Metals
advantages, 124
applications, 122–123
biocides as antiseptics, 176
chemical disinfection, 121–126
copper compounds, 121
disadvantages, 124–125
intrinsic resistance to heavy metals, 300–302
mode of action, 125–126, 276, 277–279
resistance mechanisms, 355–363
silver compounds, 121–122
spectrum of activity, 123–124
types, 121–122
See also Copper; Silver
Methanogens, 27
Methicillin-resistant Staphylococcus aureus (MRSA)
antimicrobial enzymes, 164
bacteriophages, 165
biguanides, 106
diamides, 108
hydrogen peroxide, 131
intrinsic resistance, 336
phenolics, 149
Methylobacterium
intrinsic resistance, 337
radiation, 207
radiation resistance, 311
Methylobacterium radiotolerans, intrinsic resistance, 340
Methylococcus, enzymatic and chemical protection, 299
Micelles, structures of, 56f, 156f
Microbial growth
pH conditions, 315f
salt conditions, 315f
Microbial resistance
biocides, 36, 37
microorganisms, 36–38
Microbial resistance mechanisms
biocide-microorganism interaction, 285–287
eukaryotes, 386–392
fungal resistance, 376–380
plasmids and/or transposon-mediated, 355–366
prion resistance, 372–376
viral resistance, 366–372
See also Acquired bacterial resistance mechanisms; Intrinsic bacterial resistance mechanisms
Microbiology, 6, 7, 169
Micrococcus, skin floras, 169
Micrococcus lysodeikticus, glutaraldehyde treatment, 267
Microorganisms
advantages and disadvantages, 8
antimicrobial enzymes, proteins, and peptides, 163–165
choosing biocidal process or product, 52–53
disinfection vs. sterilization, 50–52
evaluation of efficacy, 38–50
extremophiles, 312–316
macromolecular structure, 251–255
microbial resistance, 36–38
rate of inactivation in sterilization process, 51f
revival mechanisms of, 327–329
types of, 7
See also Efficacy evaluation
Microparticles, 162–163
Microscopy efficacy, 49–50
Microsporum
anilide disinfection, 100
antimicrobial dyes, 102
fungal resistance, 385
Microwave radiation, 72–73
advantages, 75–76
applications, 74
disadvantages, 76
mode of action, 77
spectrum of activity, 75
Minimum effective concentration (MEC), definition, 5
Minimum inhibitory concentration (MIC), determination of, 38–39
Minimum recommended concentration (MRC), definition, 5
Mode of action
acid disinfection, 89
alcohols, 99
aldehyde disinfection, 95–97
alkali disinfection, 91
anilides, 100–101
antimicrobial dyes, 103–104
biguanides, 106–107
chlorine dioxide, 143
diamides, 108
dry heat sterilization, 200
electrolyzed water sterilization, 238–239
epoxides, 222, 263
essential oils and plant extracts, 110–111
filtration, 84
halogens, 120–121
heat disinfection, 68
high-temperature formaldehyde-alcohol sterilization, 226
hydrogen peroxide, 142–143
hydrogen peroxide sterilizer, 233
Mode of action (continued)
low-temperature steam–formaldehyde, 225
ozone, 142
peracetic acid (PAA), 143
phenolics, 158–159
radiation, 76–77
radiation sterilization, 209
steam sterilization, 197
Moist-heat sterilization. See Steam sterilization
MRSA. See Methicillin-resistant Staphylococcus aureus (MRSA)
Mucor, chloroxylenol, 150
Multidrug resistance (MDR), 352
bacteria, 363–365
Multiplicity reactivation, 371
Mutational resistance, 344–355
Mycobacteria
bacteria, 16
dormancy, 317
Gram-positive bacteria, 23
heat activity, 66
multiple antibiotic resistance, 347
resistance mechanisms, 387
stress response, 291
Mycobacterium abscessus, intrinsic resistance, 331, 333
Mycobacterium avium
intrinsic resistance, 329–331, 333
mutation resistance, 353
Mycobacterium avium-intracellulare
aldehyde disinfection, 93
biguanides, 107
intrinsic resistance, 330
Mycobacterium bovis, intrinsic resistance, 330–331
