Larone’s
MEDICALLY IMPORTANT FUNGI
A GUIDE TO IDENTIFICATION
Thomas J. Walsh, M.D., Ph.D. (hon), FIDSA, FAAM, FECMM
Weill Cornell Medicine of Cornell University, New York–Presbyterian Hospital, and Hospital for Special Surgery, New York, New York
Randall T. Hayden, M.D.
St. Jude Children’s Research Hospital, Memphis, Tennessee
Davise H. Larone, MT(ASCP), Ph.D., D(ABMM), F(AAM)
Professor Emerita, Weill Medical College of Cornell University, New York, New York
Illustrated by Davise H. Larone
Cover: *Aspergillus fumigatus* on Sabouraud dextrose agar at 30°C for 4 days. Green velvety colony with a narrow white border. Microscopic structures consisting of septate hyphae and unbranched conidiophores with enlarged vesicle at the top. Compact uniseriate phialides bearing chains of round conidia only on the upper two-thirds of the vesicle. See pp. 295 and 450.

Copyright © 2018 by ASM Press. ASM Press is a registered trademark of the American Society for Microbiology. All rights reserved. No part of this publication may be reproduced or transmitted in whole or in part or reutilized in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

Disclaimer: To the best of the publisher’s knowledge, this publication provides information concerning the subject matter covered that is accurate as of the date of publication. The publisher is not providing legal, medical, or other professional services. Any reference herein to any specific commercial products, procedures, or services by trade name, trademark, manufacturer, or otherwise does not constitute or imply endorsement, recommendation, or favored status by the American Society for Microbiology (ASM). The views and opinions of the author(s) expressed in this publication do not necessarily state or reflect those of ASM, and they shall not be used to advertise or endorse any product.

Library of Congress Cataloging-in-Publication Data

Title: Larone’s medically important fungi : a guide to identification / Thomas J. Walsh, MD, PhD (hon), FIDSA, FAAM, FECMM, Randall T. Hayden, M.D., Davise H. Larone, MT(ASCP), Ph.D., F(AAM) ; illustrated by Davise H. Larone.

Other titles: Medically important fungi

Classification: LCC QR245 (ebook) | LCC QR245 .L37 2018 (print) | DDC 616.9/6901—dc23

LC record available at https://lccn.loc.gov/2018015129

doi:10.1128/9781555819880

Printed in Canada

10 9 8 7 6 5 4 3 2 1

Address editorial correspondence to: ASM Press, 1752 N St., NW, Washington, DC 20036-2904, USA.

Send orders to: ASM Press, P.O. Box 605, Herndon, VA 20172, USA.
Phone: 800-546-2416; 703-661-1593. Fax: 703-661-1501.
E-mail: books@asmusa.org
Online: http://www.asmscience.org
Dedicated with love
To Ronit
Jessie
Beth
and with loving memory
to John D. Lawrence

Dedicated with love
To Laura, Emma, John, Frances, and Margaret Walsh
CONTENTS

Miscellaneous Hyalohyphomycoses
(Other than Aspergillosis) 46
Dermatophytosis (Tinea, Ringworm) 48
Tinea versicolor 49
Tinea nigra 50
Phaeohyphomycosis 51
Chromoblastomycosis 52
Sporotrichosis 53
Histoplasmosis 54
Talaromycosis (Penicilliosis) 56
Blastomycosis 58
Paracoccidioidomycosis 59
Candidiasis (Candidosis) 60
Trichosporonosis 62
Cryptococcosis 63
Pneumocystosis 65
Protothecosis 66
Coccidioidomycosis 67
Rhinosporidiosis 68
Adiaspiromycosis 70

Special References 71

PART II

Identification of Fungi in Culture 73

Guide to Identification of Fungi in Culture 75

Detailed Descriptions 109

Filamentous Bacteria 111
 Introduction 113
 TABLE 2 Differentiation of filamentous aerobic actinomycetes encountered in clinical specimens 115
 Nocardia spp. 116
 TABLE 3 Phenotypic characteristics of most common clinically encountered Nocardia spp. 118
 Streptomyces spp. 119
 Actinomadura spp. 120
 Nocardiosis dassonvillei 121

Yeasts and Yeastlike Organisms 123
 Introduction to Yeasts and Yeastlike Organisms 125
 Candida albicans 127
 TABLE 4 Characteristics of the genera of clinically encountered yeasts and yeastlike organisms 128
 Candida dubliniensis 129

