Catalase Test Protocol

Created: Thursday, 11 November 2010
Author • Karen Reiner

In order to survive, organisms must rely on defense mechanisms that allow them to repair or escape the oxidative damage of hydrogen peroxide (H₂O₂). Some bacteria produce the enzyme catalase which facilitates cellular detoxification. Catalase neutralizes the bactericidal effects of hydrogen peroxide (13) and its concentration in bacteria has been correlated with pathogenicity (8).

Enzyme-based tests play a crucial part in the identification of bacteria. In 1893, a publication by Gottstein brought attention to bacterial catalase, making it one of the first bacterial enzymes to be described (6, 9). Some 30 years later, McLeod and Gordon (9) developed and published what is thought to be the first bacterial classification scheme based on catalase production and reactions (6). Initial methods of catalase detection were cumbersome, labor-intensive, time-consuming, and required specialized equipment (6). Over the years, the techniques first described by Gagnon et al. (6) and particularly those of Thomas (12) have been modified and streamlined, thus greatly simplifying the performance of this test.

Purpose

The catalase test facilitates the detection of the enzyme catalase in bacteria. It is essential for differentiating catalase-positive Micrococcaceae from catalase-negative Streptococcaceae. While it is primarily useful in differentiating between genera, it is also valuable in speciation of certain gram positives such as Aerococcus urinae (positive) from Aerococcus viridians (negative) and gram-negative organisms such as Campylobacter fetus, Campylobacter jejuni, and Campylobacter coli (all positive) from other Campylobacter species (7, 8). Some have reported its value in the presumptive differentiation among certain Enterobacteriaceae (11). The catalase test is also valuable in differentiating aerobic and obligate anaerobic bacteria, as anaerobes are generally known to lack the enzyme (8, 9). In this context, the catalase test is valuable in differentiating aerotolerant strains of Clostridium, which are catalase negative, from Bacillus, which are catalase positive (8).

Theory

The catalase enzyme serves to neutralize the bactericidal effects of hydrogen peroxide (13). Catalase expedites the breakdown of hydrogen
peroxide ($\text{H}_2\text{O}_2$) into water and oxygen ($2\text{H}_2\text{O}_2 + \text{Catalase} \rightarrow 2\text{H}_2\text{O} + \text{O}_2$). This reaction is evident by the rapid formation of bubbles (2, 7).

**RECIPE**

For routine testing of aerobes, use commercially available 3% hydrogen peroxide (2, 7). Store the hydrogen peroxide refrigerated in a dark bottle.

For the identification of anaerobic bacteria, a 15% $\text{H}_2\text{O}_2$ solution is necessary (1). In this context, the catalase test is used to differentiate aerotolerant strains of *Clostridium*, which are catalase negative, from *Bacillus* species, which are positive (8).

The superoxol catalase test used for the presumptive speciation of certain *Neisseria* organisms requires a different concentration of $\text{H}_2\text{O}_2$. Refer to the “Additional Recommendations” section for details.

**PROTOCOL**

There are many applications and method variations of the catalase test. These include the slide or drop catalase test, the tube method, the semiquantitative catalase for the identification of *Mycobacterium tuberculosis*, the heat-stable catalase used for the differentiation of *Mycobacterium* species, and the capillary tube and cover slip method (7). One of the most popular methods in clinical bacteriology is the slide or drop catalase method, because it requires a small amount of organism and relies on a relatively uncomplicated technique. This protocol delineates the procedure for the qualitative slide and tube catalase methods, which are primarily used for the differentiation of staphylococci and streptococci.

**Slide (drop) method**

Place a microscope slide inside a petri dish. Keep the petri dish cover available. The use of a petri dish is optional as the slide catalase can be properly performed without it. However, to limit catalase aerosols, which have been shown to carry viable bacterial cells (4), the use of a petri dish is strongly recommended. Using a sterile inoculating loop or wooden applicator stick, collect a small amount of organism from a well-isolated 18- to 24-hour colony and place it onto the microscope slide. Be careful not to pick up any agar. This is particularly important if the colony isolate was grown on agar containing red blood cells (5, 7). Carryover of red blood cells into the test may result in a false-positive reaction (5, 7). Using a dropper or Pasteur pipette, place 1 drop of 3% $\text{H}_2\text{O}_2$ onto the organism on the microscope slide. Do not mix. Immediately cover the petri dish with a lid to limit aerosols and observe for immediate bubble formation ($\text{O}_2 + \text{water} = \text{bubbles}$). Observing for the formation of bubbles against a dark background enhances readability.

Positive reactions are evident by immediate effervescence (bubble formation) (Fig. 1). Place microscope slide over a dark background and use a magnifying glass or microscope to observe weak positive reactions.
If using a microscope, place a cover slip over the slide and view under 40x magnification. No bubble formation (no catalase enzyme to hydrolyze the hydrogen peroxide) represents a catalase-negative reaction (Fig. 1).

Quality control is performed by using organisms known to be positive and negative for catalase.

Note: If a platinum inoculating loop is used, do not add 3% H₂O₂ to the slide before the organism, as the platinum wire in the loop may produce a false-positive result. This is not the case with nichrome wire.