Mycobacterium chelonea
aldehyde disinfection, 93, 96
biofilm formation, 304, 308
intrinsic resistance, 330, 332
mutation resistance, 354
Mycobacterium chimaera, 308
Mycobacterium fortuitum, 304, 330, 333
Mycobacterium gordonae, 333, 354
Mycobacterium kansasii, 331
Mycobacterium leprae, 331
Mycobacterium luteus, 335
Mycobacterium marinum, 331
Mycobacterium massiliense, 333
Mycobacterium phlei, 330
Mycobacterium smegmatis
intrinsic resistance, 332
triclosan, 154
Mycobacterium tuberculosis
biofilm formation, 308
cells of, 26f
cell wall, 19f, 21, 26
filtration, 78
generation time, 289
heat sensitivity, 62
mutation resistance, 353
triclosan, 154
ultraviolet radiation, 75
Mycoplasma
examples of pathogenic, 17
microorganisms, 7
simple representation of cell, 16f
Mycoplasma pneumoniae, 14
Myctoxins, 36
Myxobacteria, Gram-negative bacteria, 25
Myxococcus, gliding bacteria, 289
Naegleria, chlorine dioxide, 139
Nanoparticles, 162–163
Neisseria, Gram-negative bacteria, 24
Neisseria gonorrhoeae, 24, 347
Nematodes, disease associated with, 10
Nerve fiber, skin structure, 168f
Neuraminidases, 29
N-halamines
antimicrobial surfaces, 161
chlorine-based, 162f
halogen-releasing agents, 161–162
Nitrogen dioxide, 126
characteristics, 129
chemical sterilization, 242–245
gas sterilizer, 243f
sterilization process, 244f
Nocardia
cell wall, 26
dormancy, 326
Gram-positive, 20
Gram-positive bacteria, 23
Norwalk virus, viral persistence, 368
Noxythiolin, aldehyde release, 93f
Nucleic acid, heat denaturation, 271–272, 272f
Onchocerca volvulus
disease associated with, 10
skin infection, 170
Orthomyxoviridae, viral diseases, 31
Ortho-phthaldehyde (OPA)
advantages, 94
applications, 91–92
disadvantages, 95
medical device disinfection with, 92f
mode of action, 95–97, 268–269
mutations and resistance, 353–355
spectrum of activity, 93–94
structure, 91
INDEX

See also Aldehydes
Oxidizing agents
 major target sites for, 259f
 mode of action, 257–263
Oxygen
 compounds releasing, 127
 See also Ozone; Peroxygens and other forms of oxygen
OxyR (cellular protein), stress response, 292
Ozone, 126
 advantages, 139
 applications, 129–130
 characteristics, 127
 disadvantages, 140
 generators, 130f
 mode of action, 142
 spectrum of activity, 136–137
 sterilization, 240–242
 sterilizer, 241f
 See also Peroxygens and other forms of oxygen

Papovaviridae, viral diseases, 31
Parachlamydia, intrinsic resistance, 340
Paramecium
 classification of, 15
 copper disinfection, 124
Parametric control, concept of, 49
Parasite, definition, 5
Parvoviridae
 classification, 29
 viral diseases, 31
Passive diffusion, 295
Pasteurellaceae, Gram-negative bacteria, 25
Pasteurization, 5, 64–65
Pathogen, definition, 5
Penicillin
 mechanisms of action, 341, 342f
 spectrum of activity and mode of action, 250
Penicillium
 acid disinfection, 88
 chloroxylenol, 150
 mycotoxins, 36
Penicillium chrysogenum, 12
Penicillium roquefortii, 12
Peptidoglycan, 18, 329–330
 basic structure of, 20f
 mycobacterial cell wall structure, 330f
Peracetic acid (PAA), 126
 advantages, 140
 applications, 134–135
 characteristics, 26–127
 disadvantages, 141
 gaseous PAA sterilization, 239–240
 generation of, 128f
 liquid, for sterilization, 234
 mode of action, 143
 peptide bond breakage, 261
 spectrum of activity, 138–139
 temperature and sporicidal efficacy, 138f
 See also Peroxygens and other forms of oxygen
Peroxygens and other forms of oxygen
 advantages, 139–140
 applications, 129–136
 disadvantages, 140–142
 modes of action, 142–143
 spectrum of activity, 136–139
 types, 126–129
 See also Chlorine dioxide; Hydrogen peroxide (PAA)