TABLE 5 Characteristics of Candida spp. most commonly encountered in the clinical laboratory 130
TABLE 6 Characteristics that assist in differentiating Candida dubliniensis from Candida albicans 132
 Candida tropicalis 133
 Candida parapsilosis complex 134
 Candida lusitaniae 135
 Candida krusei 136
 TABLE 7 Differentiating characteristics of Blastoschizomyces capitatus versus Candida krusei 137
 TABLE 8 Differentiating characteristics of Candida krusei, Candida inconspicua, and Candida norvegensis 137
 Candida kefyr (formerly Candida pseudotropicalis) 138
 Candida rugosa species complex 139
 Candida guilliermondii complex 141
 TABLE 9 Differentiating characteristics of Candida guilliermondii versus Candida famata 142
Candida lipolytica (Yarrowia lipolytica) 143
Candida zeylanoides 144
Candida glabrata complex (formerly Torulopsis glabrata) 145
Candida auris 146
Candida baemulonii (baemulonis) complex 147
Cryptococcus neoformans 148
Cryptococcus gattii (formerly C. neoformans var. gattii) 150
TABLE 10 Characteristics of Cryptococcus spp. 151
TABLE 11 Characteristics of yeasts and yeastlike organisms other than Candida spp. and Cryptococcus spp. 152
Rhodotorula spp. 153
Sporobolomyces salmonicolor 154
Saccharomyces cerevisiae 155
Wickerhamomyces anomalus (sexual state; formerly Pichia anomala and Hansenula anomala); Candida pelliculosa (asexual state) 157
Malassezia spp. 158
Malassezia pachydermatis 160
Ustilago sp. 161
Prototheca spp. 162
Trichosporon spp. 163
TABLE 12 Key characteristics of the most common clinically encountered Trichosporon spp. 164
Blastoschizomyces capitatus 165
Geotrichum candidum 166
Thermally Dimorphic Fungi 167
Introduction 169
Histoplasma capsulatum 170
Blastomyces dermatitidis and Blastomyces gilchristi 172
Paracoccidioides brasiliensis 174
Talaromyces (Penicillium) marneffei 176
Sporothrix schenckii complex 178
TABLE 13 Characteristics for differentiating species of the Sporothrix schenckii complex 180
Thermally Monomorphic Moulds 181
Mucormycetes 183
Introduction to Mucormycetes 185
TABLE 14 Differential characteristics of similar organisms in the class Mucormycetes 187
TABLE 15 Differential characteristics of the clinically encountered Rhizopus spp. 187
Rhizopus spp. 188
Mucor spp. 189
Rhizomucor spp. 190
Lichtheimia corymbifera complex (formerly Absidia corymbifera) 191
Apophysomyces elegans 193
Saksenaea vasiformis 195
Cokeromyces recurvatus 196
Cunninghamella bertholletiae 198
Syncephalastrum racemosum 199
Basidiobolus sp. 200
Conidiobolus coronatus 201
Dematiaceous Fungi 203
Introduction to Dematiaceous Fungi 205
Fonsecaea pedrosoi 207
Fonsecaea compacta (now considered a mutant form of F. pedrosoi) 209
Rhinocladiella spp. (some species formerly Acrotheca spp.; others Ramichloridium spp.) 210
Phialophora verrucosa 211
TABLE 16 Characteristics of Phialophora, Pleurostomophora, Phaeoacremonium, Acremonium, Phialemonium, and Lecythophora 212
Pleurostomophora richardsiae (formerly Phialophora richardsiae) 213
Phaeoacremonium parasiticum
(formerly Phialophora parasitica) 214

Phialemonium spp. (genus intermediate between Phialophora and Acremonium) 215

Cladosporium spp. 217

| TABLE 17 | Characteristics of Cladosporium spp. and Cladophialophora spp. 218 |

Cladophialophora carrionii (formerly Cladosporium carrionii) 219

Cladophialophora bantiana (previously known as Xylohypha bantiana, Cladosporium bantianum, and Cladosporium trichoides) 220

Cladophialophora boppii (formerly Taeniolella boppii) 221

Scedosporium spp. complex
(also known as Scedosporium apiospermum complex) 222

| TABLE 18 | Differentiating phenotypic characteristics of the clinically encountered members of the Scedosporium spp. complex and Lomentospora prolificans 224 |

Lomentospora prolificans (formerly Scedosporium prolificans and Scedosporium inflatum) 225