**FIG. 1**. Slide catalase test results. (Top) The positive reaction was produced by *Staphylococcus aureus*; (bottom) the negative reaction was produced by *Streptococcus pyogenes*.

**Tube method** (10)

Add 4 to 5 drops of 3% H₂O₂ to a 12 x 75-mm test tube (10). Using a wooden applicator stick, collect a small amount of organism from a well-isolated 18- to 24-hour colony and place into the test tube. Be careful not to pick up any agar. This is particularly important if the colony isolate was grown on agar containing red blood cells. Carryover of red blood cells into the test may result in a false-positive reaction (5, 7). Place the tube against a dark background and observe for immediate bubble
formation (\(O_2 + \text{water} = \text{bubbles}\)) at the end of the wooden applicator stick.

Positive reactions are evident by immediate effervescence (bubble formation) (Fig. 2A). Use a magnifying glass or microscope to observe weak positive reactions. No bubble formation (no catalase enzyme to hydrolyze the hydrogen peroxide) represents a catalase-negative reaction (Fig. 2B).

Quality control is performed by using organisms known to be positive and negative for catalase.
FIG. 2. Tube catalase test results. (A) The positive reaction was produced by *Staphylococcus aureus*; (B) the negative reaction was produced by *Streptococcus pyogenes*.

**Tube (slant) method**

Add 1.0 ml of 3% H₂O₂ directly onto an 18- to 24-hour heavily inoculated pure culture grown on a nutrient agar slant (7). Place the tube against a dark background and observe for immediate bubble formation.

Positive reactions are evident by immediate effervescence (bubble formation) (Fig. 3A). No bubble formation (no catalase enzyme to hydrolyze the hydrogen peroxide) represents a catalase-negative reaction (Fig. 3B).
FIG. 3. Tube (slant) catalase test results. (A) The positive reaction was produced by *Staphylococcus aureus*; (B) the negative reaction was produced by *Streptococcus pyogenes*.

**SAFETY**

The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the [ASM Curriculum Recommendations: Introductory Course in Microbiology](http://www.asm.org) and the [Guidelines for Biosafety in Teaching Laboratories](http://www.asm.org).

**COMMENTS AND TIPS**

Always use strict aseptic techniques. If possible, perform the test under a biosafety hood. Do not use this procedure for *Mycobacteria* testing. In addition to potential self-contamination by aerosol exposure, *Mycobacteria* speciation by the catalase test is achieved by different techniques not discussed in this protocol (3, 5, 7).

Positive superoxol organisms such as *Neisseria gonorrhoeae* produce immediate, vigorous bubbling (8). Other *Neisseria* species produce delayed bubbling or none at all (8). The superoxol test is performed the same way as the 3% catalase test.

**REFERENCES**

10. *South Bend Medical Foundation.* 2010. Catalase test protocol. South Bend Medical Foundation, South Bend, IN.
Bartlett Publishers, Inc., Sudbury, MA.

**REVIEWERS**

This resource was peer-reviewed at the ASM Conference for Undergraduate Educators 2010.

Participating reviewers:

Victoria Akpata  
Kuwait University, Safat, Kuwait

Ned Barden  
Massachusetts College of Pharmacy, Boston, MA

Benita Brink  
Adams State College, Alamosa, CO

Esperanza Cabrera  
De La Salle University, Manila, Philippines

Gina Cano-Monreal  
Texas State Technical College, Harlingen, TX

Russell Cossaboom  
University of Michigan—Flint, Flint, MI

Jonathan Davis  
Doña Ana Community College, Las Cruces, NM

Stella Marie Doyungan  
Texas A&M University—Corpus Christi, Corpus Christi, TX

Cornelius Joel Funk  
John Brown University, Siloam Springs, AR

Robert Fultz  
Sam Houston State University, Huntsville, TX

Hygia Guerreiro  
Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil

Anne Hanson  
University of Maine, Orono, ME

Jan Hudzicki  
University of Kansas Medical Center, Kansas City, KS

Parisa Jazbi  
Folsom Lake College, Folsom, CA
D. Sue Katz  
Rogers State University, Claremore, OK

Archana Lal  
Independence Community College, Independence, KS

Donald Lehman  
University of Delaware, Newark, DE  
Min-Ken Liao  
Furman University, Greenville, SC

Hilda Merchant  
Oakland Community College, Farmington Hills, MI

Amy Miller  
Raymond Walter College, University of Cincinnati, Mason, OH

Oluwatoyin Osunsanya  
Muskingum University, New Concord, OH

Gary Patterson  
College of the Marshall Islands, Majuro, MH

Todd Primm  
Sam Houston State University, Huntsville, TX

Johana Melendez Santiago  
Hillsborough Community College, Plant City, FL

Patricia Shields  
University of Maryland, College Park, MD

Sheridan Shupe  
Delaware Technical & Community College, Georgetown, DE

Ann Stewart-Akers  
South University, Columbia, SC

Erica Suchman  
Colorado State University, Ft. Collins, CO

Dan Trubovitz  
Miramar College, San Diego, CA

Ann Vernon  
St. Charles Community College, Cottleville, MO

Cuc Kim Vu  
St. Catherine University, Minneapolis, MN