Persistence, definition, 168
pH, microorganisms, 314–315
Phages, 165
Phenolics
 advantages, 145–146
 applications, 144–145
 chemical disinfection, 143–147
 disadvantages, 146
 disinfectants, 145f
 mode of action, 269–270
 modes of action, 146–147, 263
 spectrum of activity, 145
 structures, 143
 types, 144
 See also Antiseptic phenolics
Phychrobacter, extremophile, 313
Physical disinfection
 cold temperatures, 68
 filtration, 77–84
 heat, 61–68
 radiation, 68–77
Physical sterilization
 dry heat, 197–200
 plasma, 209–211
 pulsed electric fields, 214
 pulsed light, 211–213
 radiation, 200–209
 steam (moist-heat), 185–197
 supercritical fluids, 213–214
Phytophthora infestans, 12
Picornaviridae, viral diseases, 31
Piezophiles, 27
Pinus, essential oils, 109
Pityrosporum, salicylic acid, 150
Pityrosporum ovale, zinc pyrithione, 159
Plain soap, definition, 168
Plant extracts. See Essential oils and plant extracts
Plasma
 generation with oxygen gas, 210f
 physical sterilization, 209–211
 Plasmid-encoded resistance, biocides, 355–366
Plasmodium
resistance mechanisms, 386–387
triclosan, 154
Plasmodium falciparum
classification of, 15
resistance mechanisms, 386
triclosan, 149, 150, 349
Pleomorphic, differentiation of, 17
Pneumocystis
diamides, 108
diamidines, 107
Poliovaccines, 368
Polioviruses, 368, 370
Polyhexamethylbiguanides (PHMBs), 104–106
Polymyxin B
spectrum of activity and mode of action, 250
target of, 249f
Poxviridae
classification, 29
viral diseases, 31
Preoperative preparation, definition, 168
Preservation, definition, 5
Pressure pulsing, 189, 190f
Pressure-vacuum pulsing, 189, 190f
Prions, 33–34
disinfection and sterilization methods against,
373
mechanisms of resistance, 374f
microorganisms, 7
proposed secondary structure, 33f
resistance mechanisms, 372–376
steam sterilization cycles for inactivation, 196
term, 32
theory of, 33f
Proflavine, 102f
Prokaryotes, 14–28
archaea, 26–28
basic structure of bacterial cell, 18f, 19f
eubacteria, 14, 16–18, 20–21, 26
eukaryotes and, 8
general structure, 9
Gram-negative bacteria examples, 24–25
Gram-positive bacteria examples, 22–23
Propionibacterium
Gram-positive bacteria, 23
salicylic acid, 150
skin floras, 169
Propionibacterium acnes
bacteria, 16
biofilm formation, 304
hydrogen peroxide, 131, 138
skin infection, 170
Propylene oxide, 215, 216
spectrum of activity, 219–221
See also Epoxides
Proteins, biocides changing, 282
Proteus, intrinsic resistance, 337, 339
Proteus mirabilis, chlorhexidine, 350
Protochlamydia, intrinsic resistance, 340
Protozoa, 13–14
classification of, 15
microorganisms, 7
Providencia stuartii
chlorhexidine, 181
intrinsic resistance, 339
Pseudomonas
acid disinfection, 88
alcohol disinfection, 98
aldehyde disinfection, 94
antimicrobial enzymes, 164
bacteria, 16
biofilm formation, 304, 307, 309
bisphenols, 149–150
capsules and slime layers, 303
chloroxylenol, 182
copper resistance, 360
diamides, 108
efflux, 296–298
electrolyzed water sterilization, 236
endotoxins, 35
enzymatic and chemical protection, 299,
299–300
essential oils, 109
extremophile, 313
Gram-negative bacteria, 24
intrinsic resistance to heavy metals, 301–302
intrinsic resistance, 337
isothiazolinone derivatives, 160
mercury resistance, 356
multiple antibiotic resistance, 347
plasmid-mediated resistance, 361, 363
radiation, 206
silver resistance, 358, 360
stress response, 290
triclosan tolerance, 345–348
wound infection, 174
Pseudomonas aeruginosa
antiseptic phenolics, 147
biguanides, 105, 107
biofilm formation, 304, 306, 308
copper disinfection, 123
diamides, 108
efflux, 298–299