Verruconis gallopava (formerly Ochroconis gallopava and Dactylaria constricta var. gallopava) 226

| TABLE 19 | Differentiation of the clinically encountered Verruconis species 227 |

| TABLE 20 | Characteristics of some of the “black yeasts” 227 |

Exophiala jeanselmei complex 228

Exophiala dermatitidis (Wangiella dermatitidis) 229

Hortaea werneckii (Phaeoannellomyces werneckii) 230

Madurella mycetomatis 231

Madurella grisea 232

Piedraia hortae 233

Aureobasidium pullulans 234

| TABLE 21 | Differential characteristics of Aureobasidium pullulans versus Hormonema dematioides 236 |

Hormonema dematioides 237

Neoscytalidium dimidiaum (formerly Scytalidium dimidiaum) 238

Botrytis spp. (Botrytis cinerea) 240

Stachybotrys chartarum (S. alternans, S. atra) 241

Graphium eumorphum 242

Curvularia spp. 243

Bipolaris spp. 244

| TABLE 22 | Characteristics of Bipolaris, Drechslera, and Exserohilum spp. 246 |

Exserohilum spp. 247

Helminthosporium sp. 248

Alternaria spp. 249

Ulocladium sp. 250

Stemphylium sp. 251

Pithomyces spp. 252

Epicoccum sp. 253

Nigrospora sp. 254

Chaetomium sp. 255

Phoma spp. 256

Dermatophytes 257

Introduction to Dermatophytes 259

Microsporum audouinii 261

Microsporum canis var. canis 262

Microsporum canis var. distortum 263

Microsporum cookei (also known as Paraphyton cookei and Lophophyton cookei) 264

Microsporum gypseum complex
(synonymous with Nannizzia gypsea) 265

Microsporum galinaeae (synonymous with Lophophyton galinaeae) 266

Microsporum nanum (synonymous with Nannizzia nanum) 267
Microsporum vanbreuseghemii 268
Microsporum ferrugineum 269
Trichophyton mentagrophytes 270

TABLE 23 Differentiation of similar conidia-producing *Trichophyton* spp. 271
Trichophyton rubrum 272
Trichophyton tonsurans 273
Trichophyton terrestre (synonymous with *Arthroderma insingulare*) 274
Trichophyton megninii 275
Trichophyton soudanense 276

TABLE 24 Growth patterns of *Trichophyton* species on nutritional test media 277
Trichophyton schoenleinii 278
Trichophyton verrucosum 279
Trichophyton violaceum (synonymous with *Trichophyton yaoundei*) 280
Trichophyton ajelloi (synonymous with *Arthroderma uncinatum*) 281
Epidermophyton floccosum 282

Hyaline Hyphomycetes 283
Introduction to Hyaline Hyphomycetes 285

Fungi in which arthroconidia predominate 286
Coccidioides ssp. 286

TABLE 25 Differential characteristics of fungi in which arthroconidia predominate 288
Malbranchea ssp. 289
Geomyces pannorum 290
Arthrographis kalrae 291
Hormographiella aspergillata 292

Common species of Aspergillus 293
The Genus *Aspergillus* 293
Aspergillus fumigatus complex 295
Aspergillus niger complex 297
Aspergillus flavus complex 298

TABLE 26 Differentiating characteristics of the most common species of *Aspergillus* 299
Aspergillus versicolor 301
Aspergillus calidoustus (previously considered *Aspergillus ustus*) 302
Aspergillus tanneri (sp. nov.) 303
Aspergillus nidulans complex 305
Aspergillus glaucus 306
Aspergillus terreus complex 307
Aspergillus clavatus 308

Other common hyaline hyphomycetes 309
Penicillium ssp. 309
Paecilomyces variotii 310
Purpureocillium lilacinum (formerly *Paecilomyces lilacinus*) 311
Scopulariopsis ssp. 312

TABLE 27 Differential characteristics of *Paecilomyces variotii* versus *Purpureocillium lilacinum* 314

TABLE 28 Differential characteristics of *Scopulariopsis brevicaulis* versus *Scopulariopsis brumptii* 314
Gliocladium sp. 315
Trichoderma sp. 316
Emmonsia ssp. 317
Beauveria bassiana 319
Verticillium ssp. 320
Acremonium ssp. (formerly *Cephalosporium* ssp.) 321
Fusarium ssp. 322
Lecythophora ssp. 324
Trichothecium roseum 325
Chrysosporium ssp. 326

TABLE 29 Differential characteristics of *Chrysosporium* versus *Sporotrichum* 328
Sporotrichum pruinosum 329
Sepedonium sp. 330
Chrysosporium sitophila (formerly *Monilia sitophila*) 331
PART III
Basics of Molecular Methods for Fungal Identification 333

Introduction 335
Molecular Terminology 336
Overview of Classic Molecular Identification Methods 340
Fungal Targets 340
Selected Current Molecular Methodologies 341
Amplification and Non-Sequencing-Based Identification Methods 341
- PCR (polymerase chain reaction) 341
- Nested PCR 342
- Real-time PCR 342
- Melting curve analysis 342
- Fluorescence resonance energy transfer (FRET) 343
- TaqMan 5’ nuclease 343
- Molecular beacons 344
- Microarray 344
- Repetitive-element PCR 345
Sequencing-Based Identification Methods 345
- Sanger sequencing 345
- Next-generation sequencing 346
- Pyrosequencing 346
- DNA barcoding 347
Applications of DNA Sequencing 348
- Accurate molecular identification 348
- Phylogenetic analysis 349
- Organism typing 349
Commercial Platforms and Recently Developed Techniques 351
- AccuProbe test 351
- PNA FISH 351
- Luminex xMAP 352
- T2 magnetic resonance 352
- Broad-panel molecular testing and other emerging sample-to-answer technologies 353
- MALDI-TOF 353
Selected References for Further Information 354

PART IV
Laboratory Technique 359

Laboratory Procedures 361
- Collection and Preparation of Specimens 363
- Methods for Direct Microscopic Examination of Specimens 366
- Primary Isolation 368
TABLE 30 Media for primary isolation of fungi 370
TABLE 31 Inhibitory mould agar versus Sabouraud dextrose agar as a primary medium for isolation of fungi 371
- Macroscopic Examination of Cultures 372
- Microscopic Examination of Growth 372
- Procedure for Identification of Yeasts 374
Direct Identification of Yeasts from Blood Culture (by PNA FISH) 376
Isolation of Yeast When Mixed with Bacteria 377
Germ Tube Test for the Presumptive Identification of Candida albicans 378
Rapid Enzyme Tests for the Presumptive Identification of Candida albicans 379
Caffeic Acid Disk Test 379
Olive Oil Disks for Culturing Malassezia spp. 380
Conversion of Thermally Dimorphic Fungi in Culture 381
Sporulation Inducement Method for Apophysomyces and Saksenaea 381
In Vitro Hair Perforation Test (for Differentiation of Trichophyton mentagrophytes and Trichophyton rubrum) 382
Germ Tube Test for Differentiation of Some Dematiaceous Fungi 382
Temperature Tolerance Testing 383
Maintenance of Stock Fungal Cultures 383
Controlling Mites 384

Staining Methods 385
Acid-Fast Modified Kinyoun Stain for Nocardia spp. 387
Acid-Fast Stain for Ascospores 388
Ascospore Stain 388
Calcofluor White Stain 388
Giemsa Stain 389
Gomori Methenamine Silver (GMS) Stain 390
Gram Stain (Hucker Modification) 392
Lactophenol Cotton Blue 393
Lactophenol Cotton Blue with Polyvinyl Alcohol (PVA) (Huber’s PVA Mounting Medium, Modified) 393
Rehydration of Paraffin-Embedded Tissue (Deparaffination) 394

Media 395
Introduction 397
Acetamide Agar 397
Arylsulfatase Broth 398
Ascospore Media 398
Assimilation Media (for Yeasts) 399
Birdseed Agar (Niger Seed Agar; Staib Agar) 403
Brain Heart Infusion (BHI) Agar 404
Buffered Charcoal Yeast Extract (BCYE) Agar 404
Canavanine Glycine Bromothymol Blue (CGB) Agar 405
Casein Agar 406
CHROMagar Candida Medium 406
ChromID Candida Medium 407
Chromogenic Candida Agar 408
Citrate Agar 408
Cornmeal Agar 408
Dermatophyte Test Medium (DTM) 409
Dixon Agar (Modified) 410
Esculin Agar 410
Fermentation Broth for Yeasts 411
Gelatin Medium 412
Inhibitory Mould Agar (IMA) 413
Leeming-Notman Agar (Modified) 414
Loeffler Medium 414
Middlebrook Agar Opacity Test for Nocardia farcinica 415
Mycosel Agar 416
Nitrate Broth (for Nitrate Reduction Test) 416
Polished Rice, or Rice Grain, Medium 417
Potato Dextrose Agar and Potato Flake Agar 417
Rapid Assimilation of Trehalose (RAT) Broth 418
Rapid Sporulation Medium (RSM) 420
SABHI Agar 420
Sabouraud Dextrose Agar (SDA) 420
Sabouraud Dextrose Agar with 15% NaCl 421
Sabouraud Dextrose Broth 422
Starch Hydrolysis Agar 422
Trichophyton Agars 422