intrinsic resistance, 337–340
mutation resistance, 351–353, 355
plasmid-mediated resistance, 361
skin infection, 170
triclosan, 154, 349
Pseudomonas putida, efflux, 298
Pseudomonas stutzeri
chlorhexidine, 350
silver disinfection, 124
Psychrophiles, 312–314
Pulsed electric fields, sterilization, 214
Pulsed light, physical sterilization, 211–213
Pyrothiones, 159, 176
Pyrococcus, 28, 207, 311
Pyrogen, definition, 5
Pyrolobus fumarii, extremophile, 313
Pyronema, fungal resistance, 385
Pyronema domesticum
epoxide for sterilization, 220, 221
fungal resistance, 381
Quaternary ammonium compounds (QACs) and surfactants
advantages, 158
antimicrobial efficacy, 157–158
applications, 156–157
basic structure, 157f
biocide as antiseptic, 176
chemical disinfection, 155–159
disadvantages, 158
mode of action, 158–159, 280–281
mutations and resistance, 352–353
QAC-based disinfectants, 157f
types, 155–156
Quinolones
mechanism of action, 250
target of, 249f
Radiation
advantages, 75–76
applications, 73–74
bacteria with extreme intrinsic resistance, 310–312
Deinococcus radiodurans survival of, 311f
disadvantages, 76
electromagnetic radiation, 69–70
infrared, 72, 74, 75, 76, 77
ionizing and nonionizing, 274f
isotopes, 68–69
microwave, 72–73, 74, 75–76, 77
mode of action, 76–77
spectrum of activity, 74–75
transfer of energy, 273–276
types, 71
ultraviolet, 71–72, 73–74, 74–75, 76–77
Radiation sterilization
advantages, 208
applications, 203–206
cesium-137 (137Cs), 201, 202
cobalt-60 (60Co) generation and decay, 201f
disadvantages, 208–209
generation of X-rays, 202f
iridium-192 (192Ir), 201–202
mode of action, 209
spectrum of activity, 206–208
types, 200–203
Ralstonia eutropha, plasmid-mediated resistance, 360, 361
Reference microorganism, definition, 5
Resistance, definition, 5
Retroviridae
classification, 29
viral diseases, 31
Revival mechanisms, microorganisms, 327–329
Rhabdoviridae, viral diseases, 31
Rhodoturula, fungal resistance, 379, 380, 382
Ribonucleic acid (RNA)
heat denaturation, 271
polynucleotides, 255, 257f
radiation, 274–275
viruses, 369–372
Rickettsia
Gram-negative bacteria, 25
intrinsic resistance, 340
microorganisms, 7
Rickettsia prowazekii, 21
Rickettsia typhi, 21
Rubrobacter
radiation, 207
radiation resistance, 311
Saccharomyces, 12
acid disinfection, 88
intrinsic resistance to heavy metals, 301
Saccharomyces cerevisiae, 12
fungal resistance, 378–379
thioles, 362
plasmid-mediated resistance, 362
Safety data sheet (SDS), definition, 5
Salicylic acid
applications, 149
biocide as antiseptic, 176
disadvantages, 152
mode of action, 154–155
structure, 147
Salmonella
biguanides, 105
chlorine disinfection, 116
endotoxins, 35
flagella, 289
Gram-negative bacteria, 25
intrinsic resistance, 340
silver resistance, 358–360
stress response, 290
triclosan tolerance, 346–347
Salmonella enterica, chlorhexidine, 351
Salmonella enterica serovar Typhi, chlorine, 116
Salmonella enterica serovar Typhimurium, radiation, 208
Salmonella enterica serovar Typhimurium 338
SAL (sterility assurance level), definition, 5, 51
Sanitization, definition, 5
Schistosoma, disease associated with, 10
Schizosaccharomyces, 12, 385
Sebaceous gland, skin structure, 168f
Secondary metabolites, definition, 5
Streptococcus, silver resistance, 358
Streptococcus spp.
 - biofilm formation, 307
 - mutants, 344, 350, 353
Streptococcus mutans
 - biofilm formation, 307
 - mutants, 345
 - peptidoglycan, 18
 - plasmid-mediated resistance, 360, 363
 - silver disinfection, 123
 - skin infection, 169, 170
 - susceptibility to antiseptics and disinfectants, 362
 - triclosan, 152, 154, 345
Staphylococcus spp.