Tyrosine, Xanthine, or Hypoxanthine Agar 423
Urea Agar 424
Water Agar 424
Yeast Extract-Phosphate Agar with Ammonia 425

Color Plates 427
Glossary 457
Bibliography 469
Selected Websites 495
Index 499
List of Tables

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Stains for direct microscopic observation of fungi and/or filamentous bacteria in tissue</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 2</td>
<td>Differentiation of filamentous aerobic actinomycetes encountered in clinical specimens</td>
<td>115</td>
</tr>
<tr>
<td>TABLE 3</td>
<td>Phenotypic characteristics of most common clinically encountered Nocardia spp.</td>
<td>118</td>
</tr>
<tr>
<td>TABLE 4</td>
<td>Characteristics of the genera of clinically encountered yeasts and yeastlike organisms</td>
<td>128</td>
</tr>
<tr>
<td>TABLE 5</td>
<td>Characteristics of Candida spp. most commonly encountered in the clinical laboratory</td>
<td>130</td>
</tr>
<tr>
<td>TABLE 6</td>
<td>Characteristics that assist in differentiating Candida dubliniensis from Candida albicans</td>
<td>132</td>
</tr>
<tr>
<td>TABLE 7</td>
<td>Differentiating characteristics of Blastoschizomyces capitatus versus Candida krusei</td>
<td>137</td>
</tr>
<tr>
<td>TABLE 8</td>
<td>Differentiating characteristics of Candida krusei, Candida inconspicua, and Candida norvegensis</td>
<td>137</td>
</tr>
<tr>
<td>TABLE 9</td>
<td>Differentiating characteristics of Candida guilliermondii versus Candida famata</td>
<td>142</td>
</tr>
<tr>
<td>TABLE 10</td>
<td>Characteristics of Cryptococcus spp.</td>
<td>151</td>
</tr>
<tr>
<td>TABLE 11</td>
<td>Characteristics of yeasts and yeastlike organisms other than Candida spp. and Cryptococcus spp.</td>
<td>152</td>
</tr>
<tr>
<td>TABLE 12</td>
<td>Key characteristics of the most common clinically encountered Trichosporon spp.</td>
<td>164</td>
</tr>
<tr>
<td>TABLE 13</td>
<td>Characteristics for differentiating species of the Sporothrix schenckii complex</td>
<td>180</td>
</tr>
<tr>
<td>TABLE 14</td>
<td>Differential characteristics of similar organisms in the class Mucormycetes</td>
<td>187</td>
</tr>
<tr>
<td>TABLE 15</td>
<td>Differential characteristics of the clinically encountered Rhizopus spp.</td>
<td>187</td>
</tr>
<tr>
<td>TABLE 16</td>
<td>Characteristics of Phialophora, Pleurostomophora, Phaeoacremonium, Acremonium, Phialemonium, and Lecythophora</td>
<td>212</td>
</tr>
</tbody>
</table>
TABLE 17 Characteristics of Cladosporium spp. and Cladophialophora spp. 218
TABLE 18 Differentiating phenotypic characteristics of the clinically encountered members of the Scedosporium spp. complex and Lomentospora prolificans 224
TABLE 19 Differentiation of the clinically encountered Verruconis species 227
TABLE 20 Characteristics of some of the “black yeasts” 227
TABLE 21 Differential characteristics of Aureobasidium pullulans versus Hormonema dematioides 236
TABLE 22 Characteristics of Bipolaris, Drechslera, and Exserohilum spp. 246
TABLE 23 Differentiation of similar conidia-producing Trichophyton spp. 271
TABLE 24 Growth patterns of Trichophyton species on nutritional test media 277
TABLE 25 Differential characteristics of fungi in which arthroconidia predominate 288
TABLE 26 Differentiating characteristics of the most common species of Aspergillus 299
TABLE 27 Differential characteristics of Paecilomyces variotii versus Purpureocillium lilacinum 314
TABLE 28 Differential characteristics of Scopulariopsis brevicaulis versus Scopulariopsis brumptii 314
TABLE 29 Differential characteristics of Chrysosporium versus Sporotrichum 328
TABLE 30 Media for primary isolation of fungi 370
TABLE 31 Inhibitory mould agar versus Sabouraud dextrose agar as a primary medium for isolation of fungi 371
Preface to the Sixth Edition

Each edition of this book has been written with the intention of making the identification of clinically encountered fungi a more logical, understandable, and enjoyable endeavor for the personnel of clinical mycology laboratories as well as for others with an interest in the field. The accompanying goal is to broaden the reader’s knowledge and provide current information regarding emerging and established fungal pathogens as well as new methods that can be applied in clinical laboratories. To those ends, the original format that has proved to be so successful is carefully maintained in this edition while additions and updates have been made throughout the book.

This new edition represents a passing of the torch of writing this esteemed, beloved, and time-honored book by Dr. Davise H. Larone to Dr. Thomas J. Walsh and Dr. Randall T. Hayden. Tom, Randy, and Davise worked with extraordinarily close synergy in providing seamless continuity in order to update this important laboratory diagnostic resource in medical mycology.

The majority of recent advances in our field have been based on molecular taxonomic studies applied to the medically important fungi. This continues to result in a molecular labyrinth of taxonomy and nomenclature adjustments. Phylogenetic (evolutionary development) studies continue to discover that organisms which may appear morphologically identical and that have been thought to be a single species are instead a species complex (a collection of related but distinct species). The “new” individual species may possess unfamiliar names. Moreover, these studies also are revealing that organisms thought to be within one genus or order now need to be transferred to another phylogenetic category that allows for a more accurate classification but leads to a change in nomenclature.

Since these changes may be confusing, we have endeavored to provide continuity with earlier names and nomenclatural stability
in areas of uncertainty. Nonetheless, over time, eventual accumulation of data regarding the distribution, clinical relevance, and antifungal susceptibility of newly described fungal species may lead to improved diagnosis and treatment of our patients. Recognizing the rapid changes that are occurring in terminology, we have introduced a discussion on taxonomy and nomenclature in order to help guide the reader through the substantial changes that are occurring in this area of medical mycology. The “Taxonomy and Nomenclature” essay in the Basics section outlines the principle of “one fungus/one name” and the consequences of simplifying, or in some instances complicating, the nomenclature. We note the transition of some common *Candida* species to the less commonly known teleomorph names, and exemplify cases of “cryptic species” that may only be identified by molecular tools.

The companion offshoot of molecular studies is the expanded variety of methods developed for the identification of fungi. As these methods are escalating in availability and usage, especially in reference laboratories, Part III, “Basics of Molecular Methods for Fungal Identification,” has been updated in this edition. This section is not an instruction on performing molecular assays; instead, its aim is to provide basic information to increase familiarity, comprehension, and comfort with the terminology, principles, and literature involved. It is written with the goal of increasing familiarity with the methods of molecular identification, especially for those readers who have traditionally relied on morphology and biochemicals to determine the identification of clinical isolates. Availability of morphological assessment, biochemical reactions, and molecular methods will allow the use of whichever systems are appropriate under the particular circumstance. We discuss several new technological advances that have become available since the last edition. Several commercial systems have incorporated real-time PCR and melt curve analysis in an integrated platform. Next-generation sequencing (NGS) is being incorporated into several new platforms that will likely be used increasingly in laboratory diagnostic mycology. The T2 system, which employs PCR and magnetic resonance technology, has the ability to rapidly detect five leading *Candida* spp. directly from blood.

This edition also includes descriptions of new emerging pathogens, such as *Candida auris* and *Aspergillus tanneri*. Detailed footnotes of nomenclatural changes that may be ongoing, but are not fully validated or routinely used in clinical laboratories, are now provided. Of particular note is the substantial increase in detailed descriptions of the epidemiological, clinical, and antifungal susceptibility characteristics of each organism. We also have revised the references throughout the book, adding many more primary references as well as updated atlases for resources. The section on reagents and biochemicals has been extensively reviewed to assure that all contact information, including websites, is most current.

Suggested readings for further information on each organism are still a standard component of each page in Part II. As new books and many valuable journal articles have been published in recent years, they have replaced some of the old, standard texts that many of us have used for a long time. In some instances, the older texts are still listed; this is because they contain a wealth of classic information that is not often covered as completely in the newer texts. However, the old nomenclature in these classic texts needs to be evaluated carefully to ensure correct interpretation relative to the more recent nomenclature.
Each edition of this book has been written with the needs of the reader foremost in mind. We strive to serve the clinical mycology community and their patients with this book as a key resource for laboratory diagnosis of medically important fungi. Throughout the years, many readers have offered helpful suggestions and requests that have been taken to heart and implemented toward the enhancement of the book. Such input plays a large role in ensuring that the goals of the book will be met; it is therefore most sincerely appreciated and we hope that it will continue.

March, 2018
More than ever, clinical laboratory personnel with limited experience in mycology must culture and identify fungi isolated from clinical specimens. Even after attending a course in the subject, technologists often need guidance in identifying the great variety of organisms encountered in the lab. With the advent of proficiency testing by local and national organizations, technologists have a need and opportunity to practice and increase their skills in the medical mycology laboratory.

Most classic texts, though rich in information, are arranged according to the clinical description of the infection; the textual discussion of any particular fungus can be located only from the index or table of contents. Since the technologist doesn’t know the name of an unidentified fungus and usually has little or no knowledge of the clinical picture, these texts are at best difficult to use effectively. The unfortunate result is the all-too-common practice of flipping through an entire mycology textbook in search of a picture that resembles the organism under examination. Such a practice may make the more accomplished mycologist’s hair stand on end, but it is a fact to be acknowledged.

This guide is not meant to compete with these large texts, but to complement them. The material here is so arranged that the technician can systematically reach a possible identification knowing only the macro- and microscopic morphology of an isolated organism. Reference can then be made to one of the classic texts for confirmation and detailed information.

Many possible variants of organisms are found under several categories of morphology and pigment. The outstanding characteristics are listed on the page(s) apportioned to each organism, and references are suggested for further information and confirmation (see How To Use the Guide).
Medically Important Fungi avoids the jargon so commonly and confusingly used in most mycology books. Drawings are used wherever possible to illustrate organisms described in the text. To ensure clarity, a glossary of terms is included, as well as a section on laboratory techniques for observing proper morphology. Another section includes use of the various media, stains, and tests mentioned in the book.

The actinomycetes, although now known to be bacteria rather than fungi, are included because they are frequently handled in the mycology section of the clinical laboratory.

It is believed that this guide will enable students and medical technologists to culture and identify fungi with greater ease and competency and in so doing to develop an appreciation of the truly beautiful microscopic forms encountered.

I wish to acknowledge with gratitude the encouragement and advice received from my co-workers at Lenox Hill Hospital, and Dr. Norman Goodman, Mr. Gerald Krefetz, Mr. Bill Rosenzweig, Ms. Eve Rothenberg, Dr. Guenther Stotzky, Mr. Martin Weisburd, Dr. Irene Weitzman, and Dr. Marion E. Wilson.

New York
December, 1975
With the writing of this new edition, we are grateful for the willingness of so many in our field to help in numerous ways. Our everlasting gratitude is also extended to the many colleagues who assisted in the preparation of previous editions; most of their contributions are now substantive and integral parts of the ongoing Guide.

Dr. Sanchita Das from North Shore University Hospital, Evanston, IL, generously contributed her time and expertise to update the section entitled “Basics of Molecular Methods for Fungal Identification” (Part III) which she had originally written for the 5th edition.

Our colleagues in Dr. Francis Barany’s molecular microbiology research laboratory at Weill Cornell Medicine have been extremely helpful and supportive during the writing of this edition as well as the previous edition.

Dr. Stephen Jenkins, Director of the Clinical Microbiology Laboratory of the NewYork–Presbyterian Hospital/Weill Cornell Medicine (NYPH/WCM) has always readily offered valuable advice and been very supportive. Dr. Lars Westblade, Associate Director of the Clinical Microbiology Laboratory, contributed numerous helpful suggestions for additions to this edition. As noted in previous editions, almost all the organisms shown microscopically and/or as cultured colonies were prepared in the Mycology Laboratory of NYPH/WCM. We will forever be indebted to the staff of the mycology lab for their enormously significant contributions over the years.

Pat Kuharic of the Photography Department of Weill Cornell Medicine has given us the benefit of her outstanding expertise in preparing the excellent color photographs of fungal colonies as well as the black and white photomicrographs. With her talent and professional passion to get it “just right,” she is a great asset to the book.

Aleina Zehra, administrative assistant to Dr. Walsh, meticulously reviewed and updated the many Internet websites and suppliers’...
locations mentioned throughout the book, as well as assisting in the preparation of working manuscript drafts of various sections.

We thank the staff of the St. Jude Children’s Research Hospital, Department of Environmental Health and Safety, for their assistance in reviewing the section related to packaging and shipping of hazardous materials.

Dr. Sybren de Hoog kindly provided a 2-year subscription to the *Atlas of Clinical Fungi*. Drs. David Warnock and Michael Pfaller discussed perspectives with us on fungal taxonomy and nomenclature.

Last, but definitely not least, we extend our deep appreciation to the members of ASM Press. Christine Charlip, Director, has been highly supportive of this 6th edition as an important contribution to ASM Press’s library of clinical microbiological resources. Kudos also goes to Larry Klein, Production Manager; Ellie Tupper, Senior Production Editor; and the marvelous associates who contributed to the production of this edition: Mark Via, copyeditor; Susan Schmidler, interior design; and Debra Naylor, cover design. They have been extremely helpful, creative, flexible, and patient and are much appreciated.

A NOTE FROM DR. LARONE

It has been my great honor, and a source of enormous satisfaction, to have written the first five editions of *Medically Important Fungi: A Guide to Identification* as sole author. I realized, after the 5th edition, that it would be wise to have some colleagues join me in writing the next editions. I can’t thank Tom Walsh and Randy Hayden enough for agreeing to take on that endeavor. Enormous appreciation also goes to Sanchita Das for working so closely with me to create the Molecular section in the 5th edition and updating it with us in the 6th edition.

My greatest continuous long-standing appreciation goes to Ellie Tupper, who for the 4th through 6th editions has been production editor and watchful overseer, always working very closely with me and ensuring the beautiful production and high quality of the book. I have often said, and most truly mean it, that her name, along with ours, deserves to be on the cover of the book, not just on this page.

Ellie: I, the coauthors, and all the readers owe you an enormous “Thank You” and look forward to your remaining our very talented and essential partner and guide.
About the Authors

Thomas J. Walsh, MD, PhD (hon), FIDSA, FAAM, FECMM, serves as Professor of Medicine, Pediatrics, and Microbiology & Immunology at Weill Cornell Medicine of Cornell University; founding Director of the Transplantation-Oncology Infectious Diseases Program and the Infectious Diseases Translational Research Laboratory, Henry Schueler Foundation Scholar in Mucormycosis; Investigator of Emerging Infectious Diseases of the Save Our Sick Kids Foundation; and Attending Physician at the NewYork–Presbyterian Hospital and Hospital for Special Surgery. Dr. Walsh directs a combined clinical and laboratory research program dedicated to improving the lives and care of immunocompromised children and adults with invasive mycoses and other life-threatening infections. The objective of the Program's translational research is to develop new strategies for laboratory diagnosis, treatment, and prevention of life-threatening invasive mycoses in immunocompromised patients. Dr. Walsh brings to this book more than three decades of experience in the field of medical mycology, with clinical and laboratory expertise across a wide spectrum of medically important fungi and mycoses. In addition to patient care and translational research, Dr. Walsh has also mentored more than 180 students, fellows, and faculty, many of whom are distinguished leaders in the field of medical mycology throughout the world.
Randall T. Hayden, MD, is Director of Clinical Pathology Laboratories and Director of Clinical and Molecular Microbiology and Member in the Department of Pathology at St. Jude Children’s Research Hospital in Memphis, Tennessee. He joined the faculty there in 2000, following postdoctoral training in microbiology and molecular microbiology at the Mayo Clinic and in surgical pathology at the MD Anderson Cancer Center. He is board certified in Anatomic and Clinical Pathology with sub-specialty certification in Medical Microbiology. His research interests focus on the application of molecular methods to diagnostic challenges in clinical microbiology, with particular emphasis on the diagnosis of infections in the immunocompromised host. He is editor-in-chief of *Diagnostic Microbiology of the Immunocompromised Host*, 2nd Edition; co-editor of *Molecular Microbiology, Diagnostic Principles and Practice*, 3rd Edition; and section editor for the *Manual of Clinical Microbiology*, 12th Edition, all from ASM Press.

Davise H. Larone is Professor Emerita at Weill Cornell Medicine in the Department of Pathology and Laboratory Medicine and the Department of Clinical Microbiology and Immunology. From 1997 to 2008, she served as Director of the Clinical Microbiology Laboratories of The NewYork–Presbyterian Hospital, Weill Cornell Center. Prior to that, she was for many years at Lenox Hill Hospital, New York, rising from technologist to Chief of Microbiology. During that period, in 1985, she received her PhD in Biology/Microbiology from New York University. Her interest in clinical mycology dates from the 1970s. Her undergraduate degree was in Medical Technology from the University of Louisville, but her love for drawing led her to study art on the side. The combination of her organizational skills and her art background resulted in the first edition of this book in 1976. The subsequent editions in 1987, 1995, 2002, and 2011 all feature Dr. Larone’s elegant drawings. Dr. Larone has served on numerous standards, advisory, editorial, educational, and examination boards/committees. Over the years, she has presented more than 100 workshops and lectures in 52 cities in the United States and in 14 cities in nine other countries. She has received numerous awards for teaching and for contributions to clinical mycology.