 - biofilm formation, 307
 - capsules and slime layers, 303
 - Gram-positive bacteria, 22
 - plasmid-mediated resistance, 365
 - skin flora, 169
 - *Staphylococcus aureus* biofilm formation, 307
 - Gram-positive bacteria, 22
 - mutation resistance, 345
 - peptidoglycan, 18
 - plasmid-mediated resistance, 360, 365
 - triclosan, 152, 154
Staphylococcus epidermidis biofilm formation, 304
 - capsules and slime layers, 303
 - Gram-positive bacteria, 22
 - plasmid-mediated resistance, 365
 - skin flora, 169
 - *Staphylococcus xylosus* plasmid-mediated resistance, 360
 - *Streptococcus dysgalactiae* biofilm formation, 304
 - capsules and slime layers, 303
 - Gram-positive bacteria, 22
 - plasmid-mediated resistance, 365
 - skin flora, 169
 - *Streptococcus mutans* biofilm formation, 307
 - capsules and slime layers, 303
chlorhexidine resistance, 366
chlorhexidine structures, 21
Streptococcus pneumoniae
 efflux, 297–298
glycocalyx structures, 21
Streptococcus pyogenes, skin infection, 170
Streptococcus sanguis, chlorhexidine resistance, 366
Streptococcus sobrinus, biofilm formation, 304
Streptomycetes
dormancy, 326
 Gram-positive bacteria, 20, 23
 life cycle of, 326f
 stress response, 291
Streptomyces coelicolor, dormancy, 326
Streptomycins, 23, 250, 358
Stumbo-Murphy-Cochran equation, 42
Sulfapyridine, spectrum of activity and mode of action, 250
Sulfonamides
 acquired resistance mechanisms, 343
 mechanism of action, 250
 target of, 249f
Supercritical fluids, sterilization, 213–214
Surfaces, biocides integrated into, 160–162
Surface testing, antimicrobial activity, 43–44
Surfactants
 classification of, 156
 mode of action, 280–281
 structures of, 56f, 156f
 types, 155–156, 276
 See also Quaternary ammonium compounds (QACs) and surfactants
Surgical scrub, definition, 168
Suspension testing, efficacy, 38–43
Sweat gland, skin structure, 168f
Taenia saginata, disease associated with, 10
Talaromyces, 384
Tapeworms, disease associated with, 10
Taurolin, aldehyde release, 93f
Tetracycline
 acquired resistance mechanisms, 343
 mechanism of action, 250
 spectrum of activity and mode of action, 250
 target of, 249f
Thermococcus, radiation, 207
Thermococcus gammatolerans, radiation resistance, 311
Thermocrinis ruber, heat activity, 67
Thermophiles, 27, 312–316
Thermoplasma, 27
Thermotoga maritima, heat activity, 67
Thermus aquaticus, heat activity, 67
Thiobacillus, mercury resistance, 356
Thiomonas, intrinsic resistance to heavy metals, 301–302
Time-kill (D-value) determinations, 39–42
Titanium dioxide, 160–161
 antimicrobial surfaces, 161
 nanoparticles, 163
Tolerance, definition, 6
Toxins, 34–36
Toxoplasma, resistance mechanisms, 387
Toxoplasma gondii
 classification of, 15
 life cycle of, 16f
 triclosan, 149, 150
Transposons, bacterial resistance, 342–343
Trematodes, disease associated with, 10
Treponema, 24
Treponema palladium, generation time, 289
Treponema pallidum, skin infection, 170
Trichophyton
 acid disinfection, 88
 anilide disinfection, 100
 antimicrobial dyes, 102
 essential oils, 110
 salicylic acid, 150
Trichophyton mentagrophytes, 12
Triclocarban, 100
Triclosan
 advantages, 150–151
 antimicrobial surfaces, 161
 antiseptic in wash, 182–183
 applications, 148–149
 bacterial tolerance, 346f
 disadvantages, 151–152
 mode of action, 152–154, 282–283
 mutation resistance of bacteria, 345–347
 structure, 147f
Trypanosoma
 diamides, 108
 triclosan, 154
Trypanosoma brucei, triclosan, 149, 150
Trypanosoma gambiense, classification of, 15
Ultra-high-temperature (UHT) processing, 64–65
Ultraviolet (UV) radiation, 71–72
 advantages, 75
 applications, 73–74
 disadvantages, 76
 mode of action, 76–77
 representation of, 71f
 spectrum of activity, 74–75
 types, 72
Unicellular fungi, 12
Upward-displacement autoclaves, 187–188
Validation, definition, 6
Vancomycin, spectrum of activity and mode of action, 250
Varicella-zoster virus, skin infection, 170
Veillonella, 17, 25
Veriﬁcation, deﬁnition, 6
Viable, deﬁnition, 6
Vibrio
dormancy, 317
Gram-negative bacteria, 25
stress response, 291
Vibrio cholerae, chlorine, 116
Vibrionaceae, Gram-negative bacteria, 25
Vibrio parahaemolyticus, mutation resistance, 347
Viral resistance, mechanisms, 366–372
Viruses, 28–33
basic structure, 28f
capsid, 369
classiﬁcation of viral families, 29
enveloped, 28–29, 368–369
elements of viral diseases, 31

microorganisms, 7
nonenveloped, 28, 369–370
particles, 368–369
resistance mechanisms, 366–372
typical life cycle, 30f

Water
quality, 59–60
See also Electrolyzed water
Wound, deﬁnition, 168
Wuchereria bancrofti, disease associated with, 10

Xenopus laevis, antimicrobial peptides, 165

Yersinia, Gram-negative bacteria, 25
Zinc pyrithione, 159, 176
Z value, 62, 64f

Downloaded from www.asmscience.org by
IP: 54.70.40.11
On: Thu, 08 Aug 2019 03:17